1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <crypto/aead.h> 41 42 #include <net/strparser.h> 43 #include <net/tls.h> 44 45 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 46 unsigned int recursion_level) 47 { 48 int start = skb_headlen(skb); 49 int i, chunk = start - offset; 50 struct sk_buff *frag_iter; 51 int elt = 0; 52 53 if (unlikely(recursion_level >= 24)) 54 return -EMSGSIZE; 55 56 if (chunk > 0) { 57 if (chunk > len) 58 chunk = len; 59 elt++; 60 len -= chunk; 61 if (len == 0) 62 return elt; 63 offset += chunk; 64 } 65 66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 67 int end; 68 69 WARN_ON(start > offset + len); 70 71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 72 chunk = end - offset; 73 if (chunk > 0) { 74 if (chunk > len) 75 chunk = len; 76 elt++; 77 len -= chunk; 78 if (len == 0) 79 return elt; 80 offset += chunk; 81 } 82 start = end; 83 } 84 85 if (unlikely(skb_has_frag_list(skb))) { 86 skb_walk_frags(skb, frag_iter) { 87 int end, ret; 88 89 WARN_ON(start > offset + len); 90 91 end = start + frag_iter->len; 92 chunk = end - offset; 93 if (chunk > 0) { 94 if (chunk > len) 95 chunk = len; 96 ret = __skb_nsg(frag_iter, offset - start, chunk, 97 recursion_level + 1); 98 if (unlikely(ret < 0)) 99 return ret; 100 elt += ret; 101 len -= chunk; 102 if (len == 0) 103 return elt; 104 offset += chunk; 105 } 106 start = end; 107 } 108 } 109 BUG_ON(len); 110 return elt; 111 } 112 113 /* Return the number of scatterlist elements required to completely map the 114 * skb, or -EMSGSIZE if the recursion depth is exceeded. 115 */ 116 static int skb_nsg(struct sk_buff *skb, int offset, int len) 117 { 118 return __skb_nsg(skb, offset, len, 0); 119 } 120 121 static int padding_length(struct tls_sw_context_rx *ctx, 122 struct tls_prot_info *prot, struct sk_buff *skb) 123 { 124 struct strp_msg *rxm = strp_msg(skb); 125 int sub = 0; 126 127 /* Determine zero-padding length */ 128 if (prot->version == TLS_1_3_VERSION) { 129 char content_type = 0; 130 int err; 131 int back = 17; 132 133 while (content_type == 0) { 134 if (back > rxm->full_len - prot->prepend_size) 135 return -EBADMSG; 136 err = skb_copy_bits(skb, 137 rxm->offset + rxm->full_len - back, 138 &content_type, 1); 139 if (err) 140 return err; 141 if (content_type) 142 break; 143 sub++; 144 back++; 145 } 146 ctx->control = content_type; 147 } 148 return sub; 149 } 150 151 static void tls_decrypt_done(struct crypto_async_request *req, int err) 152 { 153 struct aead_request *aead_req = (struct aead_request *)req; 154 struct scatterlist *sgout = aead_req->dst; 155 struct scatterlist *sgin = aead_req->src; 156 struct tls_sw_context_rx *ctx; 157 struct tls_context *tls_ctx; 158 struct tls_prot_info *prot; 159 struct scatterlist *sg; 160 struct sk_buff *skb; 161 unsigned int pages; 162 int pending; 163 164 skb = (struct sk_buff *)req->data; 165 tls_ctx = tls_get_ctx(skb->sk); 166 ctx = tls_sw_ctx_rx(tls_ctx); 167 prot = &tls_ctx->prot_info; 168 169 /* Propagate if there was an err */ 170 if (err) { 171 if (err == -EBADMSG) 172 TLS_INC_STATS(sock_net(skb->sk), 173 LINUX_MIB_TLSDECRYPTERROR); 174 ctx->async_wait.err = err; 175 tls_err_abort(skb->sk, err); 176 } else { 177 struct strp_msg *rxm = strp_msg(skb); 178 int pad; 179 180 pad = padding_length(ctx, prot, skb); 181 if (pad < 0) { 182 ctx->async_wait.err = pad; 183 tls_err_abort(skb->sk, pad); 184 } else { 185 rxm->full_len -= pad; 186 rxm->offset += prot->prepend_size; 187 rxm->full_len -= prot->overhead_size; 188 } 189 } 190 191 /* After using skb->sk to propagate sk through crypto async callback 192 * we need to NULL it again. 193 */ 194 skb->sk = NULL; 195 196 197 /* Free the destination pages if skb was not decrypted inplace */ 198 if (sgout != sgin) { 199 /* Skip the first S/G entry as it points to AAD */ 200 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 201 if (!sg) 202 break; 203 put_page(sg_page(sg)); 204 } 205 } 206 207 kfree(aead_req); 208 209 spin_lock_bh(&ctx->decrypt_compl_lock); 210 pending = atomic_dec_return(&ctx->decrypt_pending); 211 212 if (!pending && ctx->async_notify) 213 complete(&ctx->async_wait.completion); 214 spin_unlock_bh(&ctx->decrypt_compl_lock); 215 } 216 217 static int tls_do_decryption(struct sock *sk, 218 struct sk_buff *skb, 219 struct scatterlist *sgin, 220 struct scatterlist *sgout, 221 char *iv_recv, 222 size_t data_len, 223 struct aead_request *aead_req, 224 bool async) 225 { 226 struct tls_context *tls_ctx = tls_get_ctx(sk); 227 struct tls_prot_info *prot = &tls_ctx->prot_info; 228 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 229 int ret; 230 231 aead_request_set_tfm(aead_req, ctx->aead_recv); 232 aead_request_set_ad(aead_req, prot->aad_size); 233 aead_request_set_crypt(aead_req, sgin, sgout, 234 data_len + prot->tag_size, 235 (u8 *)iv_recv); 236 237 if (async) { 238 /* Using skb->sk to push sk through to crypto async callback 239 * handler. This allows propagating errors up to the socket 240 * if needed. It _must_ be cleared in the async handler 241 * before consume_skb is called. We _know_ skb->sk is NULL 242 * because it is a clone from strparser. 243 */ 244 skb->sk = sk; 245 aead_request_set_callback(aead_req, 246 CRYPTO_TFM_REQ_MAY_BACKLOG, 247 tls_decrypt_done, skb); 248 atomic_inc(&ctx->decrypt_pending); 249 } else { 250 aead_request_set_callback(aead_req, 251 CRYPTO_TFM_REQ_MAY_BACKLOG, 252 crypto_req_done, &ctx->async_wait); 253 } 254 255 ret = crypto_aead_decrypt(aead_req); 256 if (ret == -EINPROGRESS) { 257 if (async) 258 return ret; 259 260 ret = crypto_wait_req(ret, &ctx->async_wait); 261 } 262 263 if (async) 264 atomic_dec(&ctx->decrypt_pending); 265 266 return ret; 267 } 268 269 static void tls_trim_both_msgs(struct sock *sk, int target_size) 270 { 271 struct tls_context *tls_ctx = tls_get_ctx(sk); 272 struct tls_prot_info *prot = &tls_ctx->prot_info; 273 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 274 struct tls_rec *rec = ctx->open_rec; 275 276 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 277 if (target_size > 0) 278 target_size += prot->overhead_size; 279 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 280 } 281 282 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 283 { 284 struct tls_context *tls_ctx = tls_get_ctx(sk); 285 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 286 struct tls_rec *rec = ctx->open_rec; 287 struct sk_msg *msg_en = &rec->msg_encrypted; 288 289 return sk_msg_alloc(sk, msg_en, len, 0); 290 } 291 292 static int tls_clone_plaintext_msg(struct sock *sk, int required) 293 { 294 struct tls_context *tls_ctx = tls_get_ctx(sk); 295 struct tls_prot_info *prot = &tls_ctx->prot_info; 296 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 297 struct tls_rec *rec = ctx->open_rec; 298 struct sk_msg *msg_pl = &rec->msg_plaintext; 299 struct sk_msg *msg_en = &rec->msg_encrypted; 300 int skip, len; 301 302 /* We add page references worth len bytes from encrypted sg 303 * at the end of plaintext sg. It is guaranteed that msg_en 304 * has enough required room (ensured by caller). 305 */ 306 len = required - msg_pl->sg.size; 307 308 /* Skip initial bytes in msg_en's data to be able to use 309 * same offset of both plain and encrypted data. 310 */ 311 skip = prot->prepend_size + msg_pl->sg.size; 312 313 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 314 } 315 316 static struct tls_rec *tls_get_rec(struct sock *sk) 317 { 318 struct tls_context *tls_ctx = tls_get_ctx(sk); 319 struct tls_prot_info *prot = &tls_ctx->prot_info; 320 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 321 struct sk_msg *msg_pl, *msg_en; 322 struct tls_rec *rec; 323 int mem_size; 324 325 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 326 327 rec = kzalloc(mem_size, sk->sk_allocation); 328 if (!rec) 329 return NULL; 330 331 msg_pl = &rec->msg_plaintext; 332 msg_en = &rec->msg_encrypted; 333 334 sk_msg_init(msg_pl); 335 sk_msg_init(msg_en); 336 337 sg_init_table(rec->sg_aead_in, 2); 338 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 339 sg_unmark_end(&rec->sg_aead_in[1]); 340 341 sg_init_table(rec->sg_aead_out, 2); 342 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 343 sg_unmark_end(&rec->sg_aead_out[1]); 344 345 return rec; 346 } 347 348 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 349 { 350 sk_msg_free(sk, &rec->msg_encrypted); 351 sk_msg_free(sk, &rec->msg_plaintext); 352 kfree(rec); 353 } 354 355 static void tls_free_open_rec(struct sock *sk) 356 { 357 struct tls_context *tls_ctx = tls_get_ctx(sk); 358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 359 struct tls_rec *rec = ctx->open_rec; 360 361 if (rec) { 362 tls_free_rec(sk, rec); 363 ctx->open_rec = NULL; 364 } 365 } 366 367 int tls_tx_records(struct sock *sk, int flags) 368 { 369 struct tls_context *tls_ctx = tls_get_ctx(sk); 370 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 371 struct tls_rec *rec, *tmp; 372 struct sk_msg *msg_en; 373 int tx_flags, rc = 0; 374 375 if (tls_is_partially_sent_record(tls_ctx)) { 376 rec = list_first_entry(&ctx->tx_list, 377 struct tls_rec, list); 378 379 if (flags == -1) 380 tx_flags = rec->tx_flags; 381 else 382 tx_flags = flags; 383 384 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 385 if (rc) 386 goto tx_err; 387 388 /* Full record has been transmitted. 