xref: /openbmc/linux/net/tls/tls_sw.c (revision 2359ccdd)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  *
8  * This software is available to you under a choice of one of two
9  * licenses.  You may choose to be licensed under the terms of the GNU
10  * General Public License (GPL) Version 2, available from the file
11  * COPYING in the main directory of this source tree, or the
12  * OpenIB.org BSD license below:
13  *
14  *     Redistribution and use in source and binary forms, with or
15  *     without modification, are permitted provided that the following
16  *     conditions are met:
17  *
18  *      - Redistributions of source code must retain the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer.
21  *
22  *      - Redistributions in binary form must reproduce the above
23  *        copyright notice, this list of conditions and the following
24  *        disclaimer in the documentation and/or other materials
25  *        provided with the distribution.
26  *
27  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
28  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
29  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
30  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
31  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
32  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
33  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34  * SOFTWARE.
35  */
36 
37 #include <linux/sched/signal.h>
38 #include <linux/module.h>
39 #include <crypto/aead.h>
40 
41 #include <net/strparser.h>
42 #include <net/tls.h>
43 
44 static int tls_do_decryption(struct sock *sk,
45 			     struct scatterlist *sgin,
46 			     struct scatterlist *sgout,
47 			     char *iv_recv,
48 			     size_t data_len,
49 			     struct sk_buff *skb,
50 			     gfp_t flags)
51 {
52 	struct tls_context *tls_ctx = tls_get_ctx(sk);
53 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
54 	struct strp_msg *rxm = strp_msg(skb);
55 	struct aead_request *aead_req;
56 
57 	int ret;
58 	unsigned int req_size = sizeof(struct aead_request) +
59 		crypto_aead_reqsize(ctx->aead_recv);
60 
61 	aead_req = kzalloc(req_size, flags);
62 	if (!aead_req)
63 		return -ENOMEM;
64 
65 	aead_request_set_tfm(aead_req, ctx->aead_recv);
66 	aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
67 	aead_request_set_crypt(aead_req, sgin, sgout,
68 			       data_len + tls_ctx->rx.tag_size,
69 			       (u8 *)iv_recv);
70 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
71 				  crypto_req_done, &ctx->async_wait);
72 
73 	ret = crypto_wait_req(crypto_aead_decrypt(aead_req), &ctx->async_wait);
74 
75 	if (ret < 0)
76 		goto out;
77 
78 	rxm->offset += tls_ctx->rx.prepend_size;
79 	rxm->full_len -= tls_ctx->rx.overhead_size;
80 	tls_advance_record_sn(sk, &tls_ctx->rx);
81 
82 	ctx->decrypted = true;
83 
84 	ctx->saved_data_ready(sk);
85 
86 out:
87 	kfree(aead_req);
88 	return ret;
89 }
90 
91 static void trim_sg(struct sock *sk, struct scatterlist *sg,
92 		    int *sg_num_elem, unsigned int *sg_size, int target_size)
93 {
94 	int i = *sg_num_elem - 1;
95 	int trim = *sg_size - target_size;
96 
97 	if (trim <= 0) {
98 		WARN_ON(trim < 0);
99 		return;
100 	}
101 
102 	*sg_size = target_size;
103 	while (trim >= sg[i].length) {
104 		trim -= sg[i].length;
105 		sk_mem_uncharge(sk, sg[i].length);
106 		put_page(sg_page(&sg[i]));
107 		i--;
108 
109 		if (i < 0)
110 			goto out;
111 	}
112 
113 	sg[i].length -= trim;
114 	sk_mem_uncharge(sk, trim);
115 
116 out:
117 	*sg_num_elem = i + 1;
118 }
119 
120 static void trim_both_sgl(struct sock *sk, int target_size)
121 {
122 	struct tls_context *tls_ctx = tls_get_ctx(sk);
123 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
124 
125 	trim_sg(sk, ctx->sg_plaintext_data,
126 		&ctx->sg_plaintext_num_elem,
127 		&ctx->sg_plaintext_size,
128 		target_size);
129 
130 	if (target_size > 0)
