1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/bug.h> 39 #include <linux/sched/signal.h> 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/splice.h> 43 #include <crypto/aead.h> 44 45 #include <net/strparser.h> 46 #include <net/tls.h> 47 #include <trace/events/sock.h> 48 49 #include "tls.h" 50 51 struct tls_decrypt_arg { 52 struct_group(inargs, 53 bool zc; 54 bool async; 55 u8 tail; 56 ); 57 58 struct sk_buff *skb; 59 }; 60 61 struct tls_decrypt_ctx { 62 struct sock *sk; 63 u8 iv[MAX_IV_SIZE]; 64 u8 aad[TLS_MAX_AAD_SIZE]; 65 u8 tail; 66 struct scatterlist sg[]; 67 }; 68 69 noinline void tls_err_abort(struct sock *sk, int err) 70 { 71 WARN_ON_ONCE(err >= 0); 72 /* sk->sk_err should contain a positive error code. */ 73 WRITE_ONCE(sk->sk_err, -err); 74 /* Paired with smp_rmb() in tcp_poll() */ 75 smp_wmb(); 76 sk_error_report(sk); 77 } 78 79 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 80 unsigned int recursion_level) 81 { 82 int start = skb_headlen(skb); 83 int i, chunk = start - offset; 84 struct sk_buff *frag_iter; 85 int elt = 0; 86 87 if (unlikely(recursion_level >= 24)) 88 return -EMSGSIZE; 89 90 if (chunk > 0) { 91 if (chunk > len) 92 chunk = len; 93 elt++; 94 len -= chunk; 95 if (len == 0) 96 return elt; 97 offset += chunk; 98 } 99 100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 101 int end; 102 103 WARN_ON(start > offset + len); 104 105 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 106 chunk = end - offset; 107 if (chunk > 0) { 108 if (chunk > len) 109 chunk = len; 110 elt++; 111 len -= chunk; 112 if (len == 0) 113 return elt; 114 offset += chunk; 115 } 116 start = end; 117 } 118 119 if (unlikely(skb_has_frag_list(skb))) { 120 skb_walk_frags(skb, frag_iter) { 121 int end, ret; 122 123 WARN_ON(start > offset + len); 124 125 end = start + frag_iter->len; 126 chunk = end - offset; 127 if (chunk > 0) { 128 if (chunk > len) 129 chunk = len; 130 ret = __skb_nsg(frag_iter, offset - start, chunk, 131 recursion_level + 1); 132 if (unlikely(ret < 0)) 133 return ret; 134 elt += ret; 135 len -= chunk; 136 if (len == 0) 137 return elt; 138 offset += chunk; 139 } 140 start = end; 141 } 142 } 143 BUG_ON(len); 144 return elt; 145 } 146 147 /* Return the number of scatterlist elements required to completely map the 148 * skb, or -EMSGSIZE if the recursion depth is exceeded. 149 */ 150 static int skb_nsg(struct sk_buff *skb, int offset, int len) 151 { 152 return __skb_nsg(skb, offset, len, 0); 153 } 154 155 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, 156 struct tls_decrypt_arg *darg) 157 { 158 struct strp_msg *rxm = strp_msg(skb); 159 struct tls_msg *tlm = tls_msg(skb); 160 int sub = 0; 161 162 /* Determine zero-padding length */ 163 if (prot->version == TLS_1_3_VERSION) { 164 int offset = rxm->full_len - TLS_TAG_SIZE - 1; 165 char content_type = darg->zc ? darg->tail : 0; 166 int err; 167 168 while (content_type == 0) { 169 if (offset < prot->prepend_size) 170 return -EBADMSG; 171 err = skb_copy_bits(skb, rxm->offset + offset, 172 &content_type, 1); 173 if (err) 174 return err; 175 if (content_type) 176 break; 177 sub++; 178 offset--; 179 } 180 tlm->control = content_type; 181 } 182 return sub; 183 } 184 185 static void tls_decrypt_done(void *data, int err) 186 { 187 struct aead_request *aead_req = data; 188 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); 189 struct scatterlist *sgout = aead_req->dst; 190 struct scatterlist *sgin = aead_req->src; 191 struct tls_sw_context_rx *ctx; 192 struct tls_decrypt_ctx *dctx; 193 struct tls_context *tls_ctx; 194 struct scatterlist *sg; 195 unsigned int pages; 196 struct sock *sk; 197 int aead_size; 198 199 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); 200 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 201 dctx = (void *)((u8 *)aead_req + aead_size); 202 203 sk = dctx->sk; 204 tls_ctx = tls_get_ctx(sk); 205 ctx = tls_sw_ctx_rx(tls_ctx); 206 207 /* Propagate if there was an err */ 208 if (err) { 209 if (err == -EBADMSG) 210 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 211 ctx->async_wait.err = err; 212 tls_err_abort(sk, err); 213 } 214 215 /* Free the destination pages if skb was not decrypted inplace */ 216 if (sgout != sgin) { 217 /* Skip the first S/G entry as it points to AAD */ 218 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 219 if (!sg) 220 break; 221 put_page(sg_page(sg)); 222 } 223 } 224 225 kfree(aead_req); 226 227 spin_lock_bh(&ctx->decrypt_compl_lock); 228 if (!atomic_dec_return(&ctx->decrypt_pending)) 229 complete(&ctx->async_wait.completion); 230 spin_unlock_bh(&ctx->decrypt_compl_lock); 231 } 232 233 static int tls_do_decryption(struct sock *sk, 234 struct scatterlist *sgin, 235 struct scatterlist *sgout, 236 char *iv_recv, 237 size_t data_len, 238 struct aead_request *aead_req, 239 struct tls_decrypt_arg *darg) 240 { 241 struct tls_context *tls_ctx = tls_get_ctx(sk); 242 struct tls_prot_info *prot = &tls_ctx->prot_info; 243 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 244 int ret; 245 246 aead_request_set_tfm(aead_req, ctx->aead_recv); 247 aead_request_set_ad(aead_req, prot->aad_size); 248 aead_request_set_crypt(aead_req, sgin, sgout, 249 data_len + prot->tag_size, 250 (u8 *)iv_recv); 251 252 if (darg->async) { 253 aead_request_set_callback(aead_req, 254 CRYPTO_TFM_REQ_MAY_BACKLOG, 255 tls_decrypt_done, aead_req); 256 atomic_inc(&ctx->decrypt_pending); 257 } else { 258 aead_request_set_callback(aead_req, 259 CRYPTO_TFM_REQ_MAY_BACKLOG, 260 crypto_req_done, &ctx->async_wait); 261 } 262 263 ret = crypto_aead_decrypt(aead_req); 264 if (ret == -EINPROGRESS) { 265 if (darg->async) 266 return 0; 267 268 ret = crypto_wait_req(ret, &ctx->async_wait); 269 } 270 darg->async = false; 271 272 return ret; 273 } 274 275 static void tls_trim_both_msgs(struct sock *sk, int target_size) 276 { 277 struct tls_context *tls_ctx = tls_get_ctx(sk); 278 struct tls_prot_info *prot = &tls_ctx->prot_info; 279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 280 struct tls_rec *rec = ctx->open_rec; 281 282 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 283 if (target_size > 0) 284 target_size += prot->overhead_size; 285 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 286 } 287 288 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 289 { 290 struct tls_context *tls_ctx = tls_get_ctx(sk); 291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 292 struct tls_rec *rec = ctx->open_rec; 293 struct sk_msg *msg_en = &rec->msg_encrypted; 294 295 return sk_msg_alloc(sk, msg_en, len, 0); 296 } 297 298 static int tls_clone_plaintext_msg(struct sock *sk, int required) 299 { 300 struct tls_context *tls_ctx = tls_get_ctx(sk); 301 struct tls_prot_info *prot = &tls_ctx->prot_info; 302 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 303 struct tls_rec *rec = ctx->open_rec; 304 struct sk_msg *msg_pl = &rec->msg_plaintext; 305 struct sk_msg *msg_en = &rec->msg_encrypted; 306 int skip, len; 307 308 /* We add page references worth len bytes from encrypted sg 309 * at the end of plaintext sg. It is guaranteed that msg_en 310 * has enough required room (ensured by caller). 