389 * Remove the head of tx_list 390 */ 391 list_del(&rec->list); 392 sk_msg_free(sk, &rec->msg_plaintext); 393 kfree(rec); 394 } 395 396 /* Tx all ready records */ 397 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 398 if (READ_ONCE(rec->tx_ready)) { 399 if (flags == -1) 400 tx_flags = rec->tx_flags; 401 else 402 tx_flags = flags; 403 404 msg_en = &rec->msg_encrypted; 405 rc = tls_push_sg(sk, tls_ctx, 406 &msg_en->sg.data[msg_en->sg.curr], 407 0, tx_flags); 408 if (rc) 409 goto tx_err; 410 411 list_del(&rec->list); 412 sk_msg_free(sk, &rec->msg_plaintext); 413 kfree(rec); 414 } else { 415 break; 416 } 417 } 418 419 tx_err: 420 if (rc < 0 && rc != -EAGAIN) 421 tls_err_abort(sk, EBADMSG); 422 423 return rc; 424 } 425 426 static void tls_encrypt_done(struct crypto_async_request *req, int err) 427 { 428 struct aead_request *aead_req = (struct aead_request *)req; 429 struct sock *sk = req->data; 430 struct tls_context *tls_ctx = tls_get_ctx(sk); 431 struct tls_prot_info *prot = &tls_ctx->prot_info; 432 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 433 struct scatterlist *sge; 434 struct sk_msg *msg_en; 435 struct tls_rec *rec; 436 bool ready = false; 437 int pending; 438 439 rec = container_of(aead_req, struct tls_rec, aead_req); 440 msg_en = &rec->msg_encrypted; 441 442 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 443 sge->offset -= prot->prepend_size; 444 sge->length += prot->prepend_size; 445 446 /* Check if error is previously set on socket */ 447 if (err || sk->sk_err) { 448 rec = NULL; 449 450 /* If err is already set on socket, return the same code */ 451 if (sk->sk_err) { 452 ctx->async_wait.err = sk->sk_err; 453 } else { 454 ctx->async_wait.err = err; 455 tls_err_abort(sk, err); 456 } 457 } 458 459 if (rec) { 460 struct tls_rec *first_rec; 461 462 /* Mark the record as ready for transmission */ 463 smp_store_mb(rec->tx_ready, true); 464 465 /* If received record is at head of tx_list, schedule tx */ 466 first_rec = list_first_entry(&ctx->tx_list, 467 struct tls_rec, list); 468 if (rec == first_rec) 469 ready = true; 470 } 471 472 spin_lock_bh(&ctx->encrypt_compl_lock); 473 pending = atomic_dec_return(&ctx->encrypt_pending); 474 475 if (!pending && ctx->async_notify) 476 complete(&ctx->async_wait.completion); 477 spin_unlock_bh(&ctx->encrypt_compl_lock); 478 479 if (!ready) 480 return; 481 482 /* Schedule the transmission */ 483 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 484 schedule_delayed_work(&ctx->tx_work.work, 1); 485 } 486 487 static int tls_do_encryption(struct sock *sk, 488 struct tls_context *tls_ctx, 489 struct tls_sw_context_tx *ctx, 490 struct aead_request *aead_req, 491 size_t data_len, u32 start) 492 { 493 struct tls_prot_info *prot = &tls_ctx->prot_info; 494 struct tls_rec *rec = ctx->open_rec; 495 struct sk_msg *msg_en = &rec->msg_encrypted; 496 struct scatterlist *sge = sk_msg_elem(msg_en, start); 497 int rc, iv_offset = 0; 498 499 /* For CCM based ciphers, first byte of IV is a constant */ 500 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 501 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 502 iv_offset = 1; 503 } 504 505 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 506 prot->iv_size + prot->salt_size); 507 508 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq); 509 510 sge->offset += prot->prepend_size; 511 sge->length -= prot->prepend_size; 512 513 msg_en->sg.curr = start; 514 515 aead_request_set_tfm(aead_req, ctx->aead_send); 516 aead_request_set_ad(aead_req, prot->aad_size); 517 aead_request_set_crypt(aead_req, rec->sg_aead_in, 518 rec->sg_aead_out, 519 data_len, rec->iv_data); 520 521 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 522 tls_encrypt_done, sk); 523 524 /* Add the record in tx_list */ 525 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 526 atomic_inc(&ctx->encrypt_pending); 527 528 rc = crypto_aead_encrypt(aead_req); 529 if (!rc || rc != -EINPROGRESS) { 530 atomic_dec(&ctx->encrypt_pending); 531 sge->offset -= prot->prepend_size; 532 sge->length += prot->prepend_size; 533 } 534 535 if (!rc) { 536 WRITE_ONCE(rec->tx_ready, true); 537 } else if (rc != -EINPROGRESS) { 538 list_del(&rec->list); 539 return rc; 540 } 541 542 /* Unhook the record from context if encryption is not failure */ 543 ctx->open_rec = NULL; 544 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 545 return rc; 546 } 547 548 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 549 struct tls_rec **to, struct sk_msg *msg_opl, 550 struct sk_msg *msg_oen, u32 split_point, 551 u32 tx_overhead_size, u32 *orig_end) 552 { 553 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 554 struct scatterlist *sge, *osge, *nsge; 555 u32 orig_size = msg_opl->sg.size; 556 struct scatterlist tmp = { }; 557 struct sk_msg *msg_npl; 558 struct tls_rec *new; 559 int ret; 560 561 new = tls_get_rec(sk); 562 if (!new) 563 return -ENOMEM; 564 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 565 tx_overhead_size, 0); 566 if (ret < 0) { 567 tls_free_rec(sk, new); 568 return ret; 569 } 570 571 *orig_end = msg_opl->sg.end; 572 i = msg_opl->sg.start; 573 sge = sk_msg_elem(msg_opl, i); 574 while (apply && sge->length) { 575 if (sge->length > apply) { 576 u32 len = sge->length - apply; 577 578 get_page(sg_page(sge)); 579 sg_set_page(&tmp, sg_page(sge), len, 580 sge->offset + apply); 581 sge->length = apply; 582 bytes += apply; 583 apply = 0; 584 } else { 585 apply -= sge->length; 586 bytes += sge->length; 587 } 588 589 sk_msg_iter_var_next(i); 590 if (i == msg_opl->sg.end) 591 break; 592 sge = sk_msg_elem(msg_opl, i); 593 } 594 595 msg_opl->sg.end = i; 596 msg_opl->sg.curr = i; 597 msg_opl->sg.copybreak = 0; 598 msg_opl->apply_bytes = 0; 599 msg_opl->sg.size = bytes; 600 601 msg_npl = &new->msg_plaintext; 602 msg_npl->apply_bytes = apply; 603 msg_npl->sg.size = orig_size - bytes; 604 605 j = msg_npl->sg.start; 606 nsge = sk_msg_elem(msg_npl, j); 607 if (tmp.length) { 608 memcpy(nsge, &tmp, sizeof(*nsge)); 609 sk_msg_iter_var_next(j); 610 nsge = sk_msg_elem(msg_npl, j); 611 } 612 613 osge = sk_msg_elem(msg_opl, i); 614 while (osge->length) { 615 memcpy(nsge, osge, sizeof(*nsge)); 616 sg_unmark_end(nsge); 617 sk_msg_iter_var_next(i); 618 sk_msg_iter_var_next(j); 619 if (i == *orig_end) 620 break; 621 osge = sk_msg_elem(msg_opl, i); 622 nsge = sk_msg_elem(msg_npl, j); 623 } 624 625 msg_npl->sg.end = j; 626 msg_npl->sg.curr = j; 627 msg_npl->sg.copybreak = 0; 628 629 *to = new; 630 return 0; 631 } 632 633 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 634 struct tls_rec *from, u32 orig_end) 635 { 636 struct sk_msg *msg_npl = &from->msg_plaintext; 637 struct sk_msg *msg_opl = &to->msg_plaintext; 638 struct scatterlist *osge, *nsge; 639 u32 i, j; 640 641 i = msg_opl->sg.end; 642 sk_msg_iter_var_prev(i); 643 j = msg_npl->sg.start; 644 645 osge = sk_msg_elem(msg_opl, i); 646 nsge = sk_msg_elem(msg_npl, j); 647 648 if (sg_page(osge) == sg_page(nsge) && 649 osge->offset + osge->length == nsge->offset) { 650 osge->length += nsge->length; 651 put_page(sg_page(nsge)); 652 } 653 654 msg_opl->sg.end = orig_end; 655 msg_opl->sg.curr = orig_end; 656 msg_opl->sg.copybreak = 0; 657 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 658 msg_opl->sg.size += msg_npl->sg.size; 659 660 sk_msg_free(sk, &to->msg_encrypted); 661 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 662 663 kfree(from); 664 } 665 666 static int tls_push_record(struct sock *sk, int flags, 667 unsigned char record_type) 668 { 669 struct tls_context *tls_ctx = tls_get_ctx(sk); 670 struct tls_prot_info *prot = &tls_ctx->prot_info; 671 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 672 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 673 u32 i, split_point, orig_end; 674 struct sk_msg *msg_pl, *msg_en; 675 struct aead_request *req; 676 bool split; 677 int rc; 678 679 if (!rec) 680 return 0; 681 682 msg_pl = &rec->msg_plaintext; 683 msg_en = &rec->msg_encrypted; 684 685 split_point = msg_pl->apply_bytes; 686 split = split_point && split_point < msg_pl->sg.size; 687 if (unlikely((!split && 688 msg_pl->sg.size + 689 prot->overhead_size > msg_en->sg.size) || 690 (split && 691 split_point + 692 prot->overhead_size > msg_en->sg.size))) { 693 split = true; 694 split_point = msg_en->sg.size; 695 } 696 if (split) { 697 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 698 split_point, prot->overhead_size, 699 &orig_end); 700 if (rc < 0) 701 return rc; 702 /* This can happen if above tls_split_open_record allocates 703 * a single large encryption buffer instead of two smaller 704 * ones. In this case adjust pointers and continue without 705 * split. 