131 		target_size += tls_ctx->tx.overhead_size;
132 
133 	trim_sg(sk, ctx->sg_encrypted_data,
134 		&ctx->sg_encrypted_num_elem,
135 		&ctx->sg_encrypted_size,
136 		target_size);
137 }
138 
139 static int alloc_encrypted_sg(struct sock *sk, int len)
140 {
141 	struct tls_context *tls_ctx = tls_get_ctx(sk);
142 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
143 	int rc = 0;
144 
145 	rc = sk_alloc_sg(sk, len,
146 			 ctx->sg_encrypted_data, 0,
147 			 &ctx->sg_encrypted_num_elem,
148 			 &ctx->sg_encrypted_size, 0);
149 
150 	return rc;
151 }
152 
153 static int alloc_plaintext_sg(struct sock *sk, int len)
154 {
155 	struct tls_context *tls_ctx = tls_get_ctx(sk);
156 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
157 	int rc = 0;
158 
159 	rc = sk_alloc_sg(sk, len, ctx->sg_plaintext_data, 0,
160 			 &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size,
161 			 tls_ctx->pending_open_record_frags);
162 
163 	return rc;
164 }
165 
166 static void free_sg(struct sock *sk, struct scatterlist *sg,
167 		    int *sg_num_elem, unsigned int *sg_size)
168 {
169 	int i, n = *sg_num_elem;
170 
171 	for (i = 0; i < n; ++i) {
172 		sk_mem_uncharge(sk, sg[i].length);
173 		put_page(sg_page(&sg[i]));
174 	}
175 	*sg_num_elem = 0;
176 	*sg_size = 0;
177 }
178 
179 static void tls_free_both_sg(struct sock *sk)
180 {
181 	struct tls_context *tls_ctx = tls_get_ctx(sk);
182 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
183 
184 	free_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem,
185 		&ctx->sg_encrypted_size);
186 
187 	free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
188 		&ctx->sg_plaintext_size);
189 }
190 
191 static int tls_do_encryption(struct tls_context *tls_ctx,
192 			     struct tls_sw_context *ctx, size_t data_len,
193 			     gfp_t flags)
194 {
195 	unsigned int req_size = sizeof(struct aead_request) +
196 		crypto_aead_reqsize(ctx->aead_send);
197 	struct aead_request *aead_req;
198 	int rc;
199 
200 	aead_req = kzalloc(req_size, flags);
201 	if (!aead_req)
202 		return -ENOMEM;
203 
204 	ctx->sg_encrypted_data[0].offset += tls_ctx->tx.prepend_size;
205 	ctx->sg_encrypted_data[0].length -= tls_ctx->tx.prepend_size;
206 
207 	aead_request_set_tfm(aead_req, ctx->aead_send);
208 	aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
209 	aead_request_set_crypt(aead_req, ctx->sg_aead_in, ctx->sg_aead_out,
210 			       data_len, tls_ctx->tx.iv);
211 
212 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
213 				  crypto_req_done, &ctx->async_wait);
214 
215 	rc = crypto_wait_req(crypto_aead_encrypt(aead_req), &ctx->async_wait);
216 
217 	ctx->sg_encrypted_data[0].offset -= tls_ctx->tx.prepend_size;
218 	ctx->sg_encrypted_data[0].length += tls_ctx->tx.prepend_size;
219 
220 	kfree(aead_req);
221 	return rc;
222 }
223 
224 static int tls_push_record(struct sock *sk, int flags,
225 			   unsigned char record_type)
226 {
227 	struct tls_context *tls_ctx = tls_get_ctx(sk);
228 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
229 	int rc;
230 
231 	sg_mark_end(ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem - 1);
232 	sg_mark_end(ctx->sg_encrypted_data + ctx->sg_encrypted_num_elem - 1);
233 
234 	tls_make_aad(ctx->aad_space, ctx->sg_plaintext_size,
235 		     tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
236 		     record_type);
237 
238 	tls_fill_prepend(tls_ctx,
239 			 page_address(sg_page(&ctx->sg_encrypted_data[0])) +
240 			 ctx->sg_encrypted_data[0].offset,
241 			 ctx->sg_plaintext_size, record_type);
242 
243 	tls_ctx->pending_open_record_frags = 0;
244 	set_bit(TLS_PENDING_CLOSED_RECORD, &tls_ctx->flags);
245 
246 	rc = tls_do_encryption(tls_ctx, ctx, ctx->sg_plaintext_size,
247 			       sk->sk_allocation);
248 	if (rc < 0) {
249 		/* If we are called from write_space and
250 		 * we fail, we need to set this SOCK_NOSPACE
251 		 * to trigger another write_space in the future.