311 */ 312 len = required - msg_pl->sg.size; 313 314 /* Skip initial bytes in msg_en's data to be able to use 315 * same offset of both plain and encrypted data. 316 */ 317 skip = prot->prepend_size + msg_pl->sg.size; 318 319 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 320 } 321 322 static struct tls_rec *tls_get_rec(struct sock *sk) 323 { 324 struct tls_context *tls_ctx = tls_get_ctx(sk); 325 struct tls_prot_info *prot = &tls_ctx->prot_info; 326 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 327 struct sk_msg *msg_pl, *msg_en; 328 struct tls_rec *rec; 329 int mem_size; 330 331 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 332 333 rec = kzalloc(mem_size, sk->sk_allocation); 334 if (!rec) 335 return NULL; 336 337 msg_pl = &rec->msg_plaintext; 338 msg_en = &rec->msg_encrypted; 339 340 sk_msg_init(msg_pl); 341 sk_msg_init(msg_en); 342 343 sg_init_table(rec->sg_aead_in, 2); 344 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 345 sg_unmark_end(&rec->sg_aead_in[1]); 346 347 sg_init_table(rec->sg_aead_out, 2); 348 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 349 sg_unmark_end(&rec->sg_aead_out[1]); 350 351 rec->sk = sk; 352 353 return rec; 354 } 355 356 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 357 { 358 sk_msg_free(sk, &rec->msg_encrypted); 359 sk_msg_free(sk, &rec->msg_plaintext); 360 kfree(rec); 361 } 362 363 static void tls_free_open_rec(struct sock *sk) 364 { 365 struct tls_context *tls_ctx = tls_get_ctx(sk); 366 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 367 struct tls_rec *rec = ctx->open_rec; 368 369 if (rec) { 370 tls_free_rec(sk, rec); 371 ctx->open_rec = NULL; 372 } 373 } 374 375 int tls_tx_records(struct sock *sk, int flags) 376 { 377 struct tls_context *tls_ctx = tls_get_ctx(sk); 378 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 379 struct tls_rec *rec, *tmp; 380 struct sk_msg *msg_en; 381 int tx_flags, rc = 0; 382 383 if (tls_is_partially_sent_record(tls_ctx)) { 384 rec = list_first_entry(&ctx->tx_list, 385 struct tls_rec, list); 386 387 if (flags == -1) 388 tx_flags = rec->tx_flags; 389 else 390 tx_flags = flags; 391 392 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 393 if (rc) 394 goto tx_err; 395 396 /* Full record has been transmitted. 397 * Remove the head of tx_list 398 */ 399 list_del(&rec->list); 400 sk_msg_free(sk, &rec->msg_plaintext); 401 kfree(rec); 402 } 403 404 /* Tx all ready records */ 405 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 406 if (READ_ONCE(rec->tx_ready)) { 407 if (flags == -1) 408 tx_flags = rec->tx_flags; 409 else 410 tx_flags = flags; 411 412 msg_en = &rec->msg_encrypted; 413 rc = tls_push_sg(sk, tls_ctx, 414 &msg_en->sg.data[msg_en->sg.curr], 415 0, tx_flags); 416 if (rc) 417 goto tx_err; 418 419 list_del(&rec->list); 420 sk_msg_free(sk, &rec->msg_plaintext); 421 kfree(rec); 422 } else { 423 break; 424 } 425 } 426 427 tx_err: 428 if (rc < 0 && rc != -EAGAIN) 429 tls_err_abort(sk, -EBADMSG); 430 431 return rc; 432 } 433 434 static void tls_encrypt_done(void *data, int err) 435 { 436 struct tls_sw_context_tx *ctx; 437 struct tls_context *tls_ctx; 438 struct tls_prot_info *prot; 439 struct tls_rec *rec = data; 440 struct scatterlist *sge; 441 struct sk_msg *msg_en; 442 bool ready = false; 443 struct sock *sk; 444 int pending; 445 446 msg_en = &rec->msg_encrypted; 447 448 sk = rec->sk; 449 tls_ctx = tls_get_ctx(sk); 450 prot = &tls_ctx->prot_info; 451 ctx = tls_sw_ctx_tx(tls_ctx); 452 453 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 454 sge->offset -= prot->prepend_size; 455 sge->length += prot->prepend_size; 456 457 /* Check if error is previously set on socket */ 458 if (err || sk->sk_err) { 459 rec = NULL; 460 461 /* If err is already set on socket, return the same code */ 462 if (sk->sk_err) { 463 ctx->async_wait.err = -sk->sk_err; 464 } else { 465 ctx->async_wait.err = err; 466 tls_err_abort(sk, err); 467 } 468 } 469 470 if (rec) { 471 struct tls_rec *first_rec; 472 473 /* Mark the record as ready for transmission */ 474 smp_store_mb(rec->tx_ready, true); 475 476 /* If received record is at head of tx_list, schedule tx */ 477 first_rec = list_first_entry(&ctx->tx_list, 478 struct tls_rec, list); 479 if (rec == first_rec) 480 ready = true; 481 } 482 483 spin_lock_bh(&ctx->encrypt_compl_lock); 484 pending = atomic_dec_return(&ctx->encrypt_pending); 485 486 if (!pending && ctx->async_notify) 487 complete(&ctx->async_wait.completion); 488 spin_unlock_bh(&ctx->encrypt_compl_lock); 489 490 if (!ready) 491 return; 492 493 /* Schedule the transmission */ 494 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 495 schedule_delayed_work(&ctx->tx_work.work, 1); 496 } 497 498 static int tls_do_encryption(struct sock *sk, 499 struct tls_context *tls_ctx, 500 struct tls_sw_context_tx *ctx, 501 struct aead_request *aead_req, 502 size_t data_len, u32 start) 503 { 504 struct tls_prot_info *prot = &tls_ctx->prot_info; 505 struct tls_rec *rec = ctx->open_rec; 506 struct sk_msg *msg_en = &rec->msg_encrypted; 507 struct scatterlist *sge = sk_msg_elem(msg_en, start); 508 int rc, iv_offset = 0; 509 510 /* For CCM based ciphers, first byte of IV is a constant */ 511 switch (prot->cipher_type) { 512 case TLS_CIPHER_AES_CCM_128: 513 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 514 iv_offset = 1; 515 break; 516 case TLS_CIPHER_SM4_CCM: 517 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; 518 iv_offset = 1; 519 break; 520 } 521 522 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 