1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/bug.h> 39 #include <linux/sched/signal.h> 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/splice.h> 43 #include <crypto/aead.h> 44 45 #include <net/strparser.h> 46 #include <net/tls.h> 47 #include <trace/events/sock.h> 48 49 #include "tls.h" 50 51 struct tls_decrypt_arg { 52 struct_group(inargs, 53 bool zc; 54 bool async; 55 u8 tail; 56 ); 57 58 struct sk_buff *skb; 59 }; 60 61 struct tls_decrypt_ctx { 62 struct sock *sk; 63 u8 iv[MAX_IV_SIZE]; 64 u8 aad[TLS_MAX_AAD_SIZE]; 65 u8 tail; 66 struct scatterlist sg[]; 67 }; 68 69 noinline void tls_err_abort(struct sock *sk, int err) 70 { 71 WARN_ON_ONCE(err >= 0); 72 /* sk->sk_err should contain a positive error code. */ 73 sk->sk_err = -err; 74 sk_error_report(sk); 75 } 76 77 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 78 unsigned int recursion_level) 79 { 80 int start = skb_headlen(skb); 81 int i, chunk = start - offset; 82 struct sk_buff *frag_iter; 83 int elt = 0; 84 85 if (unlikely(recursion_level >= 24)) 86 return -EMSGSIZE; 87 88 if (chunk > 0) { 89 if (chunk > len) 90 chunk = len; 91 elt++; 92 len -= chunk; 93 if (len == 0) 94 return elt; 95 offset += chunk; 96 } 97 98 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 99 int end; 100 101 WARN_ON(start > offset + len); 102 103 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 104 chunk = end - offset; 105 if (chunk > 0) { 106 if (chunk > len) 107 chunk = len; 108 elt++; 109 len -= chunk; 110 if (len == 0) 111 return elt; 112 offset += chunk; 113 } 114 start = end; 115 } 116 117 if (unlikely(skb_has_frag_list(skb))) { 118 skb_walk_frags(skb, frag_iter) { 119 int end, ret; 120 121 WARN_ON(start > offset + len); 122 123 end = start + frag_iter->len; 124 chunk = end - offset; 125 if (chunk > 0) { 126 if (chunk > len) 127 chunk = len; 128 ret = __skb_nsg(frag_iter, offset - start, chunk, 129 recursion_level + 1); 130 if (unlikely(ret < 0)) 131 return ret; 132 elt += ret; 133 len -= chunk; 134 if (len == 0) 135 return elt; 136 offset += chunk; 137 } 138 start = end; 139 } 140 } 141 BUG_ON(len); 142 return elt; 143 } 144 145 /* Return the number of scatterlist elements required to completely map the 146 * skb, or -EMSGSIZE if the recursion depth is exceeded. 147 */ 148 static int skb_nsg(struct sk_buff *skb, int offset, int len) 149 { 150 return __skb_nsg(skb, offset, len, 0); 151 } 152 153 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, 154 struct tls_decrypt_arg *darg) 155 { 156 struct strp_msg *rxm = strp_msg(skb); 157 struct tls_msg *tlm = tls_msg(skb); 158 int sub = 0; 159 160 /* Determine zero-padding length */ 161 if (prot->version == TLS_1_3_VERSION) { 162 int offset = rxm->full_len - TLS_TAG_SIZE - 1; 163 char content_type = darg->zc ? darg->tail : 0; 164 int err; 165 166 while (content_type == 0) { 167 if (offset < prot->prepend_size) 168 return -EBADMSG; 169 err = skb_copy_bits(skb, rxm->offset + offset, 170 &content_type, 1); 171 if (err) 172 return err; 173 if (content_type) 174 break; 175 sub++; 176 offset--; 177 } 178 tlm->control = content_type; 179 } 180 return sub; 181 } 182 183 static void tls_decrypt_done(void *data, int err) 184 { 185 struct aead_request *aead_req = data; 186 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); 187 struct scatterlist *sgout = aead_req->dst; 188 struct scatterlist *sgin = aead_req->src; 189 struct tls_sw_context_rx *ctx; 190 struct tls_decrypt_ctx *dctx; 191 struct tls_context *tls_ctx; 192 struct scatterlist *sg; 193 unsigned int pages; 194 struct sock *sk; 195 int aead_size; 196 197 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); 198 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 199 dctx = (void *)((u8 *)aead_req + aead_size); 200 201 sk = dctx->sk; 202 tls_ctx = tls_get_ctx(sk); 203 ctx = tls_sw_ctx_rx(tls_ctx); 204 205 /* Propagate if there was an err */ 206 if (err) { 207 if (err == -EBADMSG) 208 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 209 ctx->async_wait.err = err; 210 tls_err_abort(sk, err); 211 } 212 213 /* Free the destination pages if skb was not decrypted inplace */ 214 if (sgout != sgin) { 215 /* Skip the first S/G entry as it points to AAD */ 216 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 217 if (!sg) 218 break; 219 put_page(sg_page(sg)); 220 } 221 } 222 223 kfree(aead_req); 224 225 spin_lock_bh(&ctx->decrypt_compl_lock); 226 if (!atomic_dec_return(&ctx->decrypt_pending)) 227 complete(&ctx->async_wait.completion); 228 spin_unlock_bh(&ctx->decrypt_compl_lock); 229 } 230 231 static int tls_do_decryption(struct sock *sk, 232 struct scatterlist *sgin, 233 struct scatterlist *sgout, 234 char *iv_recv, 235 size_t data_len, 236 struct aead_request *aead_req, 237 struct tls_decrypt_arg *darg) 238 { 239 struct tls_context *tls_ctx = tls_get_ctx(sk); 240 struct tls_prot_info *prot = &tls_ctx->prot_info; 241 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 242 int ret; 243 244 aead_request_set_tfm(aead_req, ctx->aead_recv); 245 aead_request_set_ad(aead_req, prot->aad_size); 246 aead_request_set_crypt(aead_req, sgin, sgout, 247 data_len + prot->tag_size, 248 (u8 *)iv_recv); 249 250 if (darg->async) { 251 aead_request_set_callback(aead_req, 252 CRYPTO_TFM_REQ_MAY_BACKLOG, 253 tls_decrypt_done, aead_req); 254 atomic_inc(&ctx->decrypt_pending); 255 } else { 256 aead_request_set_callback(aead_req, 257 CRYPTO_TFM_REQ_MAY_BACKLOG, 258 crypto_req_done, &ctx->async_wait); 259 } 260 261 ret = crypto_aead_decrypt(aead_req); 262 if (ret == -EINPROGRESS) { 263 if (darg->async) 264 return 0; 265 266 ret = crypto_wait_req(ret, &ctx->async_wait); 267 } 268 darg->async = false; 269 270 return ret; 271 } 272 273 static void tls_trim_both_msgs(struct sock *sk, int target_size) 274 { 275 struct tls_context *tls_ctx = tls_get_ctx(sk); 276 struct tls_prot_info *prot = &tls_ctx->prot_info; 277 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 278 struct tls_rec *rec = ctx->open_rec; 279 280 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 281 if (target_size > 0) 282 target_size += prot->overhead_size; 283 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 284 } 285 286 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 287 { 288 struct tls_context *tls_ctx = tls_get_ctx(sk); 289 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 290 struct tls_rec *rec = ctx->open_rec; 291 struct sk_msg *msg_en = &rec->msg_encrypted; 292 293 return sk_msg_alloc(sk, msg_en, len, 0); 294 } 295 296 static int tls_clone_plaintext_msg(struct sock *sk, int required) 297 { 298 struct tls_context *tls_ctx = tls_get_ctx(sk); 299 struct tls_prot_info *prot = &tls_ctx->prot_info; 300 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 301 struct tls_rec *rec = ctx->open_rec; 302 struct sk_msg *msg_pl = &rec->msg_plaintext; 303 struct sk_msg *msg_en = &rec->msg_encrypted; 304 int skip, len; 305 306 /* We add page references worth len bytes from encrypted sg 307 * at the end of plaintext sg. It is guaranteed that msg_en 308 * has enough required room (ensured by caller). 309 */ 310 len = required - msg_pl->sg.size; 311 312 /* Skip initial bytes in msg_en's data to be able to use 313 * same offset of both plain and encrypted data. 314 */ 315 skip = prot->prepend_size + msg_pl->sg.size; 316 317 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 318 } 319 320 static struct tls_rec *tls_get_rec(struct sock *sk) 321 { 322 struct tls_context *tls_ctx = tls_get_ctx(sk); 323 struct tls_prot_info *prot = &tls_ctx->prot_info; 324 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 325 struct sk_msg *msg_pl, *msg_en; 326 struct tls_rec *rec; 327 int mem_size; 328 329 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 330 331 rec = kzalloc(mem_size, sk->sk_allocation); 332 if (!rec) 333 return NULL; 334 335 msg_pl = &rec->msg_plaintext; 336 msg_en = &rec->msg_encrypted; 337 338 sk_msg_init(msg_pl); 339 sk_msg_init(msg_en); 340 341 sg_init_table(rec->sg_aead_in, 2); 342 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 343 sg_unmark_end(&rec->sg_aead_in[1]); 344 345 sg_init_table(rec->sg_aead_out, 2); 346 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 347 sg_unmark_end(&rec->sg_aead_out[1]); 348 349 rec->sk = sk; 350 351 return rec; 352 } 353 354 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 355 { 356 sk_msg_free(sk, &rec->msg_encrypted); 357 sk_msg_free(sk, &rec->msg_plaintext); 358 kfree(rec); 359 } 360 361 static void tls_free_open_rec(struct sock *sk) 362 { 363 struct tls_context *tls_ctx = tls_get_ctx(sk); 364 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 365 struct tls_rec *rec = ctx->open_rec; 366 367 if (rec) { 368 tls_free_rec(sk, rec); 369 ctx->open_rec = NULL; 370 } 371 } 372 373 int tls_tx_records(struct sock *sk, int flags) 374 { 375 struct tls_context *tls_ctx = tls_get_ctx(sk); 376 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 377 struct tls_rec *rec, *tmp; 378 struct sk_msg *msg_en; 379 int tx_flags, rc = 0; 380 381 if (tls_is_partially_sent_record(tls_ctx)) { 382 rec = list_first_entry(&ctx->tx_list, 383 struct tls_rec, list); 384 385 if (flags == -1) 386 tx_flags = rec->tx_flags; 387 else 388 tx_flags = flags; 389 390 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 391 if (rc) 392 goto tx_err; 393 394 /* Full record has been transmitted. 