252 		 */
253 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
254 		return rc;
255 	}
256 
257 	free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
258 		&ctx->sg_plaintext_size);
259 
260 	ctx->sg_encrypted_num_elem = 0;
261 	ctx->sg_encrypted_size = 0;
262 
263 	/* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */
264 	rc = tls_push_sg(sk, tls_ctx, ctx->sg_encrypted_data, 0, flags);
265 	if (rc < 0 && rc != -EAGAIN)
266 		tls_err_abort(sk, EBADMSG);
267 
268 	tls_advance_record_sn(sk, &tls_ctx->tx);
269 	return rc;
270 }
271 
272 static int tls_sw_push_pending_record(struct sock *sk, int flags)
273 {
274 	return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA);
275 }
276 
277 static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
278 			      int length, int *pages_used,
279 			      unsigned int *size_used,
280 			      struct scatterlist *to, int to_max_pages,
281 			      bool charge)
282 {
283 	struct page *pages[MAX_SKB_FRAGS];
284 
285 	size_t offset;
286 	ssize_t copied, use;
287 	int i = 0;
288 	unsigned int size = *size_used;
289 	int num_elem = *pages_used;
290 	int rc = 0;
291 	int maxpages;
292 
293 	while (length > 0) {
294 		i = 0;
295 		maxpages = to_max_pages - num_elem;
296 		if (maxpages == 0) {
297 			rc = -EFAULT;
298 			goto out;
299 		}
300 		copied = iov_iter_get_pages(from, pages,
301 					    length,
302 					    maxpages, &offset);
303 		if (copied <= 0) {
304 			rc = -EFAULT;
305 			goto out;
306 		}
307 
308 		iov_iter_advance(from, copied);
309 
310 		length -= copied;
311 		size += copied;
312 		while (copied) {
313 			use = min_t(int, copied, PAGE_SIZE - offset);
314 
315 			sg_set_page(&to[num_elem],
316 				    pages[i], use, offset);
317 			sg_unmark_end(&to[num_elem]);
318 			if (charge)
319 				sk_mem_charge(sk, use);
320 
321 			offset = 0;
322 			copied -= use;
323 
324 			++i;
325 			++num_elem;
326 		}
327 	}
328 
329 out:
330 	*size_used = size;
331 	*pages_used = num_elem;
332 
333 	return rc;
334 }
335 
336 static int memcopy_from_iter(struct sock *sk, struct iov_iter *from,
337 			     int bytes)
338 {
339 	struct tls_context *tls_ctx = tls_get_ctx(sk);
340 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
341 	struct scatterlist *sg = ctx->sg_plaintext_data;
342 	int copy, i, rc = 0;
343 
344 	for (i = tls_ctx->pending_open_record_frags;
345 	     i < ctx->sg_plaintext_num_elem; ++i) {
346 		copy = sg[i].length;
347 		if (copy_from_iter(
348 				page_address(sg_page(&sg[i])) + sg[i].offset,
349 				copy, from) != copy) {
350 			rc = -EFAULT;
351 			goto out;
352 		}
353 		bytes -= copy;
354 
355 		++tls_ctx->pending_open_record_frags;
356 
357 		if (!bytes)
358 			break;
359 	}
360 
361 out:
362 	return rc;
363 }
364 
365 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
366 {
367 	struct tls_context *tls_ctx = tls_get_ctx(sk);
368 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
369 	int ret = 0;
370 	int required_size;
371 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
372 	bool eor = !(msg->msg_flags & MSG_MORE);
373 	size_t try_to_copy, copied = 0;
374 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
375 	int record_room;
376 	bool full_record;
377 	int orig_size;
378 
379 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
380 		return -ENOTSUPP;
381 
382 	lock_sock(sk);
383 
384 	if (tls_complete_pending_work(sk, tls_ctx, msg->msg_flags, &timeo))
385 		goto send_end;
386 
387 	if (unlikely(msg->msg_controllen)) {
388 		ret = tls_proccess_cmsg(sk, msg, &record_type);
389 		if (ret)
390 			goto send_end;
391 	}
392 
393 	while (msg_data_left(msg)) {
394 		if (sk->sk_err) {
395 			ret = -sk->sk_err;
396 			goto send_end;
397 		}
398 
399 		orig_size = ctx->sg_plaintext_size;
400 		full_record = false;
401 		try_to_copy = msg_data_left(msg);
402 		record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
403 		if (try_to_copy >= record_room) {
404 			try_to_copy = record_room;
405 			full_record = true;
406 		}
407 
408 		required_size = ctx->sg_plaintext_size + try_to_copy +
409 				tls_ctx->tx.overhead_size;
410 
411 		if (!sk_stream_memory_free(sk))
412 			goto wait_for_sndbuf;
413 alloc_encrypted:
414 		ret = alloc_encrypted_sg(sk, required_size);
415 		if (ret) {
416 			if (ret != -ENOSPC)
417 				goto wait_for_memory;
418 