706 */ 707 if (!msg_pl->sg.size) { 708 tls_merge_open_record(sk, rec, tmp, orig_end); 709 msg_pl = &rec->msg_plaintext; 710 msg_en = &rec->msg_encrypted; 711 split = false; 712 } 713 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 714 prot->overhead_size); 715 } 716 717 rec->tx_flags = flags; 718 req = &rec->aead_req; 719 720 i = msg_pl->sg.end; 721 sk_msg_iter_var_prev(i); 722 723 rec->content_type = record_type; 724 if (prot->version == TLS_1_3_VERSION) { 725 /* Add content type to end of message. No padding added */ 726 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 727 sg_mark_end(&rec->sg_content_type); 728 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 729 &rec->sg_content_type); 730 } else { 731 sg_mark_end(sk_msg_elem(msg_pl, i)); 732 } 733 734 if (msg_pl->sg.end < msg_pl->sg.start) { 735 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 736 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 737 msg_pl->sg.data); 738 } 739 740 i = msg_pl->sg.start; 741 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 742 743 i = msg_en->sg.end; 744 sk_msg_iter_var_prev(i); 745 sg_mark_end(sk_msg_elem(msg_en, i)); 746 747 i = msg_en->sg.start; 748 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 749 750 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 751 tls_ctx->tx.rec_seq, prot->rec_seq_size, 752 record_type, prot->version); 753 754 tls_fill_prepend(tls_ctx, 755 page_address(sg_page(&msg_en->sg.data[i])) + 756 msg_en->sg.data[i].offset, 757 msg_pl->sg.size + prot->tail_size, 758 record_type, prot->version); 759 760 tls_ctx->pending_open_record_frags = false; 761 762 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 763 msg_pl->sg.size + prot->tail_size, i); 764 if (rc < 0) { 765 if (rc != -EINPROGRESS) { 766 tls_err_abort(sk, EBADMSG); 767 if (split) { 768 tls_ctx->pending_open_record_frags = true; 769 tls_merge_open_record(sk, rec, tmp, orig_end); 770 } 771 } 772 ctx->async_capable = 1; 773 return rc; 774 } else if (split) { 775 msg_pl = &tmp->msg_plaintext; 776 msg_en = &tmp->msg_encrypted; 777 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 778 tls_ctx->pending_open_record_frags = true; 779 ctx->open_rec = tmp; 780 } 781 782 return tls_tx_records(sk, flags); 783 } 784 785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 786 bool full_record, u8 record_type, 787 ssize_t *copied, int flags) 788 { 789 struct tls_context *tls_ctx = tls_get_ctx(sk); 790 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 791 struct sk_msg msg_redir = { }; 792 struct sk_psock *psock; 793 struct sock *sk_redir; 794 struct tls_rec *rec; 795 bool enospc, policy; 796 int err = 0, send; 797 u32 delta = 0; 798 799 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 800 psock = sk_psock_get(sk); 801 if (!psock || !policy) { 802 err = tls_push_record(sk, flags, record_type); 803 if (err && sk->sk_err == EBADMSG) { 804 *copied -= sk_msg_free(sk, msg); 805 tls_free_open_rec(sk); 806 err = -sk->sk_err; 807 } 808 if (psock) 809 sk_psock_put(sk, psock); 810 return err; 811 } 812 more_data: 813 enospc = sk_msg_full(msg); 814 if (psock->eval == __SK_NONE) { 815 delta = msg->sg.size; 816 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 817 delta -= msg->sg.size; 818 } 819 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 820 !enospc && !full_record) { 821 err = -ENOSPC; 822 goto out_err; 823 } 824 msg->cork_bytes = 0; 825 send = msg->sg.size; 826 if (msg->apply_bytes && msg->apply_bytes < send) 827 send = msg->apply_bytes; 828 829 switch (psock->eval) { 830 case __SK_PASS: 831 err = tls_push_record(sk, flags, record_type); 832 if (err && sk->sk_err == EBADMSG) { 833 *copied -= sk_msg_free(sk, msg); 834 tls_free_open_rec(sk); 835 err = -sk->sk_err; 836 goto out_err; 837 } 838 break; 839 case __SK_REDIRECT: 840 sk_redir = psock->sk_redir; 841 memcpy(&msg_redir, msg, sizeof(*msg)); 842 if (msg->apply_bytes < send) 843 msg->apply_bytes = 0; 844 else 845 msg->apply_bytes -= send; 846 sk_msg_return_zero(sk, msg, send); 847 msg->sg.size -= send; 848 release_sock(sk); 849 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 850 lock_sock(sk); 851 if (err < 0) { 852 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 853 msg->sg.size = 0; 854 } 855 if (msg->sg.size == 0) 856 tls_free_open_rec(sk); 857 break; 858 case __SK_DROP: 859 default: 860 sk_msg_free_partial(sk, msg, send); 861 if (msg->apply_bytes < send) 862 msg->apply_bytes = 0; 863 else 864 msg->apply_bytes -= send; 865 if (msg->sg.size == 0) 866 tls_free_open_rec(sk); 867 *copied -= (send + delta); 868 err = -EACCES; 869 } 870 871 if (likely(!err)) { 872 bool reset_eval = !ctx->open_rec; 873 874 rec = ctx->open_rec; 875 if (rec) { 876 msg = &rec->msg_plaintext; 877 if (!msg->apply_bytes) 878 reset_eval = true; 879 } 880 if (reset_eval) { 881 psock->eval = __SK_NONE; 882 if (psock->sk_redir) { 883 sock_put(psock->sk_redir); 884 psock->sk_redir = NULL; 885 } 886 } 887 if (rec) 888 goto more_data; 889 } 890 out_err: 891 sk_psock_put(sk, psock); 892 return err; 893 } 894 895 static int tls_sw_push_pending_record(struct sock *sk, int flags) 896 { 897 struct tls_context *tls_ctx = tls_get_ctx(sk); 898 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 899 struct tls_rec *rec = ctx->open_rec; 900 struct sk_msg *msg_pl; 901 size_t copied; 902 903 if (!rec) 904 return 0; 905 906 msg_pl = &rec->msg_plaintext; 907 copied = msg_pl->sg.size; 908 if (!copied) 909 return 0; 910 911 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 912 &copied, flags); 913 } 914 915 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 916 { 917 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 918 struct tls_context *tls_ctx = tls_get_ctx(sk); 919 struct tls_prot_info *prot = &tls_ctx->prot_info; 920 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 921 bool async_capable = ctx->async_capable; 922 unsigned char record_type = TLS_RECORD_TYPE_DATA; 923 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 924 bool eor = !(msg->msg_flags & MSG_MORE); 925 size_t try_to_copy; 926 ssize_t copied = 0; 927 struct sk_msg *msg_pl, *msg_en; 928 struct tls_rec *rec; 929 int required_size; 930 int num_async = 0; 931 bool full_record; 932 int record_room; 933 int num_zc = 0; 934 int orig_size; 935 int ret = 0; 936 int pending; 937 938 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 939 MSG_CMSG_COMPAT)) 940 return -EOPNOTSUPP; 941 942 mutex_lock(&tls_ctx->tx_lock); 943 lock_sock(sk); 944 945 if (unlikely(msg->msg_controllen)) { 946 ret = tls_proccess_cmsg(sk, msg, &record_type); 947 if (ret) { 948 if (ret == -EINPROGRESS) 949 num_async++; 950 else if (ret != -EAGAIN) 951 goto send_end; 952 } 953 } 954 955 while (msg_data_left(msg)) { 956 if (sk->sk_err) { 957 ret = -sk->sk_err; 958 goto send_end; 959 } 960 961 if (ctx->open_rec) 962 rec = ctx->open_rec; 963 else 964 rec = ctx->open_rec = tls_get_rec(sk); 965 if (!rec) { 966 ret = -ENOMEM; 967 goto send_end; 968 } 969 970 msg_pl = &rec->msg_plaintext; 971 msg_en = &rec->msg_encrypted; 972 973 orig_size = msg_pl->sg.size; 974 full_record = false; 975 try_to_copy = msg_data_left(msg); 976 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 977 if (try_to_copy >= record_room) { 978 try_to_copy = record_room; 979 full_record = true; 980 } 981 982 required_size = msg_pl->sg.size + try_to_copy + 983 