523 prot->iv_size + prot->salt_size); 524 525 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, 526 tls_ctx->tx.rec_seq); 527 528 sge->offset += prot->prepend_size; 529 sge->length -= prot->prepend_size; 530 531 msg_en->sg.curr = start; 532 533 aead_request_set_tfm(aead_req, ctx->aead_send); 534 aead_request_set_ad(aead_req, prot->aad_size); 535 aead_request_set_crypt(aead_req, rec->sg_aead_in, 536 rec->sg_aead_out, 537 data_len, rec->iv_data); 538 539 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 540 tls_encrypt_done, rec); 541 542 /* Add the record in tx_list */ 543 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 544 atomic_inc(&ctx->encrypt_pending); 545 546 rc = crypto_aead_encrypt(aead_req); 547 if (!rc || rc != -EINPROGRESS) { 548 atomic_dec(&ctx->encrypt_pending); 549 sge->offset -= prot->prepend_size; 550 sge->length += prot->prepend_size; 551 } 552 553 if (!rc) { 554 WRITE_ONCE(rec->tx_ready, true); 555 } else if (rc != -EINPROGRESS) { 556 list_del(&rec->list); 557 return rc; 558 } 559 560 /* Unhook the record from context if encryption is not failure */ 561 ctx->open_rec = NULL; 562 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 563 return rc; 564 } 565 566 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 567 struct tls_rec **to, struct sk_msg *msg_opl, 568 struct sk_msg *msg_oen, u32 split_point, 569 u32 tx_overhead_size, u32 *orig_end) 570 { 571 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 572 struct scatterlist *sge, *osge, *nsge; 573 u32 orig_size = msg_opl->sg.size; 574 struct scatterlist tmp = { }; 575 struct sk_msg *msg_npl; 576 struct tls_rec *new; 577 int ret; 578 579 new = tls_get_rec(sk); 580 if (!new) 581 return -ENOMEM; 582 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 583 tx_overhead_size, 0); 584 if (ret < 0) { 585 tls_free_rec(sk, new); 586 return ret; 587 } 588 589 *orig_end = msg_opl->sg.end; 590 i = msg_opl->sg.start; 591 sge = sk_msg_elem(msg_opl, i); 592 while (apply && sge->length) { 593 if (sge->length > apply) { 594 u32 len = sge->length - apply; 595 596 get_page(sg_page(sge)); 597 sg_set_page(&tmp, sg_page(sge), len, 598 sge->offset + apply); 599 sge->length = apply; 600 bytes += apply; 601 apply = 0; 602 } else { 603 apply -= sge->length; 604 bytes += sge->length; 605 } 606 607 sk_msg_iter_var_next(i); 608 if (i == msg_opl->sg.end) 609 break; 610 sge = sk_msg_elem(msg_opl, i); 611 } 612 613 msg_opl->sg.end = i; 614 msg_opl->sg.curr = i; 615 msg_opl->sg.copybreak = 0; 616 msg_opl->apply_bytes = 0; 617 msg_opl->sg.size = bytes; 618 619 msg_npl = &new->msg_plaintext; 620 msg_npl->apply_bytes = apply; 621 msg_npl->sg.size = orig_size - bytes; 622 623 j = msg_npl->sg.start; 624 nsge = sk_msg_elem(msg_npl, j); 625 if (tmp.length) { 626 memcpy(nsge, &tmp, sizeof(*nsge)); 627 sk_msg_iter_var_next(j); 628 nsge = sk_msg_elem(msg_npl, j); 629 } 630 631 osge = sk_msg_elem(msg_opl, i); 632 while (osge->length) { 633 memcpy(nsge, osge, sizeof(*nsge)); 634 sg_unmark_end(nsge); 635 sk_msg_iter_var_next(i); 636 sk_msg_iter_var_next(j); 637 if (i == *orig_end) 638 break; 639 osge = sk_msg_elem(msg_opl, i); 640 nsge = sk_msg_elem(msg_npl, j); 641 } 642 643 msg_npl->sg.end = j; 644 msg_npl->sg.curr = j; 645 msg_npl->sg.copybreak = 0; 646 647 *to = new; 648 return 0; 649 } 650 651 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 652 struct tls_rec *from, u32 orig_end) 653 { 654 struct sk_msg *msg_npl = &from->msg_plaintext; 655 struct sk_msg *msg_opl = &to->msg_plaintext; 656 struct scatterlist *osge, *nsge; 657 u32 i, j; 658 659 i = msg_opl->sg.end; 660 sk_msg_iter_var_prev(i); 661 j = msg_npl->sg.start; 662 663 osge = sk_msg_elem(msg_opl, i); 664 nsge = sk_msg_elem(msg_npl, j); 665 666 if (sg_page(osge) == sg_page(nsge) && 667 osge->offset + osge->length == nsge->offset) { 668 osge->length += nsge->length; 669 put_page(sg_page(nsge)); 670 } 671 672 msg_opl->sg.end = orig_end; 673 msg_opl->sg.curr = orig_end; 674 msg_opl->sg.copybreak = 0; 675 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 676 msg_opl->sg.size += msg_npl->sg.size; 677 678 sk_msg_free(sk, &to->msg_encrypted); 679 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 680 681 kfree(from); 682 } 683 684 static int tls_push_record(struct sock *sk, int flags, 685 unsigned char record_type) 686 { 687 struct tls_context *tls_ctx = tls_get_ctx(sk); 688 struct tls_prot_info *prot = &tls_ctx->prot_info; 689 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 690 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 691 u32 i, split_point, orig_end; 692 struct sk_msg *msg_pl, *msg_en; 693 struct aead_request *req; 694 bool split; 695 int rc; 696 697 if (!rec) 698 return 0; 699 700 msg_pl = &rec->msg_plaintext; 701 msg_en = &rec->msg_encrypted; 702 703 split_point = msg_pl->apply_bytes; 704 split = split_point && split_point < msg_pl->sg.size; 705 if (unlikely((!split && 706 msg_pl->sg.size + 707 prot->overhead_size > msg_en->sg.size) || 708 (split && 709 split_point + 710 prot->overhead_size > msg_en->sg.size))) { 711 split = true; 712 split_point = msg_en->sg.size; 713 } 714 if (split) { 715 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 716 split_point, prot->overhead_size, 717 &orig_end); 718 if (rc < 0) 719 return rc; 720 /* This can happen if above tls_split_open_record allocates 721 * a single large encryption buffer instead of two smaller 722 * ones. In this case adjust pointers and continue without 723 * split. 