419 			/* Adjust try_to_copy according to the amount that was
420 			 * actually allocated. The difference is due
421 			 * to max sg elements limit
422 			 */
423 			try_to_copy -= required_size - ctx->sg_encrypted_size;
424 			full_record = true;
425 		}
426 
427 		if (full_record || eor) {
428 			ret = zerocopy_from_iter(sk, &msg->msg_iter,
429 				try_to_copy, &ctx->sg_plaintext_num_elem,
430 				&ctx->sg_plaintext_size,
431 				ctx->sg_plaintext_data,
432 				ARRAY_SIZE(ctx->sg_plaintext_data),
433 				true);
434 			if (ret)
435 				goto fallback_to_reg_send;
436 
437 			copied += try_to_copy;
438 			ret = tls_push_record(sk, msg->msg_flags, record_type);
439 			if (!ret)
440 				continue;
441 			if (ret == -EAGAIN)
442 				goto send_end;
443 
444 			copied -= try_to_copy;
445 fallback_to_reg_send:
446 			iov_iter_revert(&msg->msg_iter,
447 					ctx->sg_plaintext_size - orig_size);
448 			trim_sg(sk, ctx->sg_plaintext_data,
449 				&ctx->sg_plaintext_num_elem,
450 				&ctx->sg_plaintext_size,
451 				orig_size);
452 		}
453 
454 		required_size = ctx->sg_plaintext_size + try_to_copy;
455 alloc_plaintext:
456 		ret = alloc_plaintext_sg(sk, required_size);
457 		if (ret) {
458 			if (ret != -ENOSPC)
459 				goto wait_for_memory;
460 
461 			/* Adjust try_to_copy according to the amount that was
462 			 * actually allocated. The difference is due
463 			 * to max sg elements limit
464 			 */
465 			try_to_copy -= required_size - ctx->sg_plaintext_size;
466 			full_record = true;
467 
468 			trim_sg(sk, ctx->sg_encrypted_data,
469 				&ctx->sg_encrypted_num_elem,
470 				&ctx->sg_encrypted_size,
471 				ctx->sg_plaintext_size +
472 				tls_ctx->tx.overhead_size);
473 		}
474 
475 		ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy);
476 		if (ret)
477 			goto trim_sgl;
478 
479 		copied += try_to_copy;
480 		if (full_record || eor) {
481 push_record:
482 			ret = tls_push_record(sk, msg->msg_flags, record_type);
483 			if (ret) {
484 				if (ret == -ENOMEM)
485 					goto wait_for_memory;
486 
487 				goto send_end;
488 			}
489 		}
490 
491 		continue;
492 
493 wait_for_sndbuf:
494 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
495 wait_for_memory:
496 		ret = sk_stream_wait_memory(sk, &timeo);
497 		if (ret) {
498 trim_sgl:
499 			trim_both_sgl(sk, orig_size);
500 			goto send_end;
501 		}
502 
503 		if (tls_is_pending_closed_record(tls_ctx))
504 			goto push_record;
505 
506 		if (ctx->sg_encrypted_size < required_size)
507 			goto alloc_encrypted;
508 
509 		goto alloc_plaintext;
510 	}
511 
512 send_end:
513 	ret = sk_stream_error(sk, msg->msg_flags, ret);
514 
515 	release_sock(sk);
516 	return copied ? copied : ret;
517 }
518 
519 int tls_sw_sendpage(struct sock *sk, struct page *page,
520 		    int offset, size_t size, int flags)
521 {
522 	struct tls_context *tls_ctx = tls_get_ctx(sk);
523 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
524 	int ret = 0;
525 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
526 	bool eor;
527 	size_t orig_size = size;
528 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
529 	struct scatterlist *sg;
530 	bool full_record;
531 	int record_room;
532 
533 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
534 		      MSG_SENDPAGE_NOTLAST))
535 		return -ENOTSUPP;
536 
537 	/* No MSG_EOR from splice, only look at MSG_MORE */
538 	eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
539 
540 	lock_sock(sk);
541 
542 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
543 
544 	if (tls_complete_pending_work(sk, tls_ctx, flags, &timeo))
545 		goto sendpage_end;
546 
547 	/* Call the sk_stream functions to manage the sndbuf mem. */
548 	while (size > 0) {
549 		size_t copy, required_size;
550 
551 		if (sk->sk_err) {
552 			ret = -sk->sk_err;
553 			goto sendpage_end;
554 		}
555 
556 		full_record = false;
557 		record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
558 		copy = size;
559 		if (copy >= record_room) {
560 			copy = record_room;
561 			full_record = true;
562 		}
563 		required_size = ctx->sg_plaintext_size + copy +
564 			      tls_ctx->tx.overhead_size;
565 
566 		if (!sk_stream_memory_free(sk))
567 			goto wait_for_sndbuf;
568 alloc_payload:
569 		ret = alloc_encrypted_sg(sk, required_size);
570 		if (ret) {
571 			if (ret != -ENOSPC)
572 				goto wait_for_memory;