prot->overhead_size; 984 985 if (!sk_stream_memory_free(sk)) 986 goto wait_for_sndbuf; 987 988 alloc_encrypted: 989 ret = tls_alloc_encrypted_msg(sk, required_size); 990 if (ret) { 991 if (ret != -ENOSPC) 992 goto wait_for_memory; 993 994 /* Adjust try_to_copy according to the amount that was 995 * actually allocated. The difference is due 996 * to max sg elements limit 997 */ 998 try_to_copy -= required_size - msg_en->sg.size; 999 full_record = true; 1000 } 1001 1002 if (!is_kvec && (full_record || eor) && !async_capable) { 1003 u32 first = msg_pl->sg.end; 1004 1005 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1006 msg_pl, try_to_copy); 1007 if (ret) 1008 goto fallback_to_reg_send; 1009 1010 num_zc++; 1011 copied += try_to_copy; 1012 1013 sk_msg_sg_copy_set(msg_pl, first); 1014 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1015 record_type, &copied, 1016 msg->msg_flags); 1017 if (ret) { 1018 if (ret == -EINPROGRESS) 1019 num_async++; 1020 else if (ret == -ENOMEM) 1021 goto wait_for_memory; 1022 else if (ctx->open_rec && ret == -ENOSPC) 1023 goto rollback_iter; 1024 else if (ret != -EAGAIN) 1025 goto send_end; 1026 } 1027 continue; 1028 rollback_iter: 1029 copied -= try_to_copy; 1030 sk_msg_sg_copy_clear(msg_pl, first); 1031 iov_iter_revert(&msg->msg_iter, 1032 msg_pl->sg.size - orig_size); 1033 fallback_to_reg_send: 1034 sk_msg_trim(sk, msg_pl, orig_size); 1035 } 1036 1037 required_size = msg_pl->sg.size + try_to_copy; 1038 1039 ret = tls_clone_plaintext_msg(sk, required_size); 1040 if (ret) { 1041 if (ret != -ENOSPC) 1042 goto send_end; 1043 1044 /* Adjust try_to_copy according to the amount that was 1045 * actually allocated. The difference is due 1046 * to max sg elements limit 1047 */ 1048 try_to_copy -= required_size - msg_pl->sg.size; 1049 full_record = true; 1050 sk_msg_trim(sk, msg_en, 1051 msg_pl->sg.size + prot->overhead_size); 1052 } 1053 1054 if (try_to_copy) { 1055 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1056 msg_pl, try_to_copy); 1057 if (ret < 0) 1058 goto trim_sgl; 1059 } 1060 1061 /* Open records defined only if successfully copied, otherwise 1062 * we would trim the sg but not reset the open record frags. 1063 */ 1064 tls_ctx->pending_open_record_frags = true; 1065 copied += try_to_copy; 1066 if (full_record || eor) { 1067 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1068 record_type, &copied, 1069 msg->msg_flags); 1070 if (ret) { 1071 if (ret == -EINPROGRESS) 1072 num_async++; 1073 else if (ret == -ENOMEM) 1074 goto wait_for_memory; 1075 else if (ret != -EAGAIN) { 1076 if (ret == -ENOSPC) 1077 ret = 0; 1078 goto send_end; 1079 } 1080 } 1081 } 1082 1083 continue; 1084 1085 wait_for_sndbuf: 1086 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1087 wait_for_memory: 1088 ret = sk_stream_wait_memory(sk, &timeo); 1089 if (ret) { 1090 trim_sgl: 1091 if (ctx->open_rec) 1092 tls_trim_both_msgs(sk, orig_size); 1093 goto send_end; 1094 } 1095 1096 if (ctx->open_rec && msg_en->sg.size < required_size) 1097 goto alloc_encrypted; 1098 } 1099 1100 if (!num_async) { 1101 goto send_end; 1102 } else if (num_zc) { 1103 /* Wait for pending encryptions to get completed */ 1104 spin_lock_bh(&ctx->encrypt_compl_lock); 1105 ctx->async_notify = true; 1106 1107 pending = atomic_read(&ctx->encrypt_pending); 1108 spin_unlock_bh(&ctx->encrypt_compl_lock); 1109 if (pending) 1110 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1111 else 1112 reinit_completion(&ctx->async_wait.completion); 1113 1114 /* There can be no concurrent accesses, since we have no 1115 * pending encrypt operations 1116 */ 1117 WRITE_ONCE(ctx->async_notify, false); 1118 1119 if (ctx->async_wait.err) { 1120 ret = ctx->async_wait.err; 1121 copied = 0; 1122 } 1123 } 1124 1125 /* Transmit if any encryptions have completed */ 1126 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1127 cancel_delayed_work(&ctx->tx_work.work); 1128 tls_tx_records(sk, msg->msg_flags); 1129 } 1130 1131 send_end: 1132 ret = sk_stream_error(sk, msg->msg_flags, ret); 1133 1134 release_sock(sk); 1135 mutex_unlock(&tls_ctx->tx_lock); 1136 return copied > 0 ? copied : ret; 1137 } 1138 1139 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1140 int offset, size_t size, int flags) 1141 { 1142 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1143 struct tls_context *tls_ctx = tls_get_ctx(sk); 1144 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1145 struct tls_prot_info *prot = &tls_ctx->prot_info; 1146 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1147 struct sk_msg *msg_pl; 1148 struct tls_rec *rec; 1149 int num_async = 0; 1150 ssize_t copied = 0; 1151 bool full_record; 1152 int record_room; 1153 int ret = 0; 1154 bool eor; 1155 1156 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1157 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1158 1159 /* Call the sk_stream functions to manage the sndbuf mem. */ 1160 while (size > 0) { 1161 size_t copy, required_size; 1162 1163 if (sk->sk_err) { 1164 ret = -sk->sk_err; 1165 goto sendpage_end; 1166 } 1167 1168 if (ctx->open_rec) 1169 rec = ctx->open_rec; 1170 else 1171 rec = ctx->open_rec = tls_get_rec(sk); 1172 if (!rec) { 1173 ret = -ENOMEM; 1174 goto sendpage_end; 1175 } 1176 1177 msg_pl = &rec->msg_plaintext; 1178 1179 full_record = false; 1180 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1181 copy = size; 1182 if (copy >= record_room) { 1183 copy = record_room; 1184 full_record = true; 1185 } 1186 1187 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1188 1189 if (!sk_stream_memory_free(sk)) 1190 goto wait_for_sndbuf; 1191 alloc_payload: 1192 ret = tls_alloc_encrypted_msg(sk, required_size); 1193 if (ret) { 1194 if (ret != -ENOSPC) 1195 goto wait_for_memory; 1196 1197 /* Adjust copy according to the amount that was 1198 * actually allocated. The difference is due 1199 * to max sg elements limit 1200 */ 1201 copy -= required_size - msg_pl->sg.size; 1202 full_record = true; 1203 } 1204 1205 sk_msg_page_add(msg_pl, page, copy, offset); 1206 sk_mem_charge(sk, copy); 1207 1208 offset += copy; 1209 size -= copy; 1210 copied += copy; 1211 1212 tls_ctx->pending_open_record_frags = true; 1213 if (full_record || eor || sk_msg_full(msg_pl)) { 1214 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1215 record_type, &copied, flags); 1216 if (ret) { 1217 if (ret == -EINPROGRESS) 1218 num_async++; 1219 else if (ret == -ENOMEM) 1220 goto wait_for_memory; 1221 else if (ret != -EAGAIN) { 1222 if (ret == -ENOSPC) 1223 ret = 0; 1224 goto sendpage_end; 1225 } 1226 } 1227 } 1228 continue; 1229 wait_for_sndbuf: 1230 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1231 wait_for_memory: 1232 ret = sk_stream_wait_memory(sk, &timeo); 1233 if (ret) { 1234 if (ctx->open_rec) 1235 tls_trim_both_msgs(sk, msg_pl->sg.size); 1236 goto sendpage_end; 1237 } 1238 1239 if (ctx->open_rec) 1240 goto alloc_payload; 1241 } 1242 1243 if (num_async) { 1244 /* Transmit if any encryptions have completed */ 1245 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1246 cancel_delayed_work(&ctx->tx_work.work); 1247 tls_tx_records(sk, flags); 1248 } 1249 } 1250 sendpage_end: 1251 ret = sk_stream_error(sk, flags, ret); 1252 return copied > 0 ? copied : ret; 1253 } 1254 1255 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 1256 int offset, size_t size, int flags) 1257 { 1258 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1259 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | 1260 MSG_NO_SHARED_FRAGS)) 1261 return -EOPNOTSUPP; 1262 1263 return tls_sw_do_sendpage(sk, page, offset, size, flags); 1264 } 1265 1266 int tls_sw_sendpage(struct sock *sk, struct page *page, 1267 int offset, size_t size, int flags) 1268 { 1269 struct tls_context *tls_ctx = tls_get_ctx(sk); 1270 int ret; 1271 1272 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1273 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1274 return -EOPNOTSUPP; 1275 1276 mutex_lock(&tls_ctx->tx_lock); 1277 lock_sock(sk); 1278 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1279 release_sock(sk); 1280 mutex_unlock(&tls_ctx->tx_lock); 1281 return ret; 1282 } 1283 1284 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1285 int flags, long timeo, int *err) 1286 { 1287 struct tls_context *tls_ctx = tls_get_ctx(sk); 1288 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1289 struct sk_buff *skb; 1290 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1291 1292 