724 */ 725 if (!msg_pl->sg.size) { 726 tls_merge_open_record(sk, rec, tmp, orig_end); 727 msg_pl = &rec->msg_plaintext; 728 msg_en = &rec->msg_encrypted; 729 split = false; 730 } 731 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 732 prot->overhead_size); 733 } 734 735 rec->tx_flags = flags; 736 req = &rec->aead_req; 737 738 i = msg_pl->sg.end; 739 sk_msg_iter_var_prev(i); 740 741 rec->content_type = record_type; 742 if (prot->version == TLS_1_3_VERSION) { 743 /* Add content type to end of message. No padding added */ 744 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 745 sg_mark_end(&rec->sg_content_type); 746 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 747 &rec->sg_content_type); 748 } else { 749 sg_mark_end(sk_msg_elem(msg_pl, i)); 750 } 751 752 if (msg_pl->sg.end < msg_pl->sg.start) { 753 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 754 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 755 msg_pl->sg.data); 756 } 757 758 i = msg_pl->sg.start; 759 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 760 761 i = msg_en->sg.end; 762 sk_msg_iter_var_prev(i); 763 sg_mark_end(sk_msg_elem(msg_en, i)); 764 765 i = msg_en->sg.start; 766 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 767 768 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 769 tls_ctx->tx.rec_seq, record_type, prot); 770 771 tls_fill_prepend(tls_ctx, 772 page_address(sg_page(&msg_en->sg.data[i])) + 773 msg_en->sg.data[i].offset, 774 msg_pl->sg.size + prot->tail_size, 775 record_type); 776 777 tls_ctx->pending_open_record_frags = false; 778 779 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 780 msg_pl->sg.size + prot->tail_size, i); 781 if (rc < 0) { 782 if (rc != -EINPROGRESS) { 783 tls_err_abort(sk, -EBADMSG); 784 if (split) { 785 tls_ctx->pending_open_record_frags = true; 786 tls_merge_open_record(sk, rec, tmp, orig_end); 787 } 788 } 789 ctx->async_capable = 1; 790 return rc; 791 } else if (split) { 792 msg_pl = &tmp->msg_plaintext; 793 msg_en = &tmp->msg_encrypted; 794 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 795 tls_ctx->pending_open_record_frags = true; 796 ctx->open_rec = tmp; 797 } 798 799 return tls_tx_records(sk, flags); 800 } 801 802 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 803 bool full_record, u8 record_type, 804 ssize_t *copied, int flags) 805 { 806 struct tls_context *tls_ctx = tls_get_ctx(sk); 807 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 808 struct sk_msg msg_redir = { }; 809 struct sk_psock *psock; 810 struct sock *sk_redir; 811 struct tls_rec *rec; 812 bool enospc, policy, redir_ingress; 813 int err = 0, send; 814 u32 delta = 0; 815 816 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 817 psock = sk_psock_get(sk); 818 if (!psock || !policy) { 819 err = tls_push_record(sk, flags, record_type); 820 if (err && sk->sk_err == EBADMSG) { 821 *copied -= sk_msg_free(sk, msg); 822 tls_free_open_rec(sk); 823 err = -sk->sk_err; 824 } 825 if (psock) 826 sk_psock_put(sk, psock); 827 return err; 828 } 829 more_data: 830 enospc = sk_msg_full(msg); 831 if (psock->eval == __SK_NONE) { 832 delta = msg->sg.size; 833 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 834 delta -= msg->sg.size; 835 } 836 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 837 !enospc && !full_record) { 838 err = -ENOSPC; 839 goto out_err; 840 } 841 msg->cork_bytes = 0; 842 send = msg->sg.size; 843 if (msg->apply_bytes && msg->apply_bytes < send) 844 send = msg->apply_bytes; 845 846 switch (psock->eval) { 847 case __SK_PASS: 848 err = tls_push_record(sk, flags, record_type); 849 if (err && sk->sk_err == EBADMSG) { 850 *copied -= sk_msg_free(sk, msg); 851 tls_free_open_rec(sk); 852 err = -sk->sk_err; 853 goto out_err; 854 } 855 break; 856 case __SK_REDIRECT: 857 redir_ingress = psock->redir_ingress; 858 sk_redir = psock->sk_redir; 859 memcpy(&msg_redir, msg, sizeof(*msg)); 860 if (msg->apply_bytes < send) 861 msg->apply_bytes = 0; 862 else 863 msg->apply_bytes -= send; 864 sk_msg_return_zero(sk, msg, send); 865 msg->sg.size -= send; 866 release_sock(sk); 867 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, 868 &msg_redir, send, flags); 869 lock_sock(sk); 870 if (err < 0) { 871 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 872 msg->sg.size = 0; 873 } 874 if (msg->sg.size == 0) 875 tls_free_open_rec(sk); 876 break; 877 case __SK_DROP: 878 default: 879 sk_msg_free_partial(sk, msg, send); 880 if (msg->apply_bytes < send) 881 msg->apply_bytes = 0; 882 else 883 msg->apply_bytes -= send; 884 if (msg->sg.size == 0) 885 tls_free_open_rec(sk); 886 *copied -= (send + delta); 887 err = -EACCES; 888 } 889 890 if (likely(!err)) { 891 bool reset_eval = !ctx->open_rec; 892 893 rec = ctx->open_rec; 894 if (rec) { 895 msg = &rec->msg_plaintext; 896 if (!msg->apply_bytes) 897 reset_eval = true; 898 } 899 if (reset_eval) { 900 psock->eval = __SK_NONE; 901 if (psock->sk_redir) { 902 sock_put(psock->sk_redir); 903 psock->sk_redir = NULL; 904 } 905 } 906 if (rec) 907 goto more_data; 908 } 909 out_err: 910 sk_psock_put(sk, psock); 911 return err; 912 } 913 914 static int tls_sw_push_pending_record(struct sock *sk, int flags) 915 { 916 struct tls_context *tls_ctx = tls_get_ctx(sk); 917 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 918 struct tls_rec *rec = ctx->open_rec; 919 struct sk_msg *msg_pl; 920 size_t copied; 921 922 if (!rec) 923 return 0; 924 925 msg_pl = &rec->msg_plaintext; 926 copied = msg_pl->sg.size; 927 if (!copied) 928 return 0; 929 930 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 931 &copied, flags); 932 } 933 934 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 935 { 936 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 937 struct tls_context *tls_ctx = tls_get_ctx(sk); 938 struct tls_prot_info *prot = &tls_ctx->prot_info; 939 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 940 bool async_capable = ctx->async_capable; 941 unsigned char record_type = TLS_RECORD_TYPE_DATA; 942 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 943 bool eor = !(msg->msg_flags & MSG_MORE); 944 size_t try_to_copy; 945 ssize_t copied = 0; 946 struct sk_msg *msg_pl, *msg_en; 947 struct tls_rec *rec; 948 int required_size; 949 int num_async = 0; 950 bool full_record; 951 int record_room; 952 int num_zc = 0; 953 int orig_size; 954 int ret = 0; 955 int pending; 956 957 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 958 MSG_CMSG_COMPAT)) 959 return -EOPNOTSUPP; 960 961 ret = mutex_lock_interruptible(&tls_ctx->tx_lock); 962 if (ret) 963 return ret; 964 lock_sock(sk); 965 966 if (unlikely(msg->msg_controllen)) { 967 ret = tls_process_cmsg(sk, msg, &record_type); 968 if (ret) { 969 if (ret == -EINPROGRESS) 970 num_async++; 971 else if (ret != -EAGAIN) 972 goto send_end; 973 } 974 } 975 976 while (msg_data_left(msg)) { 977 if (sk->sk_err) { 978 ret = -sk->sk_err; 979 goto send_end; 980 } 981 982 if (ctx->open_rec) 983 rec = ctx->open_rec; 984 else 985 rec = ctx->open_rec = tls_get_rec(sk); 986 if (!rec) { 987 ret = -ENOMEM; 988 goto send_end; 989 } 990 991 msg_pl = &rec->msg_plaintext; 992 msg_en = &rec->msg_encrypted; 993 994 orig_size = msg_pl->sg.size; 995 full_record = false; 