395 * Remove the head of tx_list 396 */ 397 list_del(&rec->list); 398 sk_msg_free(sk, &rec->msg_plaintext); 399 kfree(rec); 400 } 401 402 /* Tx all ready records */ 403 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 404 if (READ_ONCE(rec->tx_ready)) { 405 if (flags == -1) 406 tx_flags = rec->tx_flags; 407 else 408 tx_flags = flags; 409 410 msg_en = &rec->msg_encrypted; 411 rc = tls_push_sg(sk, tls_ctx, 412 &msg_en->sg.data[msg_en->sg.curr], 413 0, tx_flags); 414 if (rc) 415 goto tx_err; 416 417 list_del(&rec->list); 418 sk_msg_free(sk, &rec->msg_plaintext); 419 kfree(rec); 420 } else { 421 break; 422 } 423 } 424 425 tx_err: 426 if (rc < 0 && rc != -EAGAIN) 427 tls_err_abort(sk, -EBADMSG); 428 429 return rc; 430 } 431 432 static void tls_encrypt_done(void *data, int err) 433 { 434 struct tls_sw_context_tx *ctx; 435 struct tls_context *tls_ctx; 436 struct tls_prot_info *prot; 437 struct tls_rec *rec = data; 438 struct scatterlist *sge; 439 struct sk_msg *msg_en; 440 bool ready = false; 441 struct sock *sk; 442 int pending; 443 444 msg_en = &rec->msg_encrypted; 445 446 sk = rec->sk; 447 tls_ctx = tls_get_ctx(sk); 448 prot = &tls_ctx->prot_info; 449 ctx = tls_sw_ctx_tx(tls_ctx); 450 451 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 452 sge->offset -= prot->prepend_size; 453 sge->length += prot->prepend_size; 454 455 /* Check if error is previously set on socket */ 456 if (err || sk->sk_err) { 457 rec = NULL; 458 459 /* If err is already set on socket, return the same code */ 460 if (sk->sk_err) { 461 ctx->async_wait.err = -sk->sk_err; 462 } else { 463 ctx->async_wait.err = err; 464 tls_err_abort(sk, err); 465 } 466 } 467 468 if (rec) { 469 struct tls_rec *first_rec; 470 471 /* Mark the record as ready for transmission */ 472 smp_store_mb(rec->tx_ready, true); 473 474 /* If received record is at head of tx_list, schedule tx */ 475 first_rec = list_first_entry(&ctx->tx_list, 476 struct tls_rec, list); 477 if (rec == first_rec) 478 ready = true; 479 } 480 481 spin_lock_bh(&ctx->encrypt_compl_lock); 482 pending = atomic_dec_return(&ctx->encrypt_pending); 483 484 if (!pending && ctx->async_notify) 485 complete(&ctx->async_wait.completion); 486 spin_unlock_bh(&ctx->encrypt_compl_lock); 487 488 if (!ready) 489 return; 490 491 /* Schedule the transmission */ 492 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 493 schedule_delayed_work(&ctx->tx_work.work, 1); 494 } 495 496 static int tls_do_encryption(struct sock *sk, 497 struct tls_context *tls_ctx, 498 struct tls_sw_context_tx *ctx, 499 struct aead_request *aead_req, 500 size_t data_len, u32 start) 501 { 502 struct tls_prot_info *prot = &tls_ctx->prot_info; 503 struct tls_rec *rec = ctx->open_rec; 504 struct sk_msg *msg_en = &rec->msg_encrypted; 505 struct scatterlist *sge = sk_msg_elem(msg_en, start); 506 int rc, iv_offset = 0; 507 508 /* For CCM based ciphers, first byte of IV is a constant */ 509 switch (prot->cipher_type) { 510 case TLS_CIPHER_AES_CCM_128: 511 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 512 iv_offset = 1; 513 break; 514 case TLS_CIPHER_SM4_CCM: 515 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; 516 iv_offset = 1; 517 break; 518 } 519 520 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 521 prot->iv_size + prot->salt_size); 522 523 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, 524 tls_ctx->tx.rec_seq); 525 526 sge->offset += prot->prepend_size; 527 sge->length -= prot->prepend_size; 528 529 msg_en->sg.curr = start; 530 531 aead_request_set_tfm(aead_req, ctx->aead_send); 532 aead_request_set_ad(aead_req, prot->aad_size); 533 aead_request_set_crypt(aead_req, rec->sg_aead_in, 534 rec->sg_aead_out, 535 data_len, rec->iv_data); 536 537 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 538 tls_encrypt_done, rec); 539 540 /* Add the record in tx_list */ 541 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 542 atomic_inc(&ctx->encrypt_pending); 543 544 rc = crypto_aead_encrypt(aead_req); 545 if (!rc || rc != -EINPROGRESS) { 546 atomic_dec(&ctx->encrypt_pending); 547 sge->offset -= prot->prepend_size; 548 sge->length += prot->prepend_size; 549 } 550 551 if (!rc) { 552 WRITE_ONCE(rec->tx_ready, true); 553 } else if (rc != -EINPROGRESS) { 554 list_del(&rec->list); 555 return rc; 556 } 557 558 /* Unhook the record from context if encryption is not failure */ 559 ctx->open_rec = NULL; 560 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 561 return rc; 562 } 563 564 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 565 struct tls_rec **to, struct sk_msg *msg_opl, 566 struct sk_msg *msg_oen, u32 split_point, 567 u32 tx_overhead_size, u32 *orig_end) 568 { 569 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 570 struct scatterlist *sge, *osge, *nsge; 571 u32 orig_size = msg_opl->sg.size; 572 struct scatterlist tmp = { }; 573 struct sk_msg *msg_npl; 574 struct tls_rec *new; 575 int ret; 576 577 new = tls_get_rec(sk); 578 if (!new) 579 return -ENOMEM; 580 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 581 tx_overhead_size, 0); 582 if (ret < 0) { 583 tls_free_rec(sk, new); 584 return ret; 585 } 586 587 *orig_end = msg_opl->sg.end; 588 i = msg_opl->sg.start; 589 sge = sk_msg_elem(msg_opl, i); 590 while (apply && sge->length) { 591 if (sge->length > apply) { 592 u32 len = sge->length - apply; 593 594 get_page(sg_page(sge)); 595 sg_set_page(&tmp, sg_page(sge), len, 596 sge->offset + apply); 597 sge->length = apply; 598 bytes += apply; 599 apply = 0; 600 } else { 601 apply -= sge->length; 602 bytes += sge->length; 603 } 604 605 sk_msg_iter_var_next(i); 606 if (i == msg_opl->sg.end) 607 break; 608 sge = sk_msg_elem(msg_opl, i); 609 } 610 611 msg_opl->sg.end = i; 612 msg_opl->sg.curr = i; 613 msg_opl->sg.copybreak = 0; 614 msg_opl->apply_bytes = 0; 615 msg_opl->sg.size = bytes; 616 617 msg_npl = &new->msg_plaintext; 618 msg_npl->apply_bytes = apply; 619 msg_npl->sg.size = orig_size - bytes; 620 621 j = msg_npl->sg.start; 622 nsge = sk_msg_elem(msg_npl, j); 623 if (tmp.length) { 624 memcpy(nsge, &tmp, sizeof(*nsge)); 625 sk_msg_iter_var_next(j); 626 nsge = sk_msg_elem(msg_npl, j); 627 } 628 629 osge = sk_msg_elem(msg_opl, i); 630 while (osge->length) { 631 memcpy(nsge, osge, sizeof(*nsge)); 632 sg_unmark_end(nsge); 633 sk_msg_iter_var_next(i); 634 sk_msg_iter_var_next(j); 635 if (i == *orig_end) 636 break; 637 osge = sk_msg_elem(msg_opl, i); 638 nsge = sk_msg_elem(msg_npl, j); 639 } 640 641 msg_npl->sg.end = j; 642 msg_npl->sg.curr = j; 643 msg_npl->sg.copybreak = 0; 644 645 *to = new; 646 return 0; 647 } 648 649 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 650 struct tls_rec *from, u32 orig_end) 651 { 652 struct sk_msg *msg_npl = &from->msg_plaintext; 653 struct sk_msg *msg_opl = &to->msg_plaintext; 654 struct scatterlist *osge, *nsge; 655 u32 i, j; 656 657 i = msg_opl->sg.end; 658 sk_msg_iter_var_prev(i); 659 j = msg_npl->sg.start; 660 661 osge = sk_msg_elem(msg_opl, i); 662 nsge = sk_msg_elem(msg_npl, j); 663 664 if (sg_page(osge) == sg_page(nsge) && 665 osge->offset + osge->length == nsge->offset) { 666 osge->length += nsge->length; 667 put_page(sg_page(nsge)); 668 } 669 670 msg_opl->sg.end = orig_end; 671 msg_opl->sg.curr = orig_end; 672 msg_opl->sg.copybreak = 0; 673 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 674 msg_opl->sg.size += msg_npl->sg.size; 675 676 sk_msg_free(sk, &to->msg_encrypted); 677 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 678 679 kfree(from); 680 } 681 682 static int tls_push_record(struct sock *sk, int flags, 683 unsigned char record_type) 684 { 685 struct tls_context *tls_ctx = tls_get_ctx(sk); 686 struct tls_prot_info *prot = &tls_ctx->prot_info; 687 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 688 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 689 u32 i, split_point, orig_end; 690 struct sk_msg *msg_pl, *msg_en; 691 struct aead_request *req; 692 bool split; 693 int rc; 694 695 if (!rec) 696 return 0; 697 698 msg_pl = &rec->msg_plaintext; 699 msg_en = &rec->msg_encrypted; 700 701 split_point = msg_pl->apply_bytes; 702 split = split_point && split_point < msg_pl->sg.size; 703 if (unlikely((!split && 704 msg_pl->sg.size + 705 prot->overhead_size > msg_en->sg.size) || 706 (split && 707 split_point + 708 prot->overhead_size > msg_en->sg.size))) { 709 split = true; 710 split_point = msg_en->sg.size; 711 } 712 if (split) { 713 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 714 split_point, prot->overhead_size, 715 &orig_end); 716 if (rc < 0) 717 return rc; 718 /* This can happen if above tls_split_open_record allocates 719 * a single large encryption buffer instead of two smaller 720 * ones. In this case adjust pointers and continue without 721 * split. 