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1293 if (sk->sk_err) { 1294 *err = sock_error(sk); 1295 return NULL; 1296 } 1297 1298 if (sk->sk_shutdown & RCV_SHUTDOWN) 1299 return NULL; 1300 1301 if (sock_flag(sk, SOCK_DONE)) 1302 return NULL; 1303 1304 if ((flags & MSG_DONTWAIT) || !timeo) { 1305 *err = -EAGAIN; 1306 return NULL; 1307 } 1308 1309 add_wait_queue(sk_sleep(sk), &wait); 1310 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1311 sk_wait_event(sk, &timeo, 1312 ctx->recv_pkt != skb || 1313 !sk_psock_queue_empty(psock), 1314 &wait); 1315 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1316 remove_wait_queue(sk_sleep(sk), &wait); 1317 1318 /* Handle signals */ 1319 if (signal_pending(current)) { 1320 *err = sock_intr_errno(timeo); 1321 return NULL; 1322 } 1323 } 1324 1325 return skb; 1326 } 1327 1328 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1329 int length, int *pages_used, 1330 unsigned int *size_used, 1331 struct scatterlist *to, 1332 int to_max_pages) 1333 { 1334 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1335 struct page *pages[MAX_SKB_FRAGS]; 1336 unsigned int size = *size_used; 1337 ssize_t copied, use; 1338 size_t offset; 1339 1340 while (length > 0) { 1341 i = 0; 1342 maxpages = to_max_pages - num_elem; 1343 if (maxpages == 0) { 1344 rc = -EFAULT; 1345 goto out; 1346 } 1347 copied = iov_iter_get_pages(from, pages, 1348 length, 1349 maxpages, &offset); 1350 if (copied <= 0) { 1351 rc = -EFAULT; 1352 goto out; 1353 } 1354 1355 iov_iter_advance(from, copied); 1356 1357 length -= copied; 1358 size += copied; 1359 while (copied) { 1360 use = min_t(int, copied, PAGE_SIZE - offset); 1361 1362 sg_set_page(&to[num_elem], 1363 pages[i], use, offset); 1364 sg_unmark_end(&to[num_elem]); 1365 /* We do not uncharge memory from this API */ 1366 1367 offset = 0; 1368 copied -= use; 1369 1370 i++; 1371 num_elem++; 1372 } 1373 } 1374 /* Mark the end in the last sg entry if newly added */ 1375 if (num_elem > *pages_used) 1376 sg_mark_end(&to[num_elem - 1]); 1377 out: 1378 if (rc) 1379 iov_iter_revert(from, size - *size_used); 1380 *size_used = size; 1381 *pages_used = num_elem; 1382 1383 return rc; 1384 } 1385 1386 /* This function decrypts the input skb into either out_iov or in out_sg 1387 * or in skb buffers itself. The input parameter 'zc' indicates if 1388 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1389 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1390 * NULL, then the decryption happens inside skb buffers itself, i.e. 1391 * zero-copy gets disabled and 'zc' is updated. 1392 */ 1393 1394 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1395 struct iov_iter *out_iov, 1396 struct scatterlist *out_sg, 1397 int *chunk, bool *zc, bool async) 1398 { 1399 struct tls_context *tls_ctx = tls_get_ctx(sk); 1400 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1401 struct tls_prot_info *prot = &tls_ctx->prot_info; 1402 struct strp_msg *rxm = strp_msg(skb); 1403 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1404 struct aead_request *aead_req; 1405 struct sk_buff *unused; 1406 u8 *aad, *iv, *mem = NULL; 1407 struct scatterlist *sgin = NULL; 1408 struct scatterlist *sgout = NULL; 1409 const int data_len = rxm->full_len - prot->overhead_size + 1410 prot->tail_size; 1411 int iv_offset = 0; 1412 1413 if (*zc && (out_iov || out_sg)) { 1414 if (out_iov) 1415 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1416 else 1417 n_sgout = sg_nents(out_sg); 1418 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1419 rxm->full_len - prot->prepend_size); 1420 } else { 1421 n_sgout = 0; 1422 *zc = false; 1423 n_sgin = skb_cow_data(skb, 0, &unused); 1424 } 1425 1426 if (n_sgin < 1) 1427 return -EBADMSG; 1428 1429 /* Increment to accommodate AAD */ 1430 n_sgin = n_sgin + 1; 1431 1432 nsg = n_sgin + n_sgout; 1433 1434 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1435 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1436 mem_size = mem_size + prot->aad_size; 1437 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1438 1439 /* Allocate a single block of memory which contains 1440 * aead_req || sgin[] || sgout[] || aad || iv. 1441 * This order achieves correct alignment for aead_req, sgin, sgout. 1442 */ 1443 mem = kmalloc(mem_size, sk->sk_allocation); 1444 if (!mem) 1445 return -ENOMEM; 1446 1447 /* Segment the allocated memory */ 1448 aead_req = (struct aead_request *)mem; 1449 sgin = (struct scatterlist *)(mem + aead_size); 1450 sgout = sgin + n_sgin; 1451 aad = (u8 *)(sgout + n_sgout); 1452 iv = aad + prot->aad_size; 1453 1454 /* For CCM based ciphers, first byte of nonce+iv is always '2' */ 1455 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 1456 iv[0] = 2; 1457 iv_offset = 1; 1458 } 1459 1460 /* Prepare IV */ 1461 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1462 iv + iv_offset + prot->salt_size, 1463 prot->iv_size); 1464 if (err < 0) { 1465 kfree(mem); 1466 return err; 1467 } 1468 if (prot->version == TLS_1_3_VERSION) 1469 memcpy(iv + iv_offset, tls_ctx->rx.iv, 1470 crypto_aead_ivsize(ctx->aead_recv)); 1471 else 1472 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); 1473 1474 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq); 1475 1476 /* Prepare AAD */ 1477 tls_make_aad(aad, rxm->full_len - prot->overhead_size + 1478 prot->tail_size, 1479 tls_ctx->rx.rec_seq, prot->rec_seq_size, 1480 ctx->control, prot->version); 1481 1482 /* Prepare sgin */ 1483 sg_init_table(sgin, n_sgin); 1484 sg_set_buf(&sgin[0], aad, prot->aad_size); 1485 err = skb_to_sgvec(skb, &sgin[1], 1486 rxm->offset + prot->prepend_size, 1487 rxm->full_len - prot->prepend_size); 1488 if (err < 0) { 1489 kfree(mem); 1490 return err; 1491 } 1492 1493 if (n_sgout) { 1494 if (out_iov) { 1495 sg_init_table(sgout, n_sgout); 1496 sg_set_buf(&sgout[0], aad, prot->aad_size); 1497 1498 *chunk = 0; 1499 err = tls_setup_from_iter(sk, out_iov, data_len, 1500 &pages, chunk, &sgout[1], 1501 (n_sgout - 1)); 1502 if (err < 0) 1503 goto fallback_to_reg_recv; 1504 } else if (out_sg) { 1505 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1506 } else { 1507 goto fallback_to_reg_recv; 1508 } 1509 } else { 1510 fallback_to_reg_recv: 1511 sgout = sgin; 1512 pages = 0; 1513 *chunk = data_len; 1514 *zc = false; 1515 } 1516 1517 /* Prepare and submit AEAD request */ 1518 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1519 data_len, aead_req, async); 1520 if (err == -EINPROGRESS) 1521 return err; 1522 1523 /* Release the pages in case iov was mapped to pages */ 1524 for (; pages > 0; pages--) 1525 put_page(sg_page(&sgout[pages])); 1526 1527 kfree(mem); 1528 return err; 1529 } 1530 1531 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1532 struct iov_iter *dest, int *chunk, bool *zc, 1533 bool async) 1534 { 1535 struct tls_context *tls_ctx = tls_get_ctx(sk); 1536 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1537 struct tls_prot_info *prot = &tls_ctx->prot_info; 1538 struct strp_msg *rxm = strp_msg(skb); 1539 int pad, err = 0; 1540 1541 if (!ctx->decrypted) { 1542 if (tls_ctx->rx_conf == TLS_HW) { 1543 err = tls_device_decrypted(sk, tls_ctx, skb, rxm); 1544 if (err < 0) 1545 return err; 1546 } 1547 1548 /* Still not decrypted after tls_device */ 1549 if (!ctx->decrypted) { 1550 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, 1551 async); 1552 if (err < 0) { 1553 if (err == -EINPROGRESS) 1554 tls_advance_record_sn(sk, prot, 1555 &tls_ctx->rx); 1556 else if (err == -EBADMSG) 1557 TLS_INC_STATS(sock_net(sk), 1558 LINUX_MIB_TLSDECRYPTERROR); 1559 return err; 1560 } 1561 } else { 1562 *zc = false; 1563 } 1564 1565 pad = padding_length(ctx, prot, skb); 1566 if (pad < 0) 1567 return pad; 1568 1569 rxm->full_len -= pad; 1570 rxm->offset += prot->prepend_size; 1571 rxm->full_len -= prot->overhead_size; 1572 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1573 ctx->decrypted = 1; 1574 ctx->saved_data_ready(sk); 1575 } else { 1576 *zc = false; 1577 } 1578 1579 return err; 1580 } 1581 1582 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1583 struct scatterlist *sgout) 1584 { 1585 bool zc = true; 1586 int chunk; 1587 1588 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); 1589 } 1590 1591 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1592 unsigned int len) 1593 { 1594 struct tls_context *tls_ctx = tls_get_ctx(sk); 1595 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1596 1597 if (skb) { 1598 struct strp_msg *rxm = strp_msg(skb); 1599 1600 if (len < rxm->full_len) { 1601 rxm->offset += len; 1602 rxm->full_len -= len; 1603 return false; 1604 } 1605 consume_skb(skb); 1606 } 1607 1608 /* Finished with message */ 1609 ctx->recv_pkt = NULL; 1610 __strp_unpause(&ctx->strp); 1611 1612 return true; 1613 } 1614 1615 /* This function traverses the rx_list in tls receive context to copies the 1616 * decrypted records into the buffer provided by caller zero copy is not 1617 * true. Further, the records are removed from the rx_list if it is not a peek 1618 * case and the record has been consumed completely. 