573 
574 			/* Adjust copy according to the amount that was
575 			 * actually allocated. The difference is due
576 			 * to max sg elements limit
577 			 */
578 			copy -= required_size - ctx->sg_plaintext_size;
579 			full_record = true;
580 		}
581 
582 		get_page(page);
583 		sg = ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem;
584 		sg_set_page(sg, page, copy, offset);
585 		sg_unmark_end(sg);
586 
587 		ctx->sg_plaintext_num_elem++;
588 
589 		sk_mem_charge(sk, copy);
590 		offset += copy;
591 		size -= copy;
592 		ctx->sg_plaintext_size += copy;
593 		tls_ctx->pending_open_record_frags = ctx->sg_plaintext_num_elem;
594 
595 		if (full_record || eor ||
596 		    ctx->sg_plaintext_num_elem ==
597 		    ARRAY_SIZE(ctx->sg_plaintext_data)) {
598 push_record:
599 			ret = tls_push_record(sk, flags, record_type);
600 			if (ret) {
601 				if (ret == -ENOMEM)
602 					goto wait_for_memory;
603 
604 				goto sendpage_end;
605 			}
606 		}
607 		continue;
608 wait_for_sndbuf:
609 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
610 wait_for_memory:
611 		ret = sk_stream_wait_memory(sk, &timeo);
612 		if (ret) {
613 			trim_both_sgl(sk, ctx->sg_plaintext_size);
614 			goto sendpage_end;
615 		}
616 
617 		if (tls_is_pending_closed_record(tls_ctx))
618 			goto push_record;
619 
620 		goto alloc_payload;
621 	}
622 
623 sendpage_end:
624 	if (orig_size > size)
625 		ret = orig_size - size;
626 	else
627 		ret = sk_stream_error(sk, flags, ret);
628 
629 	release_sock(sk);
630 	return ret;
631 }
632 
633 static struct sk_buff *tls_wait_data(struct sock *sk, int flags,
634 				     long timeo, int *err)
635 {
636 	struct tls_context *tls_ctx = tls_get_ctx(sk);
637 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
638 	struct sk_buff *skb;
639 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
640 
641 	while (!(skb = ctx->recv_pkt)) {
642 		if (sk->sk_err) {
643 			*err = sock_error(sk);
644 			return NULL;
645 		}
646 
647 		if (sock_flag(sk, SOCK_DONE))
648 			return NULL;
649 
650 		if ((flags & MSG_DONTWAIT) || !timeo) {
651 			*err = -EAGAIN;
652 			return NULL;
653 		}
654 
655 		add_wait_queue(sk_sleep(sk), &wait);
656 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
657 		sk_wait_event(sk, &timeo, ctx->recv_pkt != skb, &wait);
658 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
659 		remove_wait_queue(sk_sleep(sk), &wait);
660 
661 		/* Handle signals */
662 		if (signal_pending(current)) {
663 			*err = sock_intr_errno(timeo);
664 			return NULL;
665 		}
666 	}
667 
668 	return skb;
669 }
670 
671 static int decrypt_skb(struct sock *sk, struct sk_buff *skb,
672 		       struct scatterlist *sgout)
673 {
674 	struct tls_context *tls_ctx = tls_get_ctx(sk);
675 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
676 	char iv[TLS_CIPHER_AES_GCM_128_SALT_SIZE + tls_ctx->rx.iv_size];
677 	struct scatterlist sgin_arr[MAX_SKB_FRAGS + 2];
678 	struct scatterlist *sgin = &sgin_arr[0];
679 	struct strp_msg *rxm = strp_msg(skb);
680 	int ret, nsg = ARRAY_SIZE(sgin_arr);
681 	char aad_recv[TLS_AAD_SPACE_SIZE];
682 	struct sk_buff *unused;
683 
684 	ret = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
685 			    iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
686 			    tls_ctx->rx.iv_size);
687 	if (ret < 0)
688 		return ret;
689 
690 	memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
691 	if (!sgout) {
692 		nsg = skb_cow_data(skb, 0, &unused) + 1;
693 		sgin = kmalloc_array(nsg, sizeof(*sgin), sk->sk_allocation);
694 		if (!sgout)
695 			sgout = sgin;
696 	}
697 
698 	sg_init_table(sgin, nsg);
699 	sg_set_buf(&sgin[0], aad_recv, sizeof(aad_recv));
700 
701 	nsg = skb_to_sgvec(skb, &sgin[1],
702 			   rxm->offset + tls_ctx->rx.prepend_size,
703 			   rxm->full_len - tls_ctx->rx.prepend_size);
704 
705 	tls_make_aad(aad_recv,
706 		     rxm->full_len - tls_ctx->rx.overhead_size,
707 		     tls_ctx->rx.rec_seq,
708 		     tls_ctx->rx.rec_seq_size,
709 		     ctx->control);
710 
711 	ret = tls_do_decryption(sk, sgin, sgout, iv,
712 				rxm->full_len - tls_ctx->rx.overhead_size,
713 				skb, sk->sk_allocation);
714 
715 	if (sgin != &sgin_arr[0])
716 		kfree(sgin);
717 
718 	return ret;
719 }
720 
721 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
722 			       unsigned int len)