722 */ 723 if (!msg_pl->sg.size) { 724 tls_merge_open_record(sk, rec, tmp, orig_end); 725 msg_pl = &rec->msg_plaintext; 726 msg_en = &rec->msg_encrypted; 727 split = false; 728 } 729 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 730 prot->overhead_size); 731 } 732 733 rec->tx_flags = flags; 734 req = &rec->aead_req; 735 736 i = msg_pl->sg.end; 737 sk_msg_iter_var_prev(i); 738 739 rec->content_type = record_type; 740 if (prot->version == TLS_1_3_VERSION) { 741 /* Add content type to end of message. No padding added */ 742 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 743 sg_mark_end(&rec->sg_content_type); 744 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 745 &rec->sg_content_type); 746 } else { 747 sg_mark_end(sk_msg_elem(msg_pl, i)); 748 } 749 750 if (msg_pl->sg.end < msg_pl->sg.start) { 751 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 752 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 753 msg_pl->sg.data); 754 } 755 756 i = msg_pl->sg.start; 757 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 758 759 i = msg_en->sg.end; 760 sk_msg_iter_var_prev(i); 761 sg_mark_end(sk_msg_elem(msg_en, i)); 762 763 i = msg_en->sg.start; 764 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 765 766 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 767 tls_ctx->tx.rec_seq, record_type, prot); 768 769 tls_fill_prepend(tls_ctx, 770 page_address(sg_page(&msg_en->sg.data[i])) + 771 msg_en->sg.data[i].offset, 772 msg_pl->sg.size + prot->tail_size, 773 record_type); 774 775 tls_ctx->pending_open_record_frags = false; 776 777 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 778 msg_pl->sg.size + prot->tail_size, i); 779 if (rc < 0) { 780 if (rc != -EINPROGRESS) { 781 tls_err_abort(sk, -EBADMSG); 782 if (split) { 783 tls_ctx->pending_open_record_frags = true; 784 tls_merge_open_record(sk, rec, tmp, orig_end); 785 } 786 } 787 ctx->async_capable = 1; 788 return rc; 789 } else if (split) { 790 msg_pl = &tmp->msg_plaintext; 791 msg_en = &tmp->msg_encrypted; 792 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 793 tls_ctx->pending_open_record_frags = true; 794 ctx->open_rec = tmp; 795 } 796 797 return tls_tx_records(sk, flags); 798 } 799 800 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 801 bool full_record, u8 record_type, 802 ssize_t *copied, int flags) 803 { 804 struct tls_context *tls_ctx = tls_get_ctx(sk); 805 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 806 struct sk_msg msg_redir = { }; 807 struct sk_psock *psock; 808 struct sock *sk_redir; 809 struct tls_rec *rec; 810 bool enospc, policy, redir_ingress; 811 int err = 0, send; 812 u32 delta = 0; 813 814 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 815 psock = sk_psock_get(sk); 816 if (!psock || !policy) { 817 err = tls_push_record(sk, flags, record_type); 818 if (err && sk->sk_err == EBADMSG) { 819 *copied -= sk_msg_free(sk, msg); 820 tls_free_open_rec(sk); 821 err = -sk->sk_err; 822 } 823 if (psock) 824 sk_psock_put(sk, psock); 825 return err; 826 } 827 more_data: 828 enospc = sk_msg_full(msg); 829 if (psock->eval == __SK_NONE) { 830 delta = msg->sg.size; 831 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 832 delta -= msg->sg.size; 833 } 834 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 835 !enospc && !full_record) { 836 err = -ENOSPC; 837 goto out_err; 838 } 839 msg->cork_bytes = 0; 840 send = msg->sg.size; 841 if (msg->apply_bytes && msg->apply_bytes < send) 842 send = msg->apply_bytes; 843 844 switch (psock->eval) { 845 case __SK_PASS: 846 err = tls_push_record(sk, flags, record_type); 847 if (err && sk->sk_err == EBADMSG) { 848 *copied -= sk_msg_free(sk, msg); 849 tls_free_open_rec(sk); 850 err = -sk->sk_err; 851 goto out_err; 852 } 853 break; 854 case __SK_REDIRECT: 855 redir_ingress = psock->redir_ingress; 856 sk_redir = psock->sk_redir; 857 memcpy(&msg_redir, msg, sizeof(*msg)); 858 if (msg->apply_bytes < send) 859 msg->apply_bytes = 0; 860 else 861 msg->apply_bytes -= send; 862 sk_msg_return_zero(sk, msg, send); 863 msg->sg.size -= send; 864 release_sock(sk); 865 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, 866 &msg_redir, send, flags); 867 lock_sock(sk); 868 if (err < 0) { 869 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 870 msg->sg.size = 0; 871 } 872 if (msg->sg.size == 0) 873 tls_free_open_rec(sk); 874 break; 875 case __SK_DROP: 876 default: 877 sk_msg_free_partial(sk, msg, send); 878 if (msg->apply_bytes < send) 879 msg->apply_bytes = 0; 880 else 881 msg->apply_bytes -= send; 882 if (msg->sg.size == 0) 883 tls_free_open_rec(sk); 884 *copied -= (send + delta); 885 err = -EACCES; 886 } 887 888 if (likely(!err)) { 889 bool reset_eval = !ctx->open_rec; 890 891 rec = ctx->open_rec; 892 if (rec) { 893 msg = &rec->msg_plaintext; 894 if (!msg->apply_bytes) 895 reset_eval = true; 896 } 897 if (reset_eval) { 898 psock->eval = __SK_NONE; 899 if (psock->sk_redir) { 900 sock_put(psock->sk_redir); 901 psock->sk_redir = NULL; 902 } 903 } 904 if (rec) 905 goto more_data; 906 } 907 out_err: 908 sk_psock_put(sk, psock); 909 return err; 910 } 911 912 static int tls_sw_push_pending_record(struct sock *sk, int flags) 913 { 914 struct tls_context *tls_ctx = tls_get_ctx(sk); 915 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 916 struct tls_rec *rec = ctx->open_rec; 917 struct sk_msg *msg_pl; 918 size_t copied; 919 920 if (!rec) 921 return 0; 922 923 msg_pl = &rec->msg_plaintext; 924 copied = msg_pl->sg.size; 925 if (!copied) 926 return 0; 927 928 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 929 &copied, flags); 930 } 931 932 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 933 { 934 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 935 struct tls_context *tls_ctx = tls_get_ctx(sk); 936 struct tls_prot_info *prot = &tls_ctx->prot_info; 937 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 938 bool async_capable = ctx->async_capable; 939 unsigned char record_type = TLS_RECORD_TYPE_DATA; 940 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 941 bool eor = !(msg->msg_flags & MSG_MORE); 942 size_t try_to_copy; 943 ssize_t copied = 0; 944 struct sk_msg *msg_pl, *msg_en; 945 struct tls_rec *rec; 946 int required_size; 947 int num_async = 0; 948 bool full_record; 949 int record_room; 950 int num_zc = 0; 951 int orig_size; 952 int ret = 0; 953 int pending; 954 955 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 956 MSG_CMSG_COMPAT)) 957 return -EOPNOTSUPP; 958 959 ret = mutex_lock_interruptible(&tls_ctx->tx_lock); 960 if (ret) 961 return ret; 962 lock_sock(sk); 963 964 if (unlikely(msg->msg_controllen)) { 965 ret = tls_process_cmsg(sk, msg, &record_type); 966 if (ret) { 967 if (ret == -EINPROGRESS) 968 num_async++; 969 else if (ret != -EAGAIN) 970 goto send_end; 971 } 972 } 973 974 while (msg_data_left(msg)) { 975 if (sk->sk_err) { 976 ret = -sk->sk_err; 977 goto send_end; 978 } 979 980 if (ctx->open_rec) 981 rec = ctx->open_rec; 982 else 983 rec = ctx->open_rec = tls_get_rec(sk); 984 if (!rec) { 985 ret = -ENOMEM; 986 goto send_end; 987 } 988 989 msg_pl = &rec->msg_plaintext; 990 msg_en = &rec->msg_encrypted; 991 992 orig_size = msg_pl->sg.size; 993 full_record = false; 994 try_to_copy = msg_data_left(msg); 995 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 996 if (try_to_copy >= record_room) { 997 try_to_copy = record_room; 998 full_record = true; 999 } 1000 1001 required_size = msg_pl->sg.size + try_to_copy + 1002 prot->overhead_size; 1003 1004 if (!sk_stream_memory_free(sk)) 1005 goto wait_for_sndbuf; 1006 1007 alloc_encrypted: 1008 ret = tls_alloc_encrypted_msg(sk, required_size); 1009 if (ret) { 1010 if (ret != -ENOSPC) 1011 goto wait_for_memory; 1012 1013 /* Adjust try_to_copy according to the amount that was 1014 * actually allocated. The difference is due 1015 * to max sg elements limit 1016 */ 1017 try_to_copy -= required_size - msg_en->sg.size; 1018 full_record = true; 1019 } 1020 1021 if (!is_kvec && (full_record || eor) && !async_capable) { 1022 u32 first = msg_pl->sg.end; 1023 1024 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1025 msg_pl, try_to_copy); 1026 if (ret) 1027 goto fallback_to_reg_send; 1028 1029 num_zc++; 1030 copied += try_to_copy; 1031 1032 sk_msg_sg_copy_set(msg_pl, first); 1033 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1034 record_type, &copied, 1035 msg->msg_flags); 1036 if (ret) { 1037 if (ret == -EINPROGRESS) 1038 num_async++; 1039 else if (ret == -ENOMEM) 1040 goto wait_for_memory; 1041 else if (ctx->open_rec && ret == -ENOSPC) 1042 goto rollback_iter; 1043 else if (ret != -EAGAIN) 1044 goto send_end; 1045 } 1046 continue; 1047 rollback_iter: 1048 copied -= try_to_copy; 1049 sk_msg_sg_copy_clear(msg_pl, first); 1050 iov_iter_revert(&msg->msg_iter, 1051 msg_pl->sg.size - orig_size); 1052 fallback_to_reg_send: 1053 sk_msg_trim(sk, msg_pl, orig_size); 1054 } 1055 1056 required_size = msg_pl->sg.size + try_to_copy; 1057 1058 ret = tls_clone_plaintext_msg(sk, required_size); 1059 if (ret) { 1060 if (ret != -ENOSPC) 1061 goto send_end; 1062 1063 /* Adjust try_to_copy according to the amount that was 1064 * actually allocated. The difference is due 1065 * to max sg elements limit 1066 */ 1067 try_to_copy -= required_size - msg_pl->sg.size; 1068 full_record = true; 1069 sk_msg_trim(sk, msg_en, 1070 msg_pl->sg.size + prot->overhead_size); 1071 } 1072 1073 if (try_to_copy) { 1074 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1075 msg_pl, try_to_copy); 1076 if (ret < 0) 1077 goto trim_sgl; 1078 } 1079 1080 /* Open records defined only if successfully copied, otherwise 1081 * we would trim the sg but not reset the open record frags. 