996 try_to_copy = msg_data_left(msg); 997 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 998 if (try_to_copy >= record_room) { 999 try_to_copy = record_room; 1000 full_record = true; 1001 } 1002 1003 required_size = msg_pl->sg.size + try_to_copy + 1004 prot->overhead_size; 1005 1006 if (!sk_stream_memory_free(sk)) 1007 goto wait_for_sndbuf; 1008 1009 alloc_encrypted: 1010 ret = tls_alloc_encrypted_msg(sk, required_size); 1011 if (ret) { 1012 if (ret != -ENOSPC) 1013 goto wait_for_memory; 1014 1015 /* Adjust try_to_copy according to the amount that was 1016 * actually allocated. The difference is due 1017 * to max sg elements limit 1018 */ 1019 try_to_copy -= required_size - msg_en->sg.size; 1020 full_record = true; 1021 } 1022 1023 if (!is_kvec && (full_record || eor) && !async_capable) { 1024 u32 first = msg_pl->sg.end; 1025 1026 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1027 msg_pl, try_to_copy); 1028 if (ret) 1029 goto fallback_to_reg_send; 1030 1031 num_zc++; 1032 copied += try_to_copy; 1033 1034 sk_msg_sg_copy_set(msg_pl, first); 1035 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1036 record_type, &copied, 1037 msg->msg_flags); 1038 if (ret) { 1039 if (ret == -EINPROGRESS) 1040 num_async++; 1041 else if (ret == -ENOMEM) 1042 goto wait_for_memory; 1043 else if (ctx->open_rec && ret == -ENOSPC) 1044 goto rollback_iter; 1045 else if (ret != -EAGAIN) 1046 goto send_end; 1047 } 1048 continue; 1049 rollback_iter: 1050 copied -= try_to_copy; 1051 sk_msg_sg_copy_clear(msg_pl, first); 1052 iov_iter_revert(&msg->msg_iter, 1053 msg_pl->sg.size - orig_size); 1054 fallback_to_reg_send: 1055 sk_msg_trim(sk, msg_pl, orig_size); 1056 } 1057 1058 required_size = msg_pl->sg.size + try_to_copy; 1059 1060 ret = tls_clone_plaintext_msg(sk, required_size); 1061 if (ret) { 1062 if (ret != -ENOSPC) 1063 goto send_end; 1064 1065 /* Adjust try_to_copy according to the amount that was 1066 * actually allocated. The difference is due 1067 * to max sg elements limit 1068 */ 1069 try_to_copy -= required_size - msg_pl->sg.size; 1070 full_record = true; 1071 sk_msg_trim(sk, msg_en, 1072 msg_pl->sg.size + prot->overhead_size); 1073 } 1074 1075 if (try_to_copy) { 1076 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1077 msg_pl, try_to_copy); 1078 if (ret < 0) 1079 goto trim_sgl; 1080 } 1081 1082 /* Open records defined only if successfully copied, otherwise 1083 * we would trim the sg but not reset the open record frags. 1084 */ 1085 tls_ctx->pending_open_record_frags = true; 1086 copied += try_to_copy; 1087 if (full_record || eor) { 1088 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1089 record_type, &copied, 1090 msg->msg_flags); 1091 if (ret) { 1092 if (ret == -EINPROGRESS) 1093 num_async++; 1094 else if (ret == -ENOMEM) 1095 goto wait_for_memory; 1096 else if (ret != -EAGAIN) { 1097 if (ret == -ENOSPC) 1098 ret = 0; 1099 goto send_end; 1100 } 1101 } 1102 } 1103 1104 continue; 1105 1106 wait_for_sndbuf: 1107 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1108 wait_for_memory: 1109 ret = sk_stream_wait_memory(sk, &timeo); 1110 if (ret) { 1111 trim_sgl: 1112 if (ctx->open_rec) 1113 tls_trim_both_msgs(sk, orig_size); 1114 goto send_end; 1115 } 1116 1117 if (ctx->open_rec && msg_en->sg.size < required_size) 1118 goto alloc_encrypted; 1119 } 1120 1121 if (!num_async) { 1122 goto send_end; 1123 } else if (num_zc) { 1124 /* Wait for pending encryptions to get completed */ 1125 spin_lock_bh(&ctx->encrypt_compl_lock); 1126 ctx->async_notify = true; 1127 1128 pending = atomic_read(&ctx->encrypt_pending); 1129 spin_unlock_bh(&ctx->encrypt_compl_lock); 1130 if (pending) 1131 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1132 else 1133 reinit_completion(&ctx->async_wait.completion); 1134 1135 /* There can be no concurrent accesses, since we have no 1136 * pending encrypt operations 1137 */ 1138 WRITE_ONCE(ctx->async_notify, false); 1139 1140 if (ctx->async_wait.err) { 1141 ret = ctx->async_wait.err; 1142 copied = 0; 1143 } 1144 } 1145 1146 /* Transmit if any encryptions have completed */ 1147 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1148 cancel_delayed_work(&ctx->tx_work.work); 1149 tls_tx_records(sk, msg->msg_flags); 1150 } 1151 1152 send_end: 1153 ret = sk_stream_error(sk, msg->msg_flags, ret); 1154 1155 release_sock(sk); 1156 mutex_unlock(&tls_ctx->tx_lock); 1157 return copied > 0 ? copied : ret; 1158 } 1159 1160 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1161 int offset, size_t size, int flags) 1162 { 1163 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1164 struct tls_context *tls_ctx = tls_get_ctx(sk); 1165 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1166 struct tls_prot_info *prot = &tls_ctx->prot_info; 1167 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1168 struct sk_msg *msg_pl; 1169 struct tls_rec *rec; 1170 int num_async = 0; 1171 ssize_t copied = 0; 1172 bool full_record; 1173 int record_room; 1174 int ret = 0; 1175 bool eor; 1176 1177 eor = !(flags & MSG_SENDPAGE_NOTLAST); 1178 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1179 1180 /* Call the sk_stream functions to manage the sndbuf mem. */ 1181 while (size > 0) { 1182 size_t copy, required_size; 1183 1184 if (sk->sk_err) { 1185 ret = -sk->sk_err; 1186 goto sendpage_end; 1187 } 1188 1189 if (ctx->open_rec) 1190 rec = ctx->open_rec; 1191 else 1192 rec = ctx->open_rec = tls_get_rec(sk); 1193 if (!rec) { 1194 ret = -ENOMEM; 1195 goto sendpage_end; 1196 } 1197 1198 msg_pl = &rec->msg_plaintext; 1199 1200 full_record = false; 1201 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1202 copy = size; 1203 if (copy >= record_room) { 1204 copy = record_room; 1205 full_record = true; 1206 } 1207 1208 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1209 1210 if (!sk_stream_memory_free(sk)) 1211 goto wait_for_sndbuf; 1212 alloc_payload: 1213 ret = tls_alloc_encrypted_msg(sk, required_size); 1214 if (ret) { 1215 if (ret != -ENOSPC) 1216 goto wait_for_memory; 1217 1218 /* Adjust copy according to the amount that was 1219 * actually allocated. The difference is due 1220 * to max sg elements limit 1221 */ 1222 copy -= required_size - msg_pl->sg.size; 1223 full_record = true; 1224 } 1225 1226 sk_msg_page_add(msg_pl, page, copy, offset); 1227 sk_mem_charge(sk, copy); 1228 1229 offset += copy; 1230 size -= copy; 1231 copied += copy; 1232 1233 tls_ctx->pending_open_record_frags = true; 1234 if (full_record || eor || sk_msg_full(msg_pl)) { 1235 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1236 record_type, &copied, flags); 1237 if (ret) { 1238 if (ret == -EINPROGRESS) 1239 num_async++; 1240 else if (ret == -ENOMEM) 1241 goto wait_for_memory; 1242 else if (ret != -EAGAIN) { 1243 if (ret == -ENOSPC) 1244 ret = 0; 1245 goto sendpage_end; 1246 } 1247 } 1248 } 1249 continue; 1250 wait_for_sndbuf: 1251 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1252 wait_for_memory: 1253 ret = sk_stream_wait_memory(sk, &timeo); 1254 if (ret) { 1255 if (ctx->open_rec) 1256 tls_trim_both_msgs(sk, msg_pl->sg.size); 1257 goto sendpage_end; 1258 } 1259 1260 if (ctx->open_rec) 1261 goto alloc_payload; 1262 } 1263 1264 if (num_async) { 1265 /* Transmit if any encryptions have completed */ 1266 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1267 cancel_delayed_work(&ctx->tx_work.work); 1268 tls_tx_records(sk, flags); 1269 } 1270 } 1271 sendpage_end: 1272 ret = sk_stream_error(sk, flags, ret); 1273 return copied > 0 ? copied : ret; 1274 } 1275 1276 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 1277 int offset, size_t size, int flags) 1278 { 1279 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1280 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | 1281 MSG_NO_SHARED_FRAGS)) 1282 return -EOPNOTSUPP; 1283 1284 return tls_sw_do_sendpage(sk, page, offset, size, flags); 1285 } 1286 1287 int tls_sw_sendpage(struct sock *sk, struct page *page, 1288 int offset, size_t size, int flags) 1289 { 1290 struct tls_context *tls_ctx = tls_get_ctx(sk); 1291 int ret; 1292 1293 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1294 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1295 return -EOPNOTSUPP; 1296 1297 ret = mutex_lock_interruptible(&tls_ctx->tx_lock); 1298 if (ret) 1299 return ret; 1300 lock_sock(sk); 1301 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1302 release_sock(sk); 1303 mutex_unlock(&tls_ctx->tx_lock); 1304 return ret; 1305 } 1306 1307 static int 1308 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, 1309 bool released) 1310 { 1311 struct tls_context *tls_ctx = tls_get_ctx(sk); 1312 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1313 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1314 long timeo; 1315 1316 timeo = sock_rcvtimeo(sk, nonblock); 1317 1318 while (!tls_strp_msg_ready(ctx)) { 1319 if (!sk_psock_queue_empty(psock)) 1320 return 0; 1321 1322 if (sk->sk_err) 1323 return sock_error(sk); 1324 1325 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1326 tls_strp_check_rcv(&ctx->strp); 1327 if (tls_strp_msg_ready(ctx)) 1328 break; 1329 } 1330 1331 if (sk->sk_shutdown & RCV_SHUTDOWN) 1332 return 0; 1333 1334 if (sock_flag(sk, SOCK_DONE)) 1335 return 0; 1336 1337 if (!timeo) 1338 return -EAGAIN; 1339 1340 released = true; 1341 add_wait_queue(sk_sleep(sk), &wait); 1342 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1343 sk_wait_event(sk, &timeo, 1344 tls_strp_msg_ready(ctx) || 1345 !sk_psock_queue_empty(psock), 1346 &wait); 1347 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1348 remove_wait_queue(sk_sleep(sk), &wait); 1349 1350 /* Handle signals */ 1351 if (signal_pending(current)) 1352 return sock_intr_errno(timeo); 1353 } 1354 1355 tls_strp_msg_load(&ctx->strp, released); 1356 1357 return 1; 1358 } 1359 1360 static int tls_setup_from_iter(struct iov_iter *from, 1361 int length, int *pages_used, 1362 struct scatterlist *to, 1363 int to_max_pages) 1364 { 1365 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1366 struct page *pages[MAX_SKB_FRAGS]; 1367 unsigned int size = 0; 1368 ssize_t copied, use; 1369 size_t offset; 1370 1371 while (length > 0) { 1372 i = 0; 1373 maxpages = to_max_pages - num_elem; 1374 if (maxpages == 0) { 1375 rc = -EFAULT; 1376 goto out; 1377 } 1378 copied = iov_iter_get_pages2(from, pages, 1379 length, 1380 maxpages, &offset); 1381 if (copied <= 0) { 1382 rc = -EFAULT; 1383 goto out; 1384 } 1385 1386 length -= copied; 1387 size += copied; 1388 while (copied) { 1389 use = min_t(int, copied, PAGE_SIZE - offset); 1390 1391 sg_set_page(&to[num_elem], 1392 pages[i], use, offset); 1393 sg_unmark_end(&to[num_elem]); 1394 /* We do not uncharge memory from this API */ 1395 1396 offset = 0; 1397 copied -= use; 1398 1399 i++; 1400 num_elem++; 1401 } 1402 } 1403 /* Mark the end in the last sg entry if newly added */ 1404 if (num_elem > *pages_used) 1405 sg_mark_end(&to[num_elem - 1]); 1406 out: 1407 if (rc) 1408 iov_iter_revert(from, size); 1409 *pages_used = num_elem; 1410 1411 return rc; 1412 } 1413 1414 static struct sk_buff * 1415 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, 1416 unsigned int full_len) 1417 { 1418 struct strp_msg *clr_rxm; 1419 struct sk_buff *clr_skb; 1420 int err; 1421 1422 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, 1423 &err, sk->sk_allocation); 1424 if (!clr_skb) 1425 return NULL; 1426 1427 skb_copy_header(clr_skb, skb); 1428 clr_skb->len = full_len; 1429 clr_skb->data_len = full_len; 1430 1431 clr_rxm = strp_msg(clr_skb); 1432 clr_rxm->offset = 0; 1433 1434 return clr_skb; 1435 } 1436 1437 /* Decrypt handlers 1438 * 1439 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. 1440 * They must transform the darg in/out argument are as follows: 1441 * | Input | Output 1442 * ------------------------------------------------------------------- 1443 * zc | Zero-copy decrypt allowed | Zero-copy performed 1444 * async | Async decrypt allowed | Async crypto used / in progress 1445 * skb | * | Output skb 1446 * 1447 * If ZC decryption was performed darg.skb will point to the input skb. 1448 */ 1449 1450 /* This function decrypts the input skb into either out_iov or in out_sg 1451 * or in skb buffers itself. The input parameter 'darg->zc' indicates if 1452 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1453 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1454 * NULL, then the decryption happens inside skb buffers itself, i.e. 1455 * zero-copy gets disabled and 'darg->zc' is updated. 