1619 */ 1620 static int process_rx_list(struct tls_sw_context_rx *ctx, 1621 struct msghdr *msg, 1622 u8 *control, 1623 bool *cmsg, 1624 size_t skip, 1625 size_t len, 1626 bool zc, 1627 bool is_peek) 1628 { 1629 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1630 u8 ctrl = *control; 1631 u8 msgc = *cmsg; 1632 struct tls_msg *tlm; 1633 ssize_t copied = 0; 1634 1635 /* Set the record type in 'control' if caller didn't pass it */ 1636 if (!ctrl && skb) { 1637 tlm = tls_msg(skb); 1638 ctrl = tlm->control; 1639 } 1640 1641 while (skip && skb) { 1642 struct strp_msg *rxm = strp_msg(skb); 1643 tlm = tls_msg(skb); 1644 1645 /* Cannot process a record of different type */ 1646 if (ctrl != tlm->control) 1647 return 0; 1648 1649 if (skip < rxm->full_len) 1650 break; 1651 1652 skip = skip - rxm->full_len; 1653 skb = skb_peek_next(skb, &ctx->rx_list); 1654 } 1655 1656 while (len && skb) { 1657 struct sk_buff *next_skb; 1658 struct strp_msg *rxm = strp_msg(skb); 1659 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1660 1661 tlm = tls_msg(skb); 1662 1663 /* Cannot process a record of different type */ 1664 if (ctrl != tlm->control) 1665 return 0; 1666 1667 /* Set record type if not already done. For a non-data record, 1668 * do not proceed if record type could not be copied. 1669 */ 1670 if (!msgc) { 1671 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1672 sizeof(ctrl), &ctrl); 1673 msgc = true; 1674 if (ctrl != TLS_RECORD_TYPE_DATA) { 1675 if (cerr || msg->msg_flags & MSG_CTRUNC) 1676 return -EIO; 1677 1678 *cmsg = msgc; 1679 } 1680 } 1681 1682 if (!zc || (rxm->full_len - skip) > len) { 1683 int err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1684 msg, chunk); 1685 if (err < 0) 1686 return err; 1687 } 1688 1689 len = len - chunk; 1690 copied = copied + chunk; 1691 1692 /* Consume the data from record if it is non-peek case*/ 1693 if (!is_peek) { 1694 rxm->offset = rxm->offset + chunk; 1695 rxm->full_len = rxm->full_len - chunk; 1696 1697 /* Return if there is unconsumed data in the record */ 1698 if (rxm->full_len - skip) 1699 break; 1700 } 1701 1702 /* The remaining skip-bytes must lie in 1st record in rx_list. 1703 * So from the 2nd record, 'skip' should be 0. 1704 */ 1705 skip = 0; 1706 1707 if (msg) 1708 msg->msg_flags |= MSG_EOR; 1709 1710 next_skb = skb_peek_next(skb, &ctx->rx_list); 1711 1712 if (!is_peek) { 1713 skb_unlink(skb, &ctx->rx_list); 1714 consume_skb(skb); 1715 } 1716 1717 skb = next_skb; 1718 } 1719 1720 *control = ctrl; 1721 return copied; 1722 } 1723 1724 int tls_sw_recvmsg(struct sock *sk, 1725 struct msghdr *msg, 1726 size_t len, 1727 int nonblock, 1728 int flags, 1729 int *addr_len) 1730 { 1731 struct tls_context *tls_ctx = tls_get_ctx(sk); 1732 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1733 struct tls_prot_info *prot = &tls_ctx->prot_info; 1734 struct sk_psock *psock; 1735 unsigned char control = 0; 1736 ssize_t decrypted = 0; 1737 struct strp_msg *rxm; 1738 struct tls_msg *tlm; 1739 struct sk_buff *skb; 1740 ssize_t copied = 0; 1741 bool cmsg = false; 1742 int target, err = 0; 1743 long timeo; 1744 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1745 bool is_peek = flags & MSG_PEEK; 1746 bool bpf_strp_enabled; 1747 int num_async = 0; 1748 int pending; 1749 1750 flags |= nonblock; 1751 1752 if (unlikely(flags & MSG_ERRQUEUE)) 1753 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1754 1755 psock = sk_psock_get(sk); 1756 lock_sock(sk); 1757 bpf_strp_enabled = sk_psock_strp_enabled(psock); 1758 1759 /* Process pending decrypted records. It must be non-zero-copy */ 1760 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, 1761 is_peek); 1762 if (err < 0) { 1763 tls_err_abort(sk, err); 1764 goto end; 1765 } else { 1766 copied = err; 1767 } 1768 1769 if (len <= copied) 1770 goto recv_end; 1771 1772 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1773 len = len - copied; 1774 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1775 1776 while (len && (decrypted + copied < target || ctx->recv_pkt)) { 1777 bool retain_skb = false; 1778 bool zc = false; 1779 int to_decrypt; 1780 int chunk = 0; 1781 bool async_capable; 1782 bool async = false; 1783 1784 skb = tls_wait_data(sk, psock, flags, timeo, &err); 1785 if (!skb) { 1786 if (psock) { 1787 int ret = __tcp_bpf_recvmsg(sk, psock, 1788 msg, len, flags); 1789 1790 if (ret > 0) { 1791 decrypted += ret; 1792 len -= ret; 1793 continue; 1794 } 1795 } 1796 goto recv_end; 1797 } else { 1798 tlm = tls_msg(skb); 1799 if (prot->version == TLS_1_3_VERSION) 1800 tlm->control = 0; 1801 else 1802 tlm->control = ctx->control; 1803 } 1804 1805 rxm = strp_msg(skb); 1806 1807 to_decrypt = rxm->full_len - prot->overhead_size; 1808 1809 if (to_decrypt <= len && !is_kvec && !is_peek && 1810 ctx->control == TLS_RECORD_TYPE_DATA && 1811 prot->version != TLS_1_3_VERSION && 1812 !bpf_strp_enabled) 1813 zc = true; 1814 1815 /* Do not use async mode if record is non-data */ 1816 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 1817 async_capable = ctx->async_capable; 1818 else 1819 async_capable = false; 1820 1821 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1822 &chunk, &zc, async_capable); 1823 if (err < 0 && err != -EINPROGRESS) { 1824 tls_err_abort(sk, EBADMSG); 1825 goto recv_end; 1826 } 1827 1828 if (err == -EINPROGRESS) { 1829 async = true; 1830 num_async++; 1831 } else if (prot->version == TLS_1_3_VERSION) { 1832 tlm->control = ctx->control; 1833 } 1834 1835 /* If the type of records being processed is not known yet, 1836 * set it to record type just dequeued. If it is already known, 1837 * but does not match the record type just dequeued, go to end. 1838 * We always get record type here since for tls1.2, record type 1839 * is known just after record is dequeued from stream parser. 1840 * For tls1.3, we disable async. 1841 */ 1842 1843 if (!control) 1844 control = tlm->control; 1845 else if (control != tlm->control) 1846 goto recv_end; 1847 1848 if (!cmsg) { 1849 int cerr; 1850 1851 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1852 sizeof(control), &control); 1853 cmsg = true; 1854 if (control != TLS_RECORD_TYPE_DATA) { 1855 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1856 err = -EIO; 1857 goto recv_end; 1858 } 1859 } 1860 } 1861 1862 if (async) 1863 goto pick_next_record; 1864 1865 if (!zc) { 1866 if (bpf_strp_enabled) { 1867 err = sk_psock_tls_strp_read(psock, skb); 1868 if (err != __SK_PASS) { 1869 rxm->offset = rxm->offset + rxm->full_len; 1870 rxm->full_len = 0; 1871 if (err == __SK_DROP) 1872 consume_skb(skb); 1873 ctx->recv_pkt = NULL; 1874 __strp_unpause(&ctx->strp); 1875 continue; 1876 } 1877 } 1878 1879 if (rxm->full_len > len) { 1880 retain_skb = true; 1881 chunk = len; 1882 } else { 1883 chunk = rxm->full_len; 1884 } 1885 1886 err = skb_copy_datagram_msg(skb, rxm->offset, 1887 msg, chunk); 1888 if (err < 0) 1889 goto recv_end; 1890 1891 if (!is_peek) { 1892 rxm->offset = rxm->offset + chunk; 1893 rxm->full_len = rxm->full_len - chunk; 1894 } 1895 } 1896 1897 pick_next_record: 1898 if (chunk > len) 1899 chunk = len; 1900 1901 decrypted += chunk; 1902 len -= chunk; 1903 1904 /* For async or peek case, queue the current skb */ 1905 if (async || is_peek || retain_skb) { 1906 skb_queue_tail(&ctx->rx_list, skb); 1907 skb = NULL; 1908 } 1909 1910 if (tls_sw_advance_skb(sk, skb, chunk)) { 1911 /* Return full control message to 1912 * userspace before trying to parse 1913 * another message type 1914 */ 1915 msg->msg_flags |= MSG_EOR; 1916 if (ctx->control != TLS_RECORD_TYPE_DATA) 1917 goto recv_end; 1918 } else { 1919 break; 1920 } 1921 } 1922 1923 recv_end: 1924 if (num_async) { 1925 /* Wait for all previously submitted records to be decrypted */ 1926 spin_lock_bh(&ctx->decrypt_compl_lock); 1927 ctx->async_notify = true; 1928 pending = atomic_read(&ctx->decrypt_pending); 