1082 */ 1083 tls_ctx->pending_open_record_frags = true; 1084 copied += try_to_copy; 1085 if (full_record || eor) { 1086 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1087 record_type, &copied, 1088 msg->msg_flags); 1089 if (ret) { 1090 if (ret == -EINPROGRESS) 1091 num_async++; 1092 else if (ret == -ENOMEM) 1093 goto wait_for_memory; 1094 else if (ret != -EAGAIN) { 1095 if (ret == -ENOSPC) 1096 ret = 0; 1097 goto send_end; 1098 } 1099 } 1100 } 1101 1102 continue; 1103 1104 wait_for_sndbuf: 1105 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1106 wait_for_memory: 1107 ret = sk_stream_wait_memory(sk, &timeo); 1108 if (ret) { 1109 trim_sgl: 1110 if (ctx->open_rec) 1111 tls_trim_both_msgs(sk, orig_size); 1112 goto send_end; 1113 } 1114 1115 if (ctx->open_rec && msg_en->sg.size < required_size) 1116 goto alloc_encrypted; 1117 } 1118 1119 if (!num_async) { 1120 goto send_end; 1121 } else if (num_zc) { 1122 /* Wait for pending encryptions to get completed */ 1123 spin_lock_bh(&ctx->encrypt_compl_lock); 1124 ctx->async_notify = true; 1125 1126 pending = atomic_read(&ctx->encrypt_pending); 1127 spin_unlock_bh(&ctx->encrypt_compl_lock); 1128 if (pending) 1129 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1130 else 1131 reinit_completion(&ctx->async_wait.completion); 1132 1133 /* There can be no concurrent accesses, since we have no 1134 * pending encrypt operations 1135 */ 1136 WRITE_ONCE(ctx->async_notify, false); 1137 1138 if (ctx->async_wait.err) { 1139 ret = ctx->async_wait.err; 1140 copied = 0; 1141 } 1142 } 1143 1144 /* Transmit if any encryptions have completed */ 1145 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1146 cancel_delayed_work(&ctx->tx_work.work); 1147 tls_tx_records(sk, msg->msg_flags); 1148 } 1149 1150 send_end: 1151 ret = sk_stream_error(sk, msg->msg_flags, ret); 1152 1153 release_sock(sk); 1154 mutex_unlock(&tls_ctx->tx_lock); 1155 return copied > 0 ? copied : ret; 1156 } 1157 1158 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1159 int offset, size_t size, int flags) 1160 { 1161 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1162 struct tls_context *tls_ctx = tls_get_ctx(sk); 1163 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1164 struct tls_prot_info *prot = &tls_ctx->prot_info; 1165 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1166 struct sk_msg *msg_pl; 1167 struct tls_rec *rec; 1168 int num_async = 0; 1169 ssize_t copied = 0; 1170 bool full_record; 1171 int record_room; 1172 int ret = 0; 1173 bool eor; 1174 1175 eor = !(flags & MSG_SENDPAGE_NOTLAST); 1176 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1177 1178 /* Call the sk_stream functions to manage the sndbuf mem. */ 1179 while (size > 0) { 1180 size_t copy, required_size; 1181 1182 if (sk->sk_err) { 1183 ret = -sk->sk_err; 1184 goto sendpage_end; 1185 } 1186 1187 if (ctx->open_rec) 1188 rec = ctx->open_rec; 1189 else 1190 rec = ctx->open_rec = tls_get_rec(sk); 1191 if (!rec) { 1192 ret = -ENOMEM; 1193 goto sendpage_end; 1194 } 1195 1196 msg_pl = &rec->msg_plaintext; 1197 1198 full_record = false; 1199 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1200 copy = size; 1201 if (copy >= record_room) { 1202 copy = record_room; 1203 full_record = true; 1204 } 1205 1206 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1207 1208 if (!sk_stream_memory_free(sk)) 1209 goto wait_for_sndbuf; 1210 alloc_payload: 1211 ret = tls_alloc_encrypted_msg(sk, required_size); 1212 if (ret) { 1213 if (ret != -ENOSPC) 1214 goto wait_for_memory; 1215 1216 /* Adjust copy according to the amount that was 1217 * actually allocated. The difference is due 1218 * to max sg elements limit 1219 */ 1220 copy -= required_size - msg_pl->sg.size; 1221 full_record = true; 1222 } 1223 1224 sk_msg_page_add(msg_pl, page, copy, offset); 1225 sk_mem_charge(sk, copy); 1226 1227 offset += copy; 1228 size -= copy; 1229 copied += copy; 1230 1231 tls_ctx->pending_open_record_frags = true; 1232 if (full_record || eor || sk_msg_full(msg_pl)) { 1233 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1234 record_type, &copied, flags); 1235 if (ret) { 1236 if (ret == -EINPROGRESS) 1237 num_async++; 1238 else if (ret == -ENOMEM) 1239 goto wait_for_memory; 1240 else if (ret != -EAGAIN) { 1241 if (ret == -ENOSPC) 1242 ret = 0; 1243 goto sendpage_end; 1244 } 1245 } 1246 } 1247 continue; 1248 wait_for_sndbuf: 1249 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1250 wait_for_memory: 1251 ret = sk_stream_wait_memory(sk, &timeo); 1252 if (ret) { 1253 if (ctx->open_rec) 1254 tls_trim_both_msgs(sk, msg_pl->sg.size); 1255 goto sendpage_end; 1256 } 1257 1258 if (ctx->open_rec) 1259 goto alloc_payload; 1260 } 1261 1262 if (num_async) { 1263 /* Transmit if any encryptions have completed */ 1264 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1265 cancel_delayed_work(&ctx->tx_work.work); 1266 tls_tx_records(sk, flags); 1267 } 1268 } 1269 sendpage_end: 1270 ret = sk_stream_error(sk, flags, ret); 1271 return copied > 0 ? copied : ret; 1272 } 1273 1274 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 1275 int offset, size_t size, int flags) 1276 { 1277 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1278 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | 1279 MSG_NO_SHARED_FRAGS)) 1280 return -EOPNOTSUPP; 1281 1282 return tls_sw_do_sendpage(sk, page, offset, size, flags); 1283 } 1284 1285 int tls_sw_sendpage(struct sock *sk, struct page *page, 1286 int offset, size_t size, int flags) 1287 { 1288 struct tls_context *tls_ctx = tls_get_ctx(sk); 1289 int ret; 1290 1291 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1292 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1293 return -EOPNOTSUPP; 1294 1295 ret = mutex_lock_interruptible(&tls_ctx->tx_lock); 1296 if (ret) 1297 return ret; 1298 lock_sock(sk); 1299 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1300 release_sock(sk); 1301 mutex_unlock(&tls_ctx->tx_lock); 1302 return ret; 1303 } 1304 1305 static int 1306 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, 1307 bool released) 1308 { 1309 struct tls_context *tls_ctx = tls_get_ctx(sk); 1310 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1311 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1312 long timeo; 1313 1314 timeo = sock_rcvtimeo(sk, nonblock); 1315 1316 while (!tls_strp_msg_ready(ctx)) { 1317 if (!sk_psock_queue_empty(psock)) 1318 return 0; 1319 1320 if (sk->sk_err) 1321 return sock_error(sk); 1322 1323 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1324 tls_strp_check_rcv(&ctx->strp); 1325 if (tls_strp_msg_ready(ctx)) 1326 break; 1327 } 1328 1329 if (sk->sk_shutdown & RCV_SHUTDOWN) 1330 return 0; 1331 1332 if (sock_flag(sk, SOCK_DONE)) 1333 return 0; 1334 1335 if (!timeo) 1336 return -EAGAIN; 1337 1338 released = true; 1339 add_wait_queue(sk_sleep(sk), &wait); 1340 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1341 sk_wait_event(sk, &timeo, 1342 tls_strp_msg_ready(ctx) || 1343 !sk_psock_queue_empty(psock), 1344 &wait); 1345 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1346 remove_wait_queue(sk_sleep(sk), &wait); 1347 1348 /* Handle signals */ 1349 if (signal_pending(current)) 1350 return sock_intr_errno(timeo); 1351 } 1352 1353 tls_strp_msg_load(&ctx->strp, released); 1354 1355 return 1; 1356 } 1357 1358 static int tls_setup_from_iter(struct iov_iter *from, 1359 int length, int *pages_used, 1360 struct scatterlist *to, 1361 int to_max_pages) 1362 { 1363 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1364 struct page *pages[MAX_SKB_FRAGS]; 1365 unsigned int size = 0; 1366 ssize_t copied, use; 1367 size_t offset; 1368 1369 while (length > 0) { 1370 i = 0; 1371 maxpages = to_max_pages - num_elem; 1372 if (maxpages == 0) { 1373 rc = -EFAULT; 1374 goto out; 1375 } 1376 copied = iov_iter_get_pages2(from, pages, 1377 length, 1378 maxpages, &offset); 1379 if (copied <= 0) { 1380 rc = -EFAULT; 1381 goto out; 1382 } 1383 1384 length -= copied; 1385 size += copied; 1386 while (copied) { 1387 use = min_t(int, copied, PAGE_SIZE - offset); 1388 1389 sg_set_page(&to[num_elem], 1390 pages[i], use, offset); 1391 sg_unmark_end(&to[num_elem]); 1392 /* We do not uncharge memory from this API */ 1393 1394 offset = 0; 1395 copied -= use; 1396 1397 i++; 1398 num_elem++; 1399 } 1400 } 1401 /* Mark the end in the last sg entry if newly added */ 1402 if (num_elem > *pages_used) 1403 sg_mark_end(&to[num_elem - 1]); 1404 out: 1405 if (rc) 1406 iov_iter_revert(from, size); 1407 *pages_used = num_elem; 1408 1409 return rc; 1410 } 1411 1412 static struct sk_buff * 1413 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, 1414 unsigned int full_len) 1415 { 1416 struct strp_msg *clr_rxm; 1417 struct sk_buff *clr_skb; 1418 int err; 1419 1420 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, 1421 &err, sk->sk_allocation); 1422 if (!clr_skb) 1423 return NULL; 1424 1425 skb_copy_header(clr_skb, skb); 1426 clr_skb->len = full_len; 1427 clr_skb->data_len = full_len; 1428 1429 clr_rxm = strp_msg(clr_skb); 1430 clr_rxm->offset = 0; 1431 1432 return clr_skb; 1433 } 1434 1435 /* Decrypt handlers 1436 * 1437 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. 1438 * They must transform the darg in/out argument are as follows: 1439 * | Input | Output 1440 * ------------------------------------------------------------------- 1441 * zc | Zero-copy decrypt allowed | Zero-copy performed 1442 * async | Async decrypt allowed | Async crypto used / in progress 1443 * skb | * | Output skb 1444 * 1445 * If ZC decryption was performed darg.skb will point to the input skb. 1446 */ 1447 1448 /* This function decrypts the input skb into either out_iov or in out_sg 1449 * or in skb buffers itself. The input parameter 'darg->zc' indicates if 1450 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1451 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1452 * NULL, then the decryption happens inside skb buffers itself, i.e. 1453 * zero-copy gets disabled and 'darg->zc' is updated. 