1456 */ 1457 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, 1458 struct scatterlist *out_sg, 1459 struct tls_decrypt_arg *darg) 1460 { 1461 struct tls_context *tls_ctx = tls_get_ctx(sk); 1462 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1463 struct tls_prot_info *prot = &tls_ctx->prot_info; 1464 int n_sgin, n_sgout, aead_size, err, pages = 0; 1465 struct sk_buff *skb = tls_strp_msg(ctx); 1466 const struct strp_msg *rxm = strp_msg(skb); 1467 const struct tls_msg *tlm = tls_msg(skb); 1468 struct aead_request *aead_req; 1469 struct scatterlist *sgin = NULL; 1470 struct scatterlist *sgout = NULL; 1471 const int data_len = rxm->full_len - prot->overhead_size; 1472 int tail_pages = !!prot->tail_size; 1473 struct tls_decrypt_ctx *dctx; 1474 struct sk_buff *clear_skb; 1475 int iv_offset = 0; 1476 u8 *mem; 1477 1478 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1479 rxm->full_len - prot->prepend_size); 1480 if (n_sgin < 1) 1481 return n_sgin ?: -EBADMSG; 1482 1483 if (darg->zc && (out_iov || out_sg)) { 1484 clear_skb = NULL; 1485 1486 if (out_iov) 1487 n_sgout = 1 + tail_pages + 1488 iov_iter_npages_cap(out_iov, INT_MAX, data_len); 1489 else 1490 n_sgout = sg_nents(out_sg); 1491 } else { 1492 darg->zc = false; 1493 1494 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); 1495 if (!clear_skb) 1496 return -ENOMEM; 1497 1498 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; 1499 } 1500 1501 /* Increment to accommodate AAD */ 1502 n_sgin = n_sgin + 1; 1503 1504 /* Allocate a single block of memory which contains 1505 * aead_req || tls_decrypt_ctx. 1506 * Both structs are variable length. 1507 */ 1508 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1509 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 1510 mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout), 1511 sk->sk_allocation); 1512 if (!mem) { 1513 err = -ENOMEM; 1514 goto exit_free_skb; 1515 } 1516 1517 /* Segment the allocated memory */ 1518 aead_req = (struct aead_request *)mem; 1519 dctx = (struct tls_decrypt_ctx *)(mem + aead_size); 1520 dctx->sk = sk; 1521 sgin = &dctx->sg[0]; 1522 sgout = &dctx->sg[n_sgin]; 1523 1524 /* For CCM based ciphers, first byte of nonce+iv is a constant */ 1525 switch (prot->cipher_type) { 1526 case TLS_CIPHER_AES_CCM_128: 1527 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; 1528 iv_offset = 1; 1529 break; 1530 case TLS_CIPHER_SM4_CCM: 1531 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; 1532 iv_offset = 1; 1533 break; 1534 } 1535 1536 /* Prepare IV */ 1537 if (prot->version == TLS_1_3_VERSION || 1538 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 1539 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, 1540 prot->iv_size + prot->salt_size); 1541 } else { 1542 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1543 &dctx->iv[iv_offset] + prot->salt_size, 1544 prot->iv_size); 1545 if (err < 0) 1546 goto exit_free; 1547 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); 1548 } 1549 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); 1550 1551 /* Prepare AAD */ 1552 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + 1553 prot->tail_size, 1554 tls_ctx->rx.rec_seq, tlm->control, prot); 1555 1556 /* Prepare sgin */ 1557 sg_init_table(sgin, n_sgin); 1558 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); 1559 err = skb_to_sgvec(skb, &sgin[1], 1560 rxm->offset + prot->prepend_size, 1561 rxm->full_len - prot->prepend_size); 1562 if (err < 0) 1563 goto exit_free; 1564 1565 if (clear_skb) { 1566 sg_init_table(sgout, n_sgout); 1567 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1568 1569 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, 1570 data_len + prot->tail_size); 1571 if (err < 0) 1572 goto exit_free; 1573 } else if (out_iov) { 1574 sg_init_table(sgout, n_sgout); 1575 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1576 1577 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], 1578 (n_sgout - 1 - tail_pages)); 1579 if (err < 0) 1580 goto exit_free_pages; 1581 1582 if (prot->tail_size) { 1583 sg_unmark_end(&sgout[pages]); 1584 sg_set_buf(&sgout[pages + 1], &dctx->tail, 1585 prot->tail_size); 1586 sg_mark_end(&sgout[pages + 1]); 1587 } 1588 } else if (out_sg) { 1589 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1590 } 1591 1592 /* Prepare and submit AEAD request */ 1593 err = tls_do_decryption(sk, sgin, sgout, dctx->iv, 1594 data_len + prot->tail_size, aead_req, darg); 1595 if (err) 1596 goto exit_free_pages; 1597 1598 darg->skb = clear_skb ?: tls_strp_msg(ctx); 1599 clear_skb = NULL; 1600 1601 if (unlikely(darg->async)) { 1602 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); 1603 if (err) 1604 __skb_queue_tail(&ctx->async_hold, darg->skb); 1605 return err; 1606 } 1607 1608 if (prot->tail_size) 1609 darg->tail = dctx->tail; 1610 1611 exit_free_pages: 1612 /* Release the pages in case iov was mapped to pages */ 1613 for (; pages > 0; pages--) 1614 put_page(sg_page(&sgout[pages])); 1615 exit_free: 1616 kfree(mem); 1617 exit_free_skb: 1618 consume_skb(clear_skb); 1619 return err; 1620 } 1621 1622 static int 1623 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, 1624 struct msghdr *msg, struct tls_decrypt_arg *darg) 1625 { 1626 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1627 struct tls_prot_info *prot = &tls_ctx->prot_info; 1628 struct strp_msg *rxm; 1629 int pad, err; 1630 1631 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); 1632 if (err < 0) { 1633 if (err == -EBADMSG) 1634 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 1635 return err; 1636 } 1637 /* keep going even for ->async, the code below is TLS 1.3 */ 1638 1639 /* If opportunistic TLS 1.3 ZC failed retry without ZC */ 1640 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && 1641 darg->tail != TLS_RECORD_TYPE_DATA)) { 1642 darg->zc = false; 1643 if (!darg->tail) 1644 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); 1645 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); 1646 return tls_decrypt_sw(sk, tls_ctx, msg, darg); 1647 } 1648 1649 pad = tls_padding_length(prot, darg->skb, darg); 1650 if (pad < 0) { 1651 if (darg->skb != tls_strp_msg(ctx)) 1652 consume_skb(darg->skb); 1653 return pad; 1654 } 1655 1656 rxm = strp_msg(darg->skb); 1657 rxm->full_len -= pad; 1658 1659 return 0; 1660 } 1661 1662 static int 1663 tls_decrypt_device(struct sock *sk, struct msghdr *msg, 1664 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) 1665 { 1666 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1667 struct tls_prot_info *prot = &tls_ctx->prot_info; 1668 struct strp_msg *rxm; 1669 int pad, err; 1670 1671 if (tls_ctx->rx_conf != TLS_HW) 1672 return 0; 1673 1674 err = tls_device_decrypted(sk, tls_ctx); 1675 if (err <= 0) 1676 return err; 1677 1678 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); 1679 if (pad < 0) 1680 return pad; 1681 1682 darg->async = false; 1683 darg->skb = tls_strp_msg(ctx); 1684 /* ->zc downgrade check, in case TLS 1.3 gets here */ 1685 darg->zc &= !