1929 spin_unlock_bh(&ctx->decrypt_compl_lock); 1930 if (pending) { 1931 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1932 if (err) { 1933 /* one of async decrypt failed */ 1934 tls_err_abort(sk, err); 1935 copied = 0; 1936 decrypted = 0; 1937 goto end; 1938 } 1939 } else { 1940 reinit_completion(&ctx->async_wait.completion); 1941 } 1942 1943 /* There can be no concurrent accesses, since we have no 1944 * pending decrypt operations 1945 */ 1946 WRITE_ONCE(ctx->async_notify, false); 1947 1948 /* Drain records from the rx_list & copy if required */ 1949 if (is_peek || is_kvec) 1950 err = process_rx_list(ctx, msg, &control, &cmsg, copied, 1951 decrypted, false, is_peek); 1952 else 1953 err = process_rx_list(ctx, msg, &control, &cmsg, 0, 1954 decrypted, true, is_peek); 1955 if (err < 0) { 1956 tls_err_abort(sk, err); 1957 copied = 0; 1958 goto end; 1959 } 1960 } 1961 1962 copied += decrypted; 1963 1964 end: 1965 release_sock(sk); 1966 if (psock) 1967 sk_psock_put(sk, psock); 1968 return copied ? : err; 1969 } 1970 1971 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1972 struct pipe_inode_info *pipe, 1973 size_t len, unsigned int flags) 1974 { 1975 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1976 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1977 struct strp_msg *rxm = NULL; 1978 struct sock *sk = sock->sk; 1979 struct sk_buff *skb; 1980 ssize_t copied = 0; 1981 int err = 0; 1982 long timeo; 1983 int chunk; 1984 bool zc = false; 1985 1986 lock_sock(sk); 1987 1988 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1989 1990 skb = tls_wait_data(sk, NULL, flags, timeo, &err); 1991 if (!skb) 1992 goto splice_read_end; 1993 1994 if (!ctx->decrypted) { 1995 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); 1996 1997 /* splice does not support reading control messages */ 1998 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1999 err = -EINVAL; 2000 goto splice_read_end; 2001 } 2002 2003 if (err < 0) { 2004 tls_err_abort(sk, EBADMSG); 2005 goto splice_read_end; 2006 } 2007 ctx->decrypted = 1; 2008 } 2009 rxm = strp_msg(skb); 2010 2011 chunk = min_t(unsigned int, rxm->full_len, len); 2012 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2013 if (copied < 0) 2014 goto splice_read_end; 2015 2016 if (likely(!(flags & MSG_PEEK))) 2017 tls_sw_advance_skb(sk, skb, copied); 2018 2019 splice_read_end: 2020 release_sock(sk); 2021 return copied ? : err; 2022 } 2023 2024 bool tls_sw_stream_read(const struct sock *sk) 2025 { 2026 struct tls_context *tls_ctx = tls_get_ctx(sk); 2027 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2028 bool ingress_empty = true; 2029 struct sk_psock *psock; 2030 2031 rcu_read_lock(); 2032 psock = sk_psock(sk); 2033 if (psock) 2034 ingress_empty = list_empty(&psock->ingress_msg); 2035 rcu_read_unlock(); 2036 2037 return !ingress_empty || ctx->recv_pkt || 2038 !skb_queue_empty(&ctx->rx_list); 2039 } 2040 2041 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 2042 { 2043 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2044 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2045 struct tls_prot_info *prot = &tls_ctx->prot_info; 2046 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 2047 struct strp_msg *rxm = strp_msg(skb); 2048 size_t cipher_overhead; 2049 size_t data_len = 0; 2050 int ret; 2051 2052 /* Verify that we have a full TLS header, or wait for more data */ 2053 if (rxm->offset + prot->prepend_size > skb->len) 2054 return 0; 2055 2056 /* Sanity-check size of on-stack buffer. */ 2057 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2058 ret = -EINVAL; 2059 goto read_failure; 2060 } 2061 2062 /* Linearize header to local buffer */ 2063 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 2064 2065 if (ret < 0) 2066 goto read_failure; 2067 2068 ctx->control = header[0]; 2069 2070 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2071 2072 cipher_overhead = prot->tag_size; 2073 if (prot->version != TLS_1_3_VERSION) 2074 cipher_overhead += prot->iv_size; 2075 2076 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2077 prot->tail_size) { 2078 ret = -EMSGSIZE; 2079 goto read_failure; 2080 } 2081 if (data_len < cipher_overhead) { 2082 ret = -EBADMSG; 2083 goto read_failure; 2084 } 2085 2086 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2087 if (header[1] != TLS_1_2_VERSION_MINOR || 2088 header[2] != TLS_1_2_VERSION_MAJOR) { 2089 ret = -EINVAL; 2090 goto read_failure; 2091 } 2092 2093 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2094 TCP_SKB_CB(skb)->seq + rxm->offset); 2095 return data_len + TLS_HEADER_SIZE; 2096 2097 read_failure: 2098 tls_err_abort(strp->sk, ret); 2099 2100 return ret; 2101 } 2102 2103 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2104 { 2105 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2106 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2107 2108 ctx->decrypted = 0; 2109 2110 ctx->recv_pkt = skb; 2111 strp_pause(strp); 2112 2113 ctx->saved_data_ready(strp->sk); 2114 } 2115 2116 static void tls_data_ready(struct sock *sk) 2117 { 2118 struct tls_context *tls_ctx = tls_get_ctx(sk); 2119 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2120 struct sk_psock *psock; 2121 2122 strp_data_ready(&ctx->strp); 2123 2124 psock = sk_psock_get(sk); 2125 if (psock) { 2126 if (!list_empty(&psock->ingress_msg)) 2127 ctx->saved_data_ready(sk); 2128 sk_psock_put(sk, psock); 2129 } 2130 } 2131 2132 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2133 { 2134 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2135 2136 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2137 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2138 cancel_delayed_work_sync(&ctx->tx_work.work); 2139 } 2140 2141 void tls_sw_release_resources_tx(struct sock *sk) 2142 { 2143 struct tls_context *tls_ctx = tls_get_ctx(sk); 2144 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2145 struct tls_rec *rec, *tmp; 2146 int pending; 2147 2148 /* Wait for any pending async encryptions to complete */ 2149 spin_lock_bh(&ctx->encrypt_compl_lock); 2150 ctx->async_notify = true; 2151 pending = atomic_read(&ctx->encrypt_pending); 2152 spin_unlock_bh(&ctx->encrypt_compl_lock); 2153 2154 if (pending) 2155 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2156 2157 tls_tx_records(sk, -1); 2158 2159 /* Free up un-sent records in tx_list. First, free 2160 * the partially sent record if any at head of tx_list. 2161 */ 2162 if (tls_ctx->partially_sent_record) { 2163 tls_free_partial_record(sk, tls_ctx); 2164 rec = list_first_entry(&ctx->tx_list, 2165 struct tls_rec, list); 2166 list_del(&rec->list); 2167 sk_msg_free(sk, &rec->msg_plaintext); 2168 kfree(rec); 2169 } 2170 2171 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2172 list_del(&rec->list); 2173 sk_msg_free(sk, &rec->msg_encrypted); 2174 sk_msg_free(sk, &rec->msg_plaintext); 2175 kfree(rec); 2176 } 2177 2178 crypto_free_aead(ctx->aead_send); 2179 tls_free_open_rec(sk); 2180 } 2181 2182 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2183 { 2184 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2185 2186 kfree(ctx); 2187 } 2188 2189 void tls_sw_release_resources_rx(struct sock *sk) 2190 { 2191 struct tls_context *tls_ctx = tls_get_ctx(sk); 2192 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2193 2194 kfree(tls_ctx->rx.rec_seq); 2195 kfree(tls_ctx->rx.iv); 2196 2197 if (ctx->aead_recv) { 2198 kfree_skb(ctx->recv_pkt); 2199 ctx->recv_pkt = NULL; 2200 skb_queue_purge(&ctx->rx_list); 2201 crypto_free_aead(ctx->aead_recv); 2202 strp_stop(&ctx->strp); 2203 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2204 * we still want to strp_stop(), but sk->sk_data_ready was 2205 * never swapped. 