1454 */ 1455 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, 1456 struct scatterlist *out_sg, 1457 struct tls_decrypt_arg *darg) 1458 { 1459 struct tls_context *tls_ctx = tls_get_ctx(sk); 1460 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1461 struct tls_prot_info *prot = &tls_ctx->prot_info; 1462 int n_sgin, n_sgout, aead_size, err, pages = 0; 1463 struct sk_buff *skb = tls_strp_msg(ctx); 1464 const struct strp_msg *rxm = strp_msg(skb); 1465 const struct tls_msg *tlm = tls_msg(skb); 1466 struct aead_request *aead_req; 1467 struct scatterlist *sgin = NULL; 1468 struct scatterlist *sgout = NULL; 1469 const int data_len = rxm->full_len - prot->overhead_size; 1470 int tail_pages = !!prot->tail_size; 1471 struct tls_decrypt_ctx *dctx; 1472 struct sk_buff *clear_skb; 1473 int iv_offset = 0; 1474 u8 *mem; 1475 1476 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1477 rxm->full_len - prot->prepend_size); 1478 if (n_sgin < 1) 1479 return n_sgin ?: -EBADMSG; 1480 1481 if (darg->zc && (out_iov || out_sg)) { 1482 clear_skb = NULL; 1483 1484 if (out_iov) 1485 n_sgout = 1 + tail_pages + 1486 iov_iter_npages_cap(out_iov, INT_MAX, data_len); 1487 else 1488 n_sgout = sg_nents(out_sg); 1489 } else { 1490 darg->zc = false; 1491 1492 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); 1493 if (!clear_skb) 1494 return -ENOMEM; 1495 1496 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; 1497 } 1498 1499 /* Increment to accommodate AAD */ 1500 n_sgin = n_sgin + 1; 1501 1502 /* Allocate a single block of memory which contains 1503 * aead_req || tls_decrypt_ctx. 1504 * Both structs are variable length. 1505 */ 1506 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1507 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 1508 mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout), 1509 sk->sk_allocation); 1510 if (!mem) { 1511 err = -ENOMEM; 1512 goto exit_free_skb; 1513 } 1514 1515 /* Segment the allocated memory */ 1516 aead_req = (struct aead_request *)mem; 1517 dctx = (struct tls_decrypt_ctx *)(mem + aead_size); 1518 dctx->sk = sk; 1519 sgin = &dctx->sg[0]; 1520 sgout = &dctx->sg[n_sgin]; 1521 1522 /* For CCM based ciphers, first byte of nonce+iv is a constant */ 1523 switch (prot->cipher_type) { 1524 case TLS_CIPHER_AES_CCM_128: 1525 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; 1526 iv_offset = 1; 1527 break; 1528 case TLS_CIPHER_SM4_CCM: 1529 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; 1530 iv_offset = 1; 1531 break; 1532 } 1533 1534 /* Prepare IV */ 1535 if (prot->version == TLS_1_3_VERSION || 1536 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 1537 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, 1538 prot->iv_size + prot->salt_size); 1539 } else { 1540 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1541 &dctx->iv[iv_offset] + prot->salt_size, 1542 prot->iv_size); 1543 if (err < 0) 1544 goto exit_free; 1545 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); 1546 } 1547 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); 1548 1549 /* Prepare AAD */ 1550 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + 1551 prot->tail_size, 1552 tls_ctx->rx.rec_seq, tlm->control, prot); 1553 1554 /* Prepare sgin */ 1555 sg_init_table(sgin, n_sgin); 1556 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); 1557 err = skb_to_sgvec(skb, &sgin[1], 1558 rxm->offset + prot->prepend_size, 1559 rxm->full_len - prot->prepend_size); 1560 if (err < 0) 1561 goto exit_free; 1562 1563 if (clear_skb) { 1564 sg_init_table(sgout, n_sgout); 1565 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1566 1567 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, 1568 data_len + prot->tail_size); 1569 if (err < 0) 1570 goto exit_free; 1571 } else if (out_iov) { 1572 sg_init_table(sgout, n_sgout); 1573 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1574 1575 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], 1576 (n_sgout - 1 - tail_pages)); 1577 if (err < 0) 1578 goto exit_free_pages; 1579 1580 if (prot->tail_size) { 1581 sg_unmark_end(&sgout[pages]); 1582 sg_set_buf(&sgout[pages + 1], &dctx->tail, 1583 prot->tail_size); 1584 sg_mark_end(&sgout[pages + 1]); 1585 } 1586 } else if (out_sg) { 1587 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1588 } 1589 1590 /* Prepare and submit AEAD request */ 1591 err = tls_do_decryption(sk, sgin, sgout, dctx->iv, 1592 data_len + prot->tail_size, aead_req, darg); 1593 if (err) 1594 goto exit_free_pages; 1595 1596 darg->skb = clear_skb ?: tls_strp_msg(ctx); 1597 clear_skb = NULL; 1598 1599 if (unlikely(darg->async)) { 1600 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); 1601 if (err) 1602 __skb_queue_tail(&ctx->async_hold, darg->skb); 1603 return err; 1604 } 1605 1606 if (prot->tail_size) 1607 darg->tail = dctx->tail; 1608 1609 exit_free_pages: 1610 /* Release the pages in case iov was mapped to pages */ 1611 for (; pages > 0; pages--) 1612 put_page(sg_page(&sgout[pages])); 1613 exit_free: 1614 kfree(mem); 1615 exit_free_skb: 1616 consume_skb(clear_skb); 1617 return err; 1618 } 1619 1620 static int 1621 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, 1622 struct msghdr *msg, struct tls_decrypt_arg *darg) 1623 { 1624 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1625 struct tls_prot_info *prot = &tls_ctx->prot_info; 1626 struct strp_msg *rxm; 1627 int pad, err; 1628 1629 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); 1630 if (err < 0) { 1631 if (err == -EBADMSG) 1632 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 1633 return err; 1634 } 1635 /* keep going even for ->async, the code below is TLS 1.3 */ 1636 1637 /* If opportunistic TLS 1.3 ZC failed retry without ZC */ 1638 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && 1639 darg->tail != TLS_RECORD_TYPE_DATA)) { 1640 darg->zc = false; 1641 if (!darg->tail) 1642 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); 1643 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); 1644 return tls_decrypt_sw(sk, tls_ctx, msg, darg); 1645 } 1646 1647 pad = tls_padding_length(prot, darg->skb, darg); 1648 if (pad < 0) { 1649 if (darg->skb != tls_strp_msg(ctx)) 1650 consume_skb(darg->skb); 1651 return pad; 1652 } 1653 1654 rxm = strp_msg(darg->skb); 1655 rxm->full_len -= pad; 1656 1657 return 0; 1658 } 1659 1660 static int 1661 tls_decrypt_device(struct sock *sk, struct msghdr *msg, 1662 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) 1663 { 1664 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1665 struct tls_prot_info *prot = &tls_ctx->prot_info; 1666 struct strp_msg *rxm; 1667 int pad, err; 1668 1669 if (tls_ctx->rx_conf != TLS_HW) 1670 return 0; 1671 1672 err = tls_device_decrypted(sk, tls_ctx); 1673 if (err <= 0) 1674 return err; 1675 1676 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); 1677 if (pad < 0) 1678 return pad; 1679 1680 darg->async = false; 1681 darg->skb = tls_strp_msg(ctx); 1682 /* ->zc downgrade check, in case TLS 1.3 gets here */ 1683 darg->zc &= !(prot->version == TLS_1_3_VERSION && 1684 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); 1685 1686 rxm = strp_msg(darg->skb); 1687 rxm->full_len -= pad; 1688 1689 if (!darg->zc) { 1690 /* Non-ZC case needs a real skb */ 1691 darg->skb = tls_strp_msg_detach(ctx); 1692 if (!darg->skb) 1693 return -ENOMEM; 1694 } else { 1695 unsigned int off, len; 1696 1697 /* In ZC case nobody cares about the output skb. 1698 * Just copy the data here. Note the skb is not fully trimmed. 1699 */ 1700 off = rxm->offset + prot->prepend_size; 1701 len = rxm->full_len - prot->overhead_size; 1702 1703 err = skb_copy_datagram_msg(darg->skb, off, msg, len); 1704 if (err) 1705 return err; 1706 } 1707 return 1; 1708 } 1709 1710 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, 1711 struct tls_decrypt_arg *darg) 1712 { 1713 struct tls_context *tls_ctx = tls_get_ctx(sk); 1714 struct tls_prot_info *prot = &tls_ctx->prot_info; 1715 struct strp_msg *rxm; 1716 int err; 1717 1718 err = tls_decrypt_device(sk, msg, tls_ctx, darg); 1719 if (!err) 1720 err = tls_decrypt_sw(sk, tls_ctx, msg, darg); 1721 if (err < 0) 1722 return err; 1723 1724 rxm = strp_msg(darg->skb); 1725 rxm->offset += prot->prepend_size; 1726 rxm->full_len -= prot->overhead_size; 1727 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1728 1729 return 0; 1730 } 1731 1732 int decrypt_skb(struct sock *sk, struct scatterlist *sgout) 1733 { 1734 struct tls_decrypt_arg darg = { .zc = true, }; 1735 1736 return tls_decrypt_sg(sk, NULL, sgout, &darg); 1737 } 1738 1739 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, 1740 u8 *control) 1741 { 1742 int err; 1743 1744 if (!*control) { 1745 *control = tlm->control; 1746 if (!*control) 1747 return -EBADMSG; 1748 1749 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1750 sizeof(*control), control); 1751 if (*control != TLS_RECORD_TYPE_DATA) { 1752 if (err || msg->msg_flags & MSG_CTRUNC) 1753 return -EIO; 1754 } 1755 } else if (*control != tlm->control) { 1756 return 0; 1757 } 1758 1759 return 1; 1760 } 1761 1762 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) 1763 { 1764 tls_strp_msg_done(&ctx->strp); 1765 } 1766 1767 /* This function traverses the rx_list in tls receive context to copies the 1768 * decrypted records into the buffer provided by caller zero copy is not 1769 * true. Further, the records are removed from the rx_list if it is not a peek 1770 * case and the record has been consumed completely. 1771 */ 1772 static int process_rx_list(struct tls_sw_context_rx *ctx, 1773 struct msghdr *msg, 1774 u8 *control, 1775 size_t skip, 1776 size_t len, 1777 bool is_peek) 1778 { 1779 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1780 struct tls_msg *tlm; 1781 ssize_t copied = 0; 1782 int err; 1783 1784 while (skip && skb) { 1785 struct strp_msg *rxm = strp_msg(skb); 1786 tlm = tls_msg(skb); 1787 1788 err = tls_record_content_type(msg, tlm, control); 1789 if (err <= 0) 1790 goto out; 1791 1792 if (skip < rxm->full_len) 1793 break; 1794 1795 skip = skip - rxm->full_len; 1796 skb = skb_peek_next(skb, &ctx->rx_list); 1797 } 1798 1799 while (len && skb) { 1800 struct sk_buff *next_skb; 1801 struct strp_msg *rxm = strp_msg(skb); 1802 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1803 1804 tlm = tls_msg(skb); 1805 1806 err = tls_record_content_type(msg, tlm, control); 1807 if (err <= 0) 1808 goto out; 1809 1810 err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1811 msg, chunk); 1812 if (err < 0) 1813 goto out; 1814 1815 len = len - chunk; 1816 copied = copied + chunk; 1817 1818 /* Consume the data from record if it is non-peek case*/ 1819 if (!is_peek) { 1820 rxm->offset = rxm->offset + chunk; 1821 rxm->full_len = rxm->full_len - chunk; 1822 1823 /* Return if there is unconsumed data in the record */ 1824 if (rxm->full_len - skip) 1825 break; 1826 } 1827 1828 /* The remaining skip-bytes must lie in 1st record in rx_list. 1829 * So from the 2nd record, 'skip' should be 0. 