723 {
724 	struct tls_context *tls_ctx = tls_get_ctx(sk);
725 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
726 	struct strp_msg *rxm = strp_msg(skb);
727 
728 	if (len < rxm->full_len) {
729 		rxm->offset += len;
730 		rxm->full_len -= len;
731 
732 		return false;
733 	}
734 
735 	/* Finished with message */
736 	ctx->recv_pkt = NULL;
737 	kfree_skb(skb);
738 	strp_unpause(&ctx->strp);
739 
740 	return true;
741 }
742 
743 int tls_sw_recvmsg(struct sock *sk,
744 		   struct msghdr *msg,
745 		   size_t len,
746 		   int nonblock,
747 		   int flags,
748 		   int *addr_len)
749 {
750 	struct tls_context *tls_ctx = tls_get_ctx(sk);
751 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
752 	unsigned char control;
753 	struct strp_msg *rxm;
754 	struct sk_buff *skb;
755 	ssize_t copied = 0;
756 	bool cmsg = false;
757 	int err = 0;
758 	long timeo;
759 
760 	flags |= nonblock;
761 
762 	if (unlikely(flags & MSG_ERRQUEUE))
763 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
764 
765 	lock_sock(sk);
766 
767 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
768 	do {
769 		bool zc = false;
770 		int chunk = 0;
771 
772 		skb = tls_wait_data(sk, flags, timeo, &err);
773 		if (!skb)
774 			goto recv_end;
775 
776 		rxm = strp_msg(skb);
777 		if (!cmsg) {
778 			int cerr;
779 
780 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
781 					sizeof(ctx->control), &ctx->control);
782 			cmsg = true;
783 			control = ctx->control;
784 			if (ctx->control != TLS_RECORD_TYPE_DATA) {
785 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
786 					err = -EIO;
787 					goto recv_end;
788 				}
789 			}
790 		} else if (control != ctx->control) {
791 			goto recv_end;
792 		}
793 
794 		if (!ctx->decrypted) {
795 			int page_count;
796 			int to_copy;
797 
798 			page_count = iov_iter_npages(&msg->msg_iter,
799 						     MAX_SKB_FRAGS);
800 			to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
801 			if (to_copy <= len && page_count < MAX_SKB_FRAGS &&
802 			    likely(!(flags & MSG_PEEK)))  {
803 				struct scatterlist sgin[MAX_SKB_FRAGS + 1];
804 				char unused[21];
805 				int pages = 0;
806 
807 				zc = true;
808 				sg_init_table(sgin, MAX_SKB_FRAGS + 1);
809 				sg_set_buf(&sgin[0], unused, 13);
810 
811 				err = zerocopy_from_iter(sk, &msg->msg_iter,
812 							 to_copy, &pages,
813 							 &chunk, &sgin[1],
814 							 MAX_SKB_FRAGS,	false);
815 				if (err < 0)
816 					goto fallback_to_reg_recv;
817 
818 				err = decrypt_skb(sk, skb, sgin);
819 				for (; pages > 0; pages--)
820 					put_page(sg_page(&sgin[pages]));
821 				if (err < 0) {
822 					tls_err_abort(sk, EBADMSG);
823 					goto recv_end;
824 				}
825 			} else {
826 fallback_to_reg_recv:
827 				err = decrypt_skb(sk, skb, NULL);
828 				if (err < 0) {
829 					tls_err_abort(sk, EBADMSG);
830 					goto recv_end;
831 				}
832 			}
833 			ctx->decrypted = true;
834 		}
835 
836 		if (!zc) {
837 			chunk = min_t(unsigned int, rxm->full_len, len);
838 			err = skb_copy_datagram_msg(skb, rxm->offset, msg,
839 						    chunk);
840 			if (err < 0)
841 				goto recv_end;
842 		}
843 
844 		copied += chunk;
845 		len -= chunk;
846 		if (likely(!(flags & MSG_PEEK))) {
847 			u8 control = ctx->control;
848 
849 			if (tls_sw_advance_skb(sk, skb, chunk)) {
850 				/* Return full control message to
851 				 * userspace before trying to parse
852 				 * another message type
853 				 */
854 				msg->msg_flags |= MSG_EOR;
855 				if (control != TLS_RECORD_TYPE_DATA)
856 					goto recv_end;
857 			}
858 		}
859 	} while (len);
860 
861 recv_end:
862 	release_sock(sk);
863 	return copied ? : err;
864 }
865 
866 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
867 			   struct pipe_inode_info *pipe,
868 			   size_t len, unsigned int flags)
869 {
870 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
871 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
872 	struct strp_msg *rxm = NULL;
873 	struct sock *sk = sock->sk;
874 	struct sk_buff *skb;
875 	ssize_t copied = 0;
876 	int err = 0;
877 	long timeo;
878 	int chunk;
879 
880 	lock_sock(sk);
881 
882 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
883 
884 	skb = tls_wait_data(sk, flags, timeo, &err);
885 	if (!skb)
886 		goto splice_read_end;
887 
888 	/* splice does not support reading control messages */