2206 */ 2207 if (ctx->saved_data_ready) { 2208 write_lock_bh(&sk->sk_callback_lock); 2209 sk->sk_data_ready = ctx->saved_data_ready; 2210 write_unlock_bh(&sk->sk_callback_lock); 2211 } 2212 } 2213 } 2214 2215 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2216 { 2217 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2218 2219 strp_done(&ctx->strp); 2220 } 2221 2222 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2223 { 2224 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2225 2226 kfree(ctx); 2227 } 2228 2229 void tls_sw_free_resources_rx(struct sock *sk) 2230 { 2231 struct tls_context *tls_ctx = tls_get_ctx(sk); 2232 2233 tls_sw_release_resources_rx(sk); 2234 tls_sw_free_ctx_rx(tls_ctx); 2235 } 2236 2237 /* The work handler to transmitt the encrypted records in tx_list */ 2238 static void tx_work_handler(struct work_struct *work) 2239 { 2240 struct delayed_work *delayed_work = to_delayed_work(work); 2241 struct tx_work *tx_work = container_of(delayed_work, 2242 struct tx_work, work); 2243 struct sock *sk = tx_work->sk; 2244 struct tls_context *tls_ctx = tls_get_ctx(sk); 2245 struct tls_sw_context_tx *ctx; 2246 2247 if (unlikely(!tls_ctx)) 2248 return; 2249 2250 ctx = tls_sw_ctx_tx(tls_ctx); 2251 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2252 return; 2253 2254 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2255 return; 2256 mutex_lock(&tls_ctx->tx_lock); 2257 lock_sock(sk); 2258 tls_tx_records(sk, -1); 2259 release_sock(sk); 2260 mutex_unlock(&tls_ctx->tx_lock); 2261 } 2262 2263 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2264 { 2265 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2266 2267 /* Schedule the transmission if tx list is ready */ 2268 if (is_tx_ready(tx_ctx) && 2269 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2270 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2271 } 2272 2273 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2274 { 2275 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2276 2277 write_lock_bh(&sk->sk_callback_lock); 2278 rx_ctx->saved_data_ready = sk->sk_data_ready; 2279 sk->sk_data_ready = tls_data_ready; 2280 write_unlock_bh(&sk->sk_callback_lock); 2281 2282 strp_check_rcv(&rx_ctx->strp); 2283 } 2284 2285 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2286 { 2287 struct tls_context *tls_ctx = tls_get_ctx(sk); 2288 struct tls_prot_info *prot = &tls_ctx->prot_info; 2289 struct tls_crypto_info *crypto_info; 2290 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2291 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2292 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2293 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2294 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2295 struct cipher_context *cctx; 2296 struct crypto_aead **aead; 2297 struct strp_callbacks cb; 2298 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2299 struct crypto_tfm *tfm; 2300 char *iv, *rec_seq, *key, *salt, *cipher_name; 2301 size_t keysize; 2302 int rc = 0; 2303 2304 if (!ctx) { 2305 rc = -EINVAL; 2306 goto out; 2307 } 2308 2309 if (tx) { 2310 if (!ctx->priv_ctx_tx) { 2311 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2312 if (!sw_ctx_tx) { 2313 rc = -ENOMEM; 2314 goto out; 2315 } 2316 ctx->priv_ctx_tx = sw_ctx_tx; 2317 } else { 2318 sw_ctx_tx = 2319 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2320 } 2321 } else { 2322 if (!ctx->priv_ctx_rx) { 2323 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2324 if (!sw_ctx_rx) { 2325 rc = -ENOMEM; 2326 goto out; 2327 } 2328 ctx->priv_ctx_rx = sw_ctx_rx; 2329 } else { 2330 sw_ctx_rx = 2331 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2332 } 2333 } 2334 2335 if (tx) { 2336 crypto_init_wait(&sw_ctx_tx->async_wait); 2337 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); 2338 crypto_info = &ctx->crypto_send.info; 2339 cctx = &ctx->tx; 2340 aead = &sw_ctx_tx->aead_send; 2341 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2342 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2343 sw_ctx_tx->tx_work.sk = sk; 2344 } else { 2345 crypto_init_wait(&sw_ctx_rx->async_wait); 2346 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); 2347 crypto_info = &ctx->crypto_recv.info; 2348 cctx = &ctx->rx; 2349 skb_queue_head_init(&sw_ctx_rx->rx_list); 2350 aead = &sw_ctx_rx->aead_recv; 2351 } 2352 2353 switch (crypto_info->cipher_type) { 2354 case TLS_CIPHER_AES_GCM_128: { 2355 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2356 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2357 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2358 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 2359 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2360 rec_seq = 2361 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 2362 gcm_128_info = 2363 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 2364 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2365 key = gcm_128_info->key; 2366 salt = gcm_128_info->salt; 2367 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2368 cipher_name = "gcm(aes)"; 2369 break; 2370 } 2371 case TLS_CIPHER_AES_GCM_256: { 2372 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2373 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2374 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2375 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 2376 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2377 rec_seq = 2378 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 2379 gcm_256_info = 2380 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; 2381 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2382 key = gcm_256_info->key; 2383 salt = gcm_256_info->salt; 2384 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2385 cipher_name = "gcm(aes)"; 2386 break; 2387 } 2388 case TLS_CIPHER_AES_CCM_128: { 2389 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2390 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2391 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2392 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; 2393 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2394 rec_seq = 2395 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; 2396 ccm_128_info = 2397 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info; 2398 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2399 key = ccm_128_info->key; 2400 salt = ccm_128_info->salt; 2401 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2402 cipher_name = "ccm(aes)"; 2403 break; 2404 } 2405 default: 2406 rc = -EINVAL; 2407 goto free_priv; 2408 } 2409 2410 /* Sanity-check the sizes for stack allocations. */ 2411 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2412 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 2413 rc = -EINVAL; 2414 goto free_priv; 2415 } 2416 2417 if (crypto_info->version == TLS_1_3_VERSION) { 2418 nonce_size = 0; 2419 prot->aad_size = TLS_HEADER_SIZE; 2420 prot->tail_size = 1; 2421 } else { 2422 prot->aad_size = TLS_AAD_SPACE_SIZE; 2423 prot->tail_size = 0; 2424 } 2425 2426 prot->version = crypto_info->version; 2427 prot->cipher_type = crypto_info->cipher_type; 2428 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2429 prot->tag_size = tag_size; 2430 prot->overhead_size = prot->prepend_size + 2431 prot->tag_size + prot->tail_size; 2432 prot->iv_size = iv_size; 2433 prot->salt_size = salt_size; 2434 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2435 if (!cctx->iv) { 2436 rc = -ENOMEM; 2437 goto free_priv; 2438 } 2439 /* Note: 128 & 256 bit salt are the same size */ 2440 prot->rec_seq_size = rec_seq_size; 2441 memcpy(cctx->iv, salt, salt_size); 2442 memcpy(cctx->iv + salt_size, iv, iv_size); 2443 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2444 if (!cctx->rec_seq) { 2445 rc = -ENOMEM; 2446 goto free_iv; 2447 } 2448 2449 if (!*aead) { 2450 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2451 if (IS_ERR(*aead)) { 2452 rc = PTR_ERR(*aead); 2453 *aead = NULL; 2454 goto free_rec_seq; 2455 } 2456 } 2457 2458 ctx->push_pending_record = tls_sw_push_pending_record; 2459 2460 rc = crypto_aead_setkey(*aead, key, keysize); 2461 2462 if (rc) 2463 goto free_aead; 2464 2465 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2466 if (rc) 2467 goto free_aead; 2468 2469 if (sw_ctx_rx) { 2470 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2471 2472 if (crypto_info->version == TLS_1_3_VERSION) 2473 sw_ctx_rx->async_capable = 0; 2474 else 2475 sw_ctx_rx->async_capable = 2476 !!(tfm->__crt_alg->cra_flags & 2477 CRYPTO_ALG_ASYNC); 2478 2479 /* Set up strparser */ 2480 memset(&cb, 0, sizeof(cb)); 2481 cb.rcv_msg = tls_queue; 2482 cb.parse_msg = tls_read_size; 2483 2484 strp_init(&sw_ctx_rx->strp, sk, &cb); 2485 } 2486 2487 goto out; 2488 2489 free_aead: 2490 crypto_free_aead(*aead); 2491 *aead = NULL; 2492 free_rec_seq: 2493 kfree(cctx->rec_seq); 2494 cctx->rec_seq = NULL; 2495 free_iv: 2496 kfree(cctx->iv); 2497 cctx->iv = NULL; 2498 free_priv: 2499 if (tx) { 2500 kfree(ctx->priv_ctx_tx); 2501 ctx->priv_ctx_tx = NULL; 2502 } else { 2503 kfree(ctx->priv_ctx_rx); 2504 ctx->priv_ctx_rx = NULL; 2505 } 2506 out: 2507 return rc; 2508 } 2509