1830 */ 1831 skip = 0; 1832 1833 if (msg) 1834 msg->msg_flags |= MSG_EOR; 1835 1836 next_skb = skb_peek_next(skb, &ctx->rx_list); 1837 1838 if (!is_peek) { 1839 __skb_unlink(skb, &ctx->rx_list); 1840 consume_skb(skb); 1841 } 1842 1843 skb = next_skb; 1844 } 1845 err = 0; 1846 1847 out: 1848 return copied ? : err; 1849 } 1850 1851 static bool 1852 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, 1853 size_t len_left, size_t decrypted, ssize_t done, 1854 size_t *flushed_at) 1855 { 1856 size_t max_rec; 1857 1858 if (len_left <= decrypted) 1859 return false; 1860 1861 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; 1862 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) 1863 return false; 1864 1865 *flushed_at = done; 1866 return sk_flush_backlog(sk); 1867 } 1868 1869 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, 1870 bool nonblock) 1871 { 1872 long timeo; 1873 int err; 1874 1875 lock_sock(sk); 1876 1877 timeo = sock_rcvtimeo(sk, nonblock); 1878 1879 while (unlikely(ctx->reader_present)) { 1880 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1881 1882 ctx->reader_contended = 1; 1883 1884 add_wait_queue(&ctx->wq, &wait); 1885 sk_wait_event(sk, &timeo, 1886 !READ_ONCE(ctx->reader_present), &wait); 1887 remove_wait_queue(&ctx->wq, &wait); 1888 1889 if (timeo <= 0) { 1890 err = -EAGAIN; 1891 goto err_unlock; 1892 } 1893 if (signal_pending(current)) { 1894 err = sock_intr_errno(timeo); 1895 goto err_unlock; 1896 } 1897 } 1898 1899 WRITE_ONCE(ctx->reader_present, 1); 1900 1901 return 0; 1902 1903 err_unlock: 1904 release_sock(sk); 1905 return err; 1906 } 1907 1908 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) 1909 { 1910 if (unlikely(ctx->reader_contended)) { 1911 if (wq_has_sleeper(&ctx->wq)) 1912 wake_up(&ctx->wq); 1913 else 1914 ctx->reader_contended = 0; 1915 1916 WARN_ON_ONCE(!ctx->reader_present); 1917 } 1918 1919 WRITE_ONCE(ctx->reader_present, 0); 1920 release_sock(sk); 1921 } 1922 1923 int tls_sw_recvmsg(struct sock *sk, 1924 struct msghdr *msg, 1925 size_t len, 1926 int flags, 1927 int *addr_len) 1928 { 1929 struct tls_context *tls_ctx = tls_get_ctx(sk); 1930 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1931 struct tls_prot_info *prot = &tls_ctx->prot_info; 1932 ssize_t decrypted = 0, async_copy_bytes = 0; 1933 struct sk_psock *psock; 1934 unsigned char control = 0; 1935 size_t flushed_at = 0; 1936 struct strp_msg *rxm; 1937 struct tls_msg *tlm; 1938 ssize_t copied = 0; 1939 bool async = false; 1940 int target, err; 1941 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1942 bool is_peek = flags & MSG_PEEK; 1943 bool released = true; 1944 bool bpf_strp_enabled; 1945 bool zc_capable; 1946 1947 if (unlikely(flags & MSG_ERRQUEUE)) 1948 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1949 1950 psock = sk_psock_get(sk); 1951 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); 1952 if (err < 0) 1953 return err; 1954 bpf_strp_enabled = sk_psock_strp_enabled(psock); 1955 1956 /* If crypto failed the connection is broken */ 1957 err = ctx->async_wait.err; 1958 if (err) 1959 goto end; 1960 1961 /* Process pending decrypted records. It must be non-zero-copy */ 1962 err = process_rx_list(ctx, msg, &control, 0, len, is_peek); 1963 if (err < 0) 1964 goto end; 1965 1966 copied = err; 1967 if (len <= copied) 1968 goto end; 1969 1970 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1971 len = len - copied; 1972 1973 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && 1974 ctx->zc_capable; 1975 decrypted = 0; 1976 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { 1977 struct tls_decrypt_arg darg; 1978 int to_decrypt, chunk; 1979 1980 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, 1981 released); 1982 if (err <= 0) { 1983 if (psock) { 1984 chunk = sk_msg_recvmsg(sk, psock, msg, len, 1985 flags); 1986 if (chunk > 0) { 1987 decrypted += chunk; 1988 len -= chunk; 1989 continue; 1990 } 1991 } 1992 goto recv_end; 1993 } 1994 1995 memset(&darg.inargs, 0, sizeof(darg.inargs)); 1996 1997 rxm = strp_msg(tls_strp_msg(ctx)); 1998 tlm = tls_msg(tls_strp_msg(ctx)); 1999 2000 to_decrypt = rxm->full_len - prot->overhead_size; 2001 2002 if (zc_capable && to_decrypt <= len && 2003 tlm->control == TLS_RECORD_TYPE_DATA) 2004 darg.zc = true; 2005 2006 /* Do not use async mode if record is non-data */ 2007 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 2008 darg.async = ctx->async_capable; 2009 else 2010 darg.async = false; 2011 2012 err = tls_rx_one_record(sk, msg, &darg); 2013 if (err < 0) { 2014 tls_err_abort(sk, -EBADMSG); 2015 goto recv_end; 2016 } 2017 2018 async |= darg.async; 2019 2020 /* If the type of records being processed is not known yet, 2021 * set it to record type just dequeued. If it is already known, 2022 * but does not match the record type just dequeued, go to end. 2023 * We always get record type here since for tls1.2, record type 2024 * is known just after record is dequeued from stream parser. 2025 * For tls1.3, we disable async. 2026 */ 2027 err = tls_record_content_type(msg, tls_msg(darg.skb), &control); 2028 if (err <= 0) { 2029 DEBUG_NET_WARN_ON_ONCE(darg.zc); 2030 tls_rx_rec_done(ctx); 2031 put_on_rx_list_err: 2032 __skb_queue_tail(&ctx->rx_list, darg.skb); 2033 goto recv_end; 2034 } 2035 2036 /* periodically flush backlog, and feed strparser */ 2037 released = tls_read_flush_backlog(sk, prot, len, to_decrypt, 2038 decrypted + copied, 2039 &flushed_at); 2040 2041 /* TLS 1.3 may have updated the length by more than overhead */ 2042 rxm = strp_msg(darg.skb); 2043 chunk = rxm->full_len; 2044 tls_rx_rec_done(ctx); 2045 2046 if (!darg.zc) { 2047 bool partially_consumed = chunk > len; 2048 struct sk_buff *skb = darg.skb; 2049 2050 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); 2051 2052 if (async) { 2053 /* TLS 1.2-only, to_decrypt must be text len */ 2054 chunk = min_t(int, to_decrypt, len); 2055 async_copy_bytes += chunk; 2056 put_on_rx_list: 2057 decrypted += chunk; 2058 len -= chunk; 2059 __skb_queue_tail(&ctx->rx_list, skb); 2060 continue; 2061 } 2062 2063 if (bpf_strp_enabled) { 2064 released = true; 2065 err = sk_psock_tls_strp_read(psock, skb); 2066 if (err != __SK_PASS) { 2067 rxm->offset = rxm->offset + rxm->full_len; 2068 rxm->full_len = 0; 2069 if (err == __SK_DROP) 2070 consume_skb(skb); 2071 continue; 2072 } 2073 } 2074 2075 if (partially_consumed) 2076 chunk = len; 2077 2078 err = skb_copy_datagram_msg(skb, rxm->offset, 2079 msg, chunk); 2080 if (err < 0) 2081 goto put_on_rx_list_err; 2082 2083 if (is_peek) 2084 goto put_on_rx_list; 2085 2086 if (partially_consumed) { 2087 rxm->offset += chunk; 2088 rxm->full_len -= chunk; 2089 goto put_on_rx_list; 2090 } 2091 2092 consume_skb(skb); 2093 } 2094 2095 decrypted += chunk; 2096 len -= chunk; 2097 2098 /* Return full control message to userspace before trying 2099 * to parse another message type 2100 */ 2101 msg->msg_flags |= MSG_EOR; 2102 if (control != TLS_RECORD_TYPE_DATA) 2103 break; 2104 } 2105 2106 recv_end: 2107 if (async) { 2108 int ret, pending; 2109 2110 /* Wait for all previously submitted records to be decrypted */ 2111 spin_lock_bh(&ctx->decrypt_compl_lock); 2112 reinit_completion(&ctx->async_wait.completion); 2113 pending = atomic_read(&ctx->decrypt_pending); 2114 spin_unlock_bh(&ctx->decrypt_compl_lock); 2115 ret = 0; 2116 if (pending) 2117 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2118 __skb_queue_purge(&ctx->async_hold); 2119 2120 if (ret) { 2121 if (err >= 0 || err == -EINPROGRESS) 2122 err = ret; 2123 decrypted = 0; 2124 goto end; 2125 } 2126 2127 /* Drain records from the rx_list & copy if required */ 2128 if (is_peek || is_kvec) 2129 err = process_rx_list(ctx, msg, &control, copied, 2130 decrypted, is_peek); 2131 else 2132 err = process_rx_list(ctx, msg, &control, 0, 2133 async_copy_bytes, is_peek); 2134 decrypted += max(err, 0); 2135 } 2136 2137 copied += decrypted; 2138 2139 end: 2140 tls_rx_reader_unlock(sk, ctx); 2141 if (psock) 2142 sk_psock_put(sk, psock); 2143 return copied ? : err; 2144 } 2145 2146 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 2147 struct pipe_inode_info *pipe, 2148 size_t len, unsigned int flags) 2149 { 2150 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 2151 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2152 struct strp_msg *rxm = NULL; 2153 struct sock *sk = sock->sk; 2154 struct tls_msg *tlm; 2155 struct sk_buff *skb; 2156 ssize_t copied = 0; 2157 int chunk; 2158 int err; 2159 2160 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); 2161 if (err < 0) 2162 return err; 2163 2164 if (!skb_queue_empty(&ctx->rx_list)) { 2165 skb = __skb_dequeue(&ctx->rx_list); 2166 } else { 2167 struct tls_decrypt_arg darg; 2168 2169 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, 2170 true); 2171 if (err <= 0) 2172 goto splice_read_end; 2173 2174 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2175 2176 err = tls_rx_one_record(sk, NULL, &darg); 2177 