889 	if (ctx->control != TLS_RECORD_TYPE_DATA) {
890 		err = -ENOTSUPP;
891 		goto splice_read_end;
892 	}
893 
894 	if (!ctx->decrypted) {
895 		err = decrypt_skb(sk, skb, NULL);
896 
897 		if (err < 0) {
898 			tls_err_abort(sk, EBADMSG);
899 			goto splice_read_end;
900 		}
901 		ctx->decrypted = true;
902 	}
903 	rxm = strp_msg(skb);
904 
905 	chunk = min_t(unsigned int, rxm->full_len, len);
906 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
907 	if (copied < 0)
908 		goto splice_read_end;
909 
910 	if (likely(!(flags & MSG_PEEK)))
911 		tls_sw_advance_skb(sk, skb, copied);
912 
913 splice_read_end:
914 	release_sock(sk);
915 	return copied ? : err;
916 }
917 
918 unsigned int tls_sw_poll(struct file *file, struct socket *sock,
919 			 struct poll_table_struct *wait)
920 {
921 	unsigned int ret;
922 	struct sock *sk = sock->sk;
923 	struct tls_context *tls_ctx = tls_get_ctx(sk);
924 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
925 
926 	/* Grab POLLOUT and POLLHUP from the underlying socket */
927 	ret = ctx->sk_poll(file, sock, wait);
928 
929 	/* Clear POLLIN bits, and set based on recv_pkt */
930 	ret &= ~(POLLIN | POLLRDNORM);
931 	if (ctx->recv_pkt)
932 		ret |= POLLIN | POLLRDNORM;
933 
934 	return ret;
935 }
936 
937 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
938 {
939 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
940 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
941 	char header[tls_ctx->rx.prepend_size];
942 	struct strp_msg *rxm = strp_msg(skb);
943 	size_t cipher_overhead;
944 	size_t data_len = 0;
945 	int ret;
946 
947 	/* Verify that we have a full TLS header, or wait for more data */
948 	if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
949 		return 0;
950 
951 	/* Linearize header to local buffer */
952 	ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
953 
954 	if (ret < 0)
955 		goto read_failure;
956 
957 	ctx->control = header[0];
958 
959 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
960 
961 	cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
962 
963 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
964 		ret = -EMSGSIZE;
965 		goto read_failure;
966 	}
967 	if (data_len < cipher_overhead) {
968 		ret = -EBADMSG;
969 		goto read_failure;
970 	}
971 
972 	if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.version) ||
973 	    header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.version)) {
974 		ret = -EINVAL;
975 		goto read_failure;
976 	}
977 
978 	return data_len + TLS_HEADER_SIZE;
979 
980 read_failure:
981 	tls_err_abort(strp->sk, ret);
982 
983 	return ret;
984 }
985 
986 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
987 {
988 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
989 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
990 	struct strp_msg *rxm;
991 
992 	rxm = strp_msg(skb);
993 
994 	ctx->decrypted = false;
995 
996 	ctx->recv_pkt = skb;
997 	strp_pause(strp);
998 
999 	strp->sk->sk_state_change(strp->sk);
1000 }
1001 
1002 static void tls_data_ready(struct sock *sk)
1003 {
1004 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1005 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
1006 
1007 	strp_data_ready(&ctx->strp);
1008 }
1009 
1010 void tls_sw_free_resources(struct sock *sk)
1011 {
1012 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1013 	struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
1014 
1015 	if (ctx->aead_send)
1016 		crypto_free_aead(ctx->aead_send);
1017 	if (ctx->aead_recv) {
1018 		if (ctx->recv_pkt) {
1019 			kfree_skb(ctx->recv_pkt);
1020 			ctx->recv_pkt = NULL;
1021 		}
1022 		crypto_free_aead(ctx->aead_recv);
1023 		strp_stop(&ctx->strp);
1024 		write_lock_bh(&sk->sk_callback_lock);
1025 		sk->sk_data_ready = ctx->saved_data_ready;
1026 		write_unlock_bh(&sk->sk_callback_lock);
1027 		release_sock(sk);
1028 		strp_done(&ctx->strp);
1029 		lock_sock(sk);
1030 	}
1031 
1032 	tls_free_both_sg(sk);
1033 
1034 	kfree(ctx);
1035 	kfree(tls_ctx);
1036 }
1037 
1038 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
1039 {
1040 	char keyval[TLS_CIPHER_AES_GCM_128_KEY_SIZE];
1041 	struct tls_crypto_info *crypto_info;
1042 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
1043 	struct tls_sw_context *sw_ctx;
1044 	struct cipher_context *cctx;