if (err < 0) { 2178 tls_err_abort(sk, -EBADMSG); 2179 goto splice_read_end; 2180 } 2181 2182 tls_rx_rec_done(ctx); 2183 skb = darg.skb; 2184 } 2185 2186 rxm = strp_msg(skb); 2187 tlm = tls_msg(skb); 2188 2189 /* splice does not support reading control messages */ 2190 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2191 err = -EINVAL; 2192 goto splice_requeue; 2193 } 2194 2195 chunk = min_t(unsigned int, rxm->full_len, len); 2196 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2197 if (copied < 0) 2198 goto splice_requeue; 2199 2200 if (chunk < rxm->full_len) { 2201 rxm->offset += len; 2202 rxm->full_len -= len; 2203 goto splice_requeue; 2204 } 2205 2206 consume_skb(skb); 2207 2208 splice_read_end: 2209 tls_rx_reader_unlock(sk, ctx); 2210 return copied ? : err; 2211 2212 splice_requeue: 2213 __skb_queue_head(&ctx->rx_list, skb); 2214 goto splice_read_end; 2215 } 2216 2217 bool tls_sw_sock_is_readable(struct sock *sk) 2218 { 2219 struct tls_context *tls_ctx = tls_get_ctx(sk); 2220 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2221 bool ingress_empty = true; 2222 struct sk_psock *psock; 2223 2224 rcu_read_lock(); 2225 psock = sk_psock(sk); 2226 if (psock) 2227 ingress_empty = list_empty(&psock->ingress_msg); 2228 rcu_read_unlock(); 2229 2230 return !ingress_empty || tls_strp_msg_ready(ctx) || 2231 !skb_queue_empty(&ctx->rx_list); 2232 } 2233 2234 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) 2235 { 2236 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2237 struct tls_prot_info *prot = &tls_ctx->prot_info; 2238 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 2239 size_t cipher_overhead; 2240 size_t data_len = 0; 2241 int ret; 2242 2243 /* Verify that we have a full TLS header, or wait for more data */ 2244 if (strp->stm.offset + prot->prepend_size > skb->len) 2245 return 0; 2246 2247 /* Sanity-check size of on-stack buffer. */ 2248 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2249 ret = -EINVAL; 2250 goto read_failure; 2251 } 2252 2253 /* Linearize header to local buffer */ 2254 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); 2255 if (ret < 0) 2256 goto read_failure; 2257 2258 strp->mark = header[0]; 2259 2260 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2261 2262 cipher_overhead = prot->tag_size; 2263 if (prot->version != TLS_1_3_VERSION && 2264 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2265 cipher_overhead += prot->iv_size; 2266 2267 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2268 prot->tail_size) { 2269 ret = -EMSGSIZE; 2270 goto read_failure; 2271 } 2272 if (data_len < cipher_overhead) { 2273 ret = -EBADMSG; 2274 goto read_failure; 2275 } 2276 2277 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2278 if (header[1] != TLS_1_2_VERSION_MINOR || 2279 header[2] != TLS_1_2_VERSION_MAJOR) { 2280 ret = -EINVAL; 2281 goto read_failure; 2282 } 2283 2284 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2285 TCP_SKB_CB(skb)->seq + strp->stm.offset); 2286 return data_len + TLS_HEADER_SIZE; 2287 2288 read_failure: 2289 tls_err_abort(strp->sk, ret); 2290 2291 return ret; 2292 } 2293 2294 void tls_rx_msg_ready(struct tls_strparser *strp) 2295 { 2296 struct tls_sw_context_rx *ctx; 2297 2298 ctx = container_of(strp, struct tls_sw_context_rx, strp); 2299 ctx->saved_data_ready(strp->sk); 2300 } 2301 2302 static void tls_data_ready(struct sock *sk) 2303 { 2304 struct tls_context *tls_ctx = tls_get_ctx(sk); 2305 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2306 struct sk_psock *psock; 2307 2308 trace_sk_data_ready(sk); 2309 2310 tls_strp_data_ready(&ctx->strp); 2311 2312 psock = sk_psock_get(sk); 2313 if (psock) { 2314 if (!list_empty(&psock->ingress_msg)) 2315 ctx->saved_data_ready(sk); 2316 sk_psock_put(sk, psock); 2317 } 2318 } 2319 2320 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2321 { 2322 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2323 2324 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2325 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2326 cancel_delayed_work_sync(&ctx->tx_work.work); 2327 } 2328 2329 void tls_sw_release_resources_tx(struct sock *sk) 2330 { 2331 struct tls_context *tls_ctx = tls_get_ctx(sk); 2332 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2333 struct tls_rec *rec, *tmp; 2334 int pending; 2335 2336 /* Wait for any pending async encryptions to complete */ 2337 spin_lock_bh(&ctx->encrypt_compl_lock); 2338 ctx->async_notify = true; 2339 pending = atomic_read(&ctx->encrypt_pending); 2340 spin_unlock_bh(&ctx->encrypt_compl_lock); 2341 2342 if (pending) 2343 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2344 2345 tls_tx_records(sk, -1); 2346 2347 /* Free up un-sent records in tx_list. First, free 2348 * the partially sent record if any at head of tx_list. 2349 */ 2350 if (tls_ctx->partially_sent_record) { 2351 tls_free_partial_record(sk, tls_ctx); 2352 rec = list_first_entry(&ctx->tx_list, 2353 struct tls_rec, list); 2354 list_del(&rec->list); 2355 sk_msg_free(sk, &rec->msg_plaintext); 2356 kfree(rec); 2357 } 2358 2359 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2360 list_del(&rec->list); 2361 sk_msg_free(sk, &rec->msg_encrypted); 2362 sk_msg_free(sk, &rec->msg_plaintext); 2363 kfree(rec); 2364 } 2365 2366 crypto_free_aead(ctx->aead_send); 2367 tls_free_open_rec(sk); 2368 } 2369 2370 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2371 { 2372 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2373 2374 kfree(ctx); 2375 } 2376 2377 void tls_sw_release_resources_rx(struct sock *sk) 2378 { 2379 struct tls_context *tls_ctx = tls_get_ctx(sk); 2380 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2381 2382 kfree(tls_ctx->rx.rec_seq); 2383 kfree(tls_ctx->rx.iv); 2384 2385 if (ctx->aead_recv) { 2386 __skb_queue_purge(&ctx->rx_list); 2387 crypto_free_aead(ctx->aead_recv); 2388 tls_strp_stop(&ctx->strp); 2389 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2390 * we still want to tls_strp_stop(), but sk->sk_data_ready was 2391 * never swapped. 2392 */ 2393 if (ctx->saved_data_ready) { 2394 write_lock_bh(&sk->sk_callback_lock); 2395 sk->sk_data_ready = ctx->saved_data_ready; 2396 write_unlock_bh(&sk->sk_callback_lock); 2397 } 2398 } 2399 } 2400 2401 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2402 { 2403 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2404 2405 tls_strp_done(&ctx->strp); 2406 } 2407 2408 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2409 { 2410 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2411 2412 kfree(ctx); 2413 } 2414 2415 void tls_sw_free_resources_rx(struct sock *sk) 2416 { 2417 struct tls_context *tls_ctx = tls_get_ctx(sk); 2418 2419 tls_sw_release_resources_rx(sk); 2420 tls_sw_free_ctx_rx(tls_ctx); 2421 } 2422 2423 /* The work handler to transmitt the encrypted records in tx_list */ 2424 static void tx_work_handler(struct work_struct *work) 2425 { 2426 struct delayed_work *delayed_work = to_delayed_work(work); 2427 struct tx_work *tx_work = container_of(delayed_work, 2428 struct tx_work, work); 2429 struct sock *sk = tx_work->sk; 2430 struct tls_context *tls_ctx = tls_get_ctx(sk); 2431 struct tls_sw_context_tx *ctx; 2432 2433 if (unlikely(!tls_ctx)) 2434 return; 2435 2436 ctx = tls_sw_ctx_tx(tls_ctx); 2437 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2438 return; 2439 2440 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2441 return; 2442 2443 if (mutex_trylock(&tls_ctx->tx_lock)) { 2444 lock_sock(sk); 2445 tls_tx_records(sk, -1); 2446 release_sock(sk); 2447 mutex_unlock(&tls_ctx->tx_lock); 2448 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 2449 /* Someone is holding the tx_lock, they will likely run Tx 2450 * and cancel the work on their way out of the lock section. 2451 * Schedule a long delay just in case. 2452 */ 2453 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10)); 2454 } 2455 } 2456 2457 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) 2458 { 2459 struct tls_rec *rec; 2460 2461 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list); 2462 if (!rec) 2463 return false; 2464 2465 return READ_ONCE(rec->tx_ready); 2466 } 2467 2468 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2469 { 2470 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2471 2472 /* Schedule the transmission if tx list is ready */ 2473 if (tls_is_tx_ready(tx_ctx) && 2474 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2475 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2476 } 2477 2478 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2479 { 2480 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2481 2482 write_lock_bh(&sk->sk_callback_lock); 2483 rx_ctx->saved_data_ready = sk->sk_data_ready; 2484 sk->sk_data_ready = tls_data_ready; 2485 write_unlock_bh(&sk->sk_callback_lock); 2486 } 2487 2488 void tls_update_rx_zc_capable(struct tls_context *tls_ctx) 2489 { 2490 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2491 2492 rx_ctx->zc_capable = tls_ctx->rx_no_pad || 2493 tls_ctx->prot_info.version != TLS_1_3_VERSION; 2494 } 2495 2496 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2497 { 2498 struct tls_context *tls_ctx = tls_get_ctx(sk); 2499 struct tls_prot_info *prot = &tls_ctx->prot_info; 2500 struct tls_crypto_info *crypto_info; 2501 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2502 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2503 struct cipher_context *cctx; 2504 struct crypto_aead **aead; 2505 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2506 struct crypto_tfm *tfm; 2507 char *iv, *rec_seq, *key, *salt, *cipher_name; 2508 size_t keysize; 2509 int rc = 0; 2510 2511 if (!ctx) { 2512 rc = -EINVAL; 2513 goto out; 2514 } 2515 2516 if (tx) { 2517 if (!ctx->priv_ctx_tx) { 2518 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2519 if (!sw_ctx_tx) { 2520 rc = -ENOMEM; 2521 goto out; 2522 } 2523 ctx->priv_ctx_tx = sw_ctx_tx; 2524 } else { 2525 sw_ctx_tx = 2526 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2527 } 2528 } else { 2529 if (!ctx->priv_ctx_rx) { 2530 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2531 if (!sw_ctx_rx) { 2532 rc = -ENOMEM; 2533 goto out; 2534 } 2535 ctx->priv_ctx_rx = sw_ctx_rx; 2536 } else { 2537 sw_ctx_rx = 2538 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2539 } 2540 } 2541 2542 if (tx) { 2543 crypto_init_wait(&sw_ctx_tx->async_wait); 2544 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); 2545 crypto_info = &ctx->crypto_send.info; 2546 cctx = &ctx->tx; 2547 aead = &sw_ctx_tx->aead_send; 2548 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2549 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2550 sw_ctx_tx->tx_work.sk = sk; 2551 } else { 2552 crypto_init_wait(&sw_ctx_rx->async_wait); 2553 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); 2554 init_waitqueue_head(&sw_ctx_rx->wq); 2555 crypto_info = &ctx->crypto_recv.info; 2556 cctx = &ctx->rx; 2557 skb_queue_head_init(&sw_ctx_rx->rx_list); 2558 skb_queue_head_init(&sw_ctx_rx->async_hold); 2559 aead = &sw_ctx_rx->aead_recv; 2560 } 2561 2562 switch (crypto_info->cipher_type) { 2563 case TLS_CIPHER_AES_GCM_128: { 2564 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2565 2566 gcm_128_info = (void *)crypto_info; 2567 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2568 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2569 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2570 iv = gcm_128_info->iv; 2571 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2572 rec_seq = gcm_128_info->rec_seq; 2573 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2574 key = gcm_128_info->key; 2575 salt = gcm_128_info->salt; 2576 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2577 cipher_name = "gcm(aes)"; 2578 break; 2579 } 2580 case TLS_CIPHER_AES_GCM_256: { 2581 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2582 2583 gcm_256_info = (void *)crypto_info; 2584 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2585 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2586 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2587 iv = gcm_256_info->iv; 2588 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2589 rec_seq = gcm_256_info->rec_seq; 2590 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2591 key = gcm_256_info->key; 2592 salt = gcm_256_info->salt; 2593 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2594 cipher_name = "gcm(aes)"; 2595 break; 2596 } 2597 case TLS_CIPHER_AES_CCM_128: { 2598 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2599 2600 ccm_128_info = (void *)crypto_info; 2601 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2602 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2603 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2604 iv = ccm_128_info->iv; 2605 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2606 rec_seq = ccm_128_info->rec_seq; 2607 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2608 key = ccm_128_info->key; 2609 salt = ccm_128_info->salt; 2610 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2611 cipher_name = "ccm(aes)"; 2612 break; 2613 } 2614 case TLS_CIPHER_CHACHA20_POLY1305: { 2615 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info; 2616 2617 chacha20_poly1305_info = (void *)crypto_info; 2618 nonce_size = 0; 2619 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE; 2620 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE; 2621 iv = chacha20_poly1305_info->iv; 2622 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE; 2623 rec_seq = chacha20_poly1305_info->rec_seq; 2624 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE; 2625 key = chacha20_poly1305_info->key; 2626 salt = chacha20_poly1305_info->salt; 2627 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE; 2628 cipher_name = "rfc7539(chacha20,poly1305)"; 2629 break; 2630 } 2631 case TLS_CIPHER_SM4_GCM: { 2632 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info; 2633 2634 sm4_gcm_info = (void *)crypto_info; 2635 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE; 2636 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE; 2637 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE; 2638 iv = sm4_gcm_info->iv; 2639 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE; 2640 rec_seq = sm4_gcm_info->rec_seq; 2641 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE; 2642 key = sm4_gcm_info->key; 2643 salt = sm4_gcm_info->salt; 2644 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE; 2645 cipher_name = "gcm(sm4)"; 2646 break; 2647 } 2648 case TLS_CIPHER_SM4_CCM: { 2649 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info; 2650 2651 sm4_ccm_info = (void *)crypto_info; 2652 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE; 2653 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE; 2654 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE; 2655 iv = sm4_ccm_info->iv; 2656 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE; 2657 rec_seq = sm4_ccm_info->rec_seq; 2658 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE; 2659 key = sm4_ccm_info->key; 2660 salt = sm4_ccm_info->salt; 2661 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE; 2662 cipher_name = "ccm(sm4)"; 2663 break; 2664 } 2665 case TLS_CIPHER_ARIA_GCM_128: { 2666 struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info; 2667 2668 aria_gcm_128_info = (void *)crypto_info; 2669 nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE; 2670 tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE; 2671 iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE; 2672 iv = aria_gcm_128_info->iv; 2673 rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE; 2674 rec_seq = aria_gcm_128_info->rec_seq; 2675 keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE; 2676 key = aria_gcm_128_info->key; 2677 salt = aria_gcm_128_info->salt; 2678 salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE; 2679 cipher_name = "gcm(aria)"; 2680 break; 2681 } 2682 case TLS_CIPHER_ARIA_GCM_256: { 2683 struct tls12_crypto_info_aria_gcm_256 *gcm_256_info; 2684 2685 gcm_256_info = (void *)crypto_info; 2686 nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE; 2687 tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE; 2688 iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE; 2689 iv = gcm_256_info->iv; 2690 rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE; 2691 rec_seq = gcm_256_info->rec_seq; 2692 keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE; 2693 key = gcm_256_info->key; 2694 salt = gcm_256_info->salt; 2695 salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE; 2696 cipher_name = "gcm(aria)"; 2697 break; 2698 } 2699 default: 2700 rc = -EINVAL; 2701 goto free_priv; 2702 } 2703 2704 if (crypto_info->version == TLS_1_3_VERSION) { 2705 nonce_size = 0; 2706 prot->aad_size = TLS_HEADER_SIZE; 2707 prot->tail_size = 1; 2708 } else { 2709 prot->aad_size = TLS_AAD_SPACE_SIZE; 2710 prot->tail_size = 0; 2711 } 2712 2713 /* Sanity-check the sizes for stack allocations. */ 2714 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2715 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE || 2716 prot->aad_size > TLS_MAX_AAD_SIZE) { 2717 rc = -EINVAL; 2718 goto free_priv; 2719 } 2720 2721 prot->version = crypto_info->version; 2722 prot->cipher_type = crypto_info->cipher_type; 2723 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2724 prot->tag_size = tag_size; 2725 prot->overhead_size = prot->prepend_size + 2726 prot->tag_size + prot->tail_size; 2727 prot->iv_size = iv_size; 2728 prot->salt_size = salt_size; 2729 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2730 if (!cctx->iv) { 2731 rc = -ENOMEM; 2732 goto free_priv; 2733 } 2734 /* Note: 128 & 256 bit salt are the same size */ 2735 prot->rec_seq_size = rec_seq_size; 2736 memcpy(cctx->iv, salt, salt_size); 2737 memcpy(cctx->iv + salt_size, iv, iv_size); 2738 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2739 if (!cctx->rec_seq) { 2740 rc = -ENOMEM; 2741 goto free_iv; 2742 } 2743 2744 if (!*aead) { 2745 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2746 if (IS_ERR(*aead)) { 2747 rc = PTR_ERR(*aead); 2748 *aead = NULL; 2749 goto free_rec_seq; 2750 } 2751 } 2752 2753 ctx->push_pending_record = tls_sw_push_pending_record; 2754 2755 rc = crypto_aead_setkey(*aead, key, keysize); 2756 2757 if (rc) 2758 goto free_aead; 2759 2760 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2761 if (rc) 2762 goto free_aead; 2763 2764 if (sw_ctx_rx) { 2765 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2766 2767 tls_update_rx_zc_capable(ctx); 2768 sw_ctx_rx->async_capable = 2769 crypto_info->version != TLS_1_3_VERSION && 2770 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); 2771 2772 rc = tls_strp_init(&sw_ctx_rx->strp, sk); 2773 if (rc) 2774 goto free_aead; 2775 } 2776 2777 goto out; 2778 2779 free_aead: 2780 crypto_free_aead(*aead); 2781 *aead = NULL; 2782 free_rec_seq: 2783 kfree(cctx->rec_seq); 2784 cctx->rec_seq = NULL; 2785 free_iv: 2786 kfree(cctx->iv); 2787 cctx->iv = NULL; 2788 free_priv: 2789 if (tx) { 2790 kfree(ctx->priv_ctx_tx); 2791 ctx->priv_ctx_tx = NULL; 2792 } else { 2793 kfree(ctx->priv_ctx_rx); 2794 ctx->priv_ctx_rx = NULL; 2795 } 2796 out: 2797 return rc; 2798 } 2799