1045 	struct crypto_aead **aead;
1046 	struct strp_callbacks cb;
1047 	u16 nonce_size, tag_size, iv_size, rec_seq_size;
1048 	char *iv, *rec_seq;
1049 	int rc = 0;
1050 
1051 	if (!ctx) {
1052 		rc = -EINVAL;
1053 		goto out;
1054 	}
1055 
1056 	if (!ctx->priv_ctx) {
1057 		sw_ctx = kzalloc(sizeof(*sw_ctx), GFP_KERNEL);
1058 		if (!sw_ctx) {
1059 			rc = -ENOMEM;
1060 			goto out;
1061 		}
1062 		crypto_init_wait(&sw_ctx->async_wait);
1063 	} else {
1064 		sw_ctx = ctx->priv_ctx;
1065 	}
1066 
1067 	ctx->priv_ctx = (struct tls_offload_context *)sw_ctx;
1068 
1069 	if (tx) {
1070 		crypto_info = &ctx->crypto_send;
1071 		cctx = &ctx->tx;
1072 		aead = &sw_ctx->aead_send;
1073 	} else {
1074 		crypto_info = &ctx->crypto_recv;
1075 		cctx = &ctx->rx;
1076 		aead = &sw_ctx->aead_recv;
1077 	}
1078 
1079 	switch (crypto_info->cipher_type) {
1080 	case TLS_CIPHER_AES_GCM_128: {
1081 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1082 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1083 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1084 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1085 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1086 		rec_seq =
1087 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1088 		gcm_128_info =
1089 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
1090 		break;
1091 	}
1092 	default:
1093 		rc = -EINVAL;
1094 		goto free_priv;
1095 	}
1096 
1097 	cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
1098 	cctx->tag_size = tag_size;
1099 	cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
1100 	cctx->iv_size = iv_size;
1101 	cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1102 			   GFP_KERNEL);
1103 	if (!cctx->iv) {
1104 		rc = -ENOMEM;
1105 		goto free_priv;
1106 	}
1107 	memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1108 	memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1109 	cctx->rec_seq_size = rec_seq_size;
1110 	cctx->rec_seq = kmalloc(rec_seq_size, GFP_KERNEL);
1111 	if (!cctx->rec_seq) {
1112 		rc = -ENOMEM;
1113 		goto free_iv;
1114 	}
1115 	memcpy(cctx->rec_seq, rec_seq, rec_seq_size);
1116 
1117 	if (tx) {
1118 		sg_init_table(sw_ctx->sg_encrypted_data,
1119 			      ARRAY_SIZE(sw_ctx->sg_encrypted_data));
1120 		sg_init_table(sw_ctx->sg_plaintext_data,
1121 			      ARRAY_SIZE(sw_ctx->sg_plaintext_data));
1122 
1123 		sg_init_table(sw_ctx->sg_aead_in, 2);
1124 		sg_set_buf(&sw_ctx->sg_aead_in[0], sw_ctx->aad_space,
1125 			   sizeof(sw_ctx->aad_space));
1126 		sg_unmark_end(&sw_ctx->sg_aead_in[1]);
1127 		sg_chain(sw_ctx->sg_aead_in, 2, sw_ctx->sg_plaintext_data);
1128 		sg_init_table(sw_ctx->sg_aead_out, 2);
1129 		sg_set_buf(&sw_ctx->sg_aead_out[0], sw_ctx->aad_space,
1130 			   sizeof(sw_ctx->aad_space));
1131 		sg_unmark_end(&sw_ctx->sg_aead_out[1]);
1132 		sg_chain(sw_ctx->sg_aead_out, 2, sw_ctx->sg_encrypted_data);
1133 	}
1134 
1135 	if (!*aead) {
1136 		*aead = crypto_alloc_aead("gcm(aes)", 0, 0);
1137 		if (IS_ERR(*aead)) {
1138 			rc = PTR_ERR(*aead);
1139 			*aead = NULL;
1140 			goto free_rec_seq;
1141 		}
1142 	}
1143 
1144 	ctx->push_pending_record = tls_sw_push_pending_record;
1145 
1146 	memcpy(keyval, gcm_128_info->key, TLS_CIPHER_AES_GCM_128_KEY_SIZE);
1147 
1148 	rc = crypto_aead_setkey(*aead, keyval,
1149 				TLS_CIPHER_AES_GCM_128_KEY_SIZE);
1150 	if (rc)
1151 		goto free_aead;
1152 
1153 	rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
1154 	if (rc)
1155 		goto free_aead;
1156 
1157 	if (!tx) {
1158 		/* Set up strparser */
1159 		memset(&cb, 0, sizeof(cb));
1160 		cb.rcv_msg = tls_queue;
1161 		cb.parse_msg = tls_read_size;
1162 
1163 		strp_init(&sw_ctx->strp, sk, &cb);
1164 
1165 		write_lock_bh(&sk->sk_callback_lock);
1166 		sw_ctx->saved_data_ready = sk->sk_data_ready;
1167 		sk->sk_data_ready = tls_data_ready;
1168 		write_unlock_bh(&sk->sk_callback_lock);
1169 
1170 		sw_ctx->sk_poll = sk->sk_socket->ops->poll;
1171 
1172 		strp_check_rcv(&sw_ctx->strp);
1173 	}
1174 
1175 	goto out;
1176 
1177 free_aead:
1178 	crypto_free_aead(*aead);
1179 	*aead = NULL;
1180 free_rec_seq:
1181 	kfree(cctx->rec_seq);
1182 	cctx->rec_seq = NULL;
1183 free_iv:
1184 	kfree(ctx->tx.iv);
1185 	ctx->tx.iv = NULL;
1186 free_priv:
1187 	kfree(ctx->priv_ctx);
1188 	ctx->priv_ctx = NULL;
1189 out:
1190 	return rc;
1191 }
1192