(prot->version == TLS_1_3_VERSION && 1686 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); 1687 1688 rxm = strp_msg(darg->skb); 1689 rxm->full_len -= pad; 1690 1691 if (!darg->zc) { 1692 /* Non-ZC case needs a real skb */ 1693 darg->skb = tls_strp_msg_detach(ctx); 1694 if (!darg->skb) 1695 return -ENOMEM; 1696 } else { 1697 unsigned int off, len; 1698 1699 /* In ZC case nobody cares about the output skb. 1700 * Just copy the data here. Note the skb is not fully trimmed. 1701 */ 1702 off = rxm->offset + prot->prepend_size; 1703 len = rxm->full_len - prot->overhead_size; 1704 1705 err = skb_copy_datagram_msg(darg->skb, off, msg, len); 1706 if (err) 1707 return err; 1708 } 1709 return 1; 1710 } 1711 1712 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, 1713 struct tls_decrypt_arg *darg) 1714 { 1715 struct tls_context *tls_ctx = tls_get_ctx(sk); 1716 struct tls_prot_info *prot = &tls_ctx->prot_info; 1717 struct strp_msg *rxm; 1718 int err; 1719 1720 err = tls_decrypt_device(sk, msg, tls_ctx, darg); 1721 if (!err) 1722 err = tls_decrypt_sw(sk, tls_ctx, msg, darg); 1723 if (err < 0) 1724 return err; 1725 1726 rxm = strp_msg(darg->skb); 1727 rxm->offset += prot->prepend_size; 1728 rxm->full_len -= prot->overhead_size; 1729 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1730 1731 return 0; 1732 } 1733 1734 int decrypt_skb(struct sock *sk, struct scatterlist *sgout) 1735 { 1736 struct tls_decrypt_arg darg = { .zc = true, }; 1737 1738 return tls_decrypt_sg(sk, NULL, sgout, &darg); 1739 } 1740 1741 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, 1742 u8 *control) 1743 { 1744 int err; 1745 1746 if (!*control) { 1747 *control = tlm->control; 1748 if (!*control) 1749 return -EBADMSG; 1750 1751 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1752 sizeof(*control), control); 1753 if (*control != TLS_RECORD_TYPE_DATA) { 1754 if (err || msg->msg_flags & MSG_CTRUNC) 1755 return -EIO; 1756 } 1757 } else if (*control != tlm->control) { 1758 return 0; 1759 } 1760 1761 return 1; 1762 } 1763 1764 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) 1765 { 1766 tls_strp_msg_done(&ctx->strp); 1767 } 1768 1769 /* This function traverses the rx_list in tls receive context to copies the 1770 * decrypted records into the buffer provided by caller zero copy is not 1771 * true. Further, the records are removed from the rx_list if it is not a peek 1772 * case and the record has been consumed completely. 1773 */ 1774 static int process_rx_list(struct tls_sw_context_rx *ctx, 1775 struct msghdr *msg, 1776 u8 *control, 1777 size_t skip, 1778 size_t len, 1779 bool is_peek) 1780 { 1781 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1782 struct tls_msg *tlm; 1783 ssize_t copied = 0; 1784 int err; 1785 1786 while (skip && skb) { 1787 struct strp_msg *rxm = strp_msg(skb); 1788 tlm = tls_msg(skb); 1789 1790 err = tls_record_content_type(msg, tlm, control); 1791 if (err <= 0) 1792 goto out; 1793 1794 if (skip < rxm->full_len) 1795 break; 1796 1797 skip = skip - rxm->full_len; 1798 skb = skb_peek_next(skb, &ctx->rx_list); 1799 } 1800 1801 while (len && skb) { 1802 struct sk_buff *next_skb; 1803 struct strp_msg *rxm = strp_msg(skb); 1804 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1805 1806 tlm = tls_msg(skb); 1807 1808 err = tls_record_content_type(msg, tlm, control); 1809 if (err <= 0) 1810 goto out; 1811 1812 err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1813 msg, chunk); 1814 if (err < 0) 1815 goto out; 1816 1817 len = len - chunk; 1818 copied = copied + chunk; 1819 1820 /* Consume the data from record if it is non-peek case*/ 1821 if (!is_peek) { 1822 rxm->offset = rxm->offset + chunk; 1823 rxm->full_len = rxm->full_len - chunk; 1824 1825 /* Return if there is unconsumed data in the record */ 1826 if (rxm->full_len - skip) 1827 break; 1828 } 1829 1830 /* The remaining skip-bytes must lie in 1st record in rx_list. 1831 * So from the 2nd record, 'skip' should be 0. 1832 */ 1833 skip = 0; 1834 1835 if (msg) 1836 msg->msg_flags |= MSG_EOR; 1837 1838 next_skb = skb_peek_next(skb, &ctx->rx_list); 1839 1840 if (!is_peek) { 1841 __skb_unlink(skb, &ctx->rx_list); 1842 consume_skb(skb); 1843 } 1844 1845 skb = next_skb; 1846 } 1847 err = 0; 1848 1849 out: 1850 return copied ? : err; 1851 } 1852 1853 static bool 1854 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, 1855 size_t len_left, size_t decrypted, ssize_t done, 1856 size_t *flushed_at) 1857 { 1858 size_t max_rec; 1859 1860 if (len_left <= decrypted) 1861 return false; 1862 1863 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; 1864 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) 1865 return false; 1866 1867 *flushed_at = done; 1868 return sk_flush_backlog(sk); 1869 } 1870 1871 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, 1872 bool nonblock) 1873 { 1874 long timeo; 1875 int err; 1876 1877 lock_sock(sk); 1878 1879 timeo = sock_rcvtimeo(sk, nonblock); 1880 1881 while (unlikely(ctx->reader_present)) { 1882 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1883 1884 ctx->reader_contended = 1; 1885 1886 add_wait_queue(&ctx->wq, &wait); 1887 sk_wait_event(sk, &timeo, 1888 !READ_ONCE(ctx->reader_present), &wait); 1889 remove_wait_queue(&ctx->wq, &wait); 1890 1891 if (timeo <= 0) { 1892 err = -EAGAIN; 1893 goto err_unlock; 1894 } 1895 if (signal_pending(current)) { 1896 err = sock_intr_errno(timeo); 1897 goto err_unlock; 1898 } 1899 } 1900 1901 WRITE_ONCE(ctx->reader_present, 1); 1902 1903 return 0; 1904 1905 err_unlock: 1906 release_sock(sk); 1907 return err; 1908 } 1909 1910 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) 1911 { 1912 if (unlikely(ctx->reader_contended)) { 1913 if (wq_has_sleeper(&ctx->wq)) 1914 wake_up(&ctx->wq); 1915 else 1916 ctx->reader_contended = 0; 1917 1918 WARN_ON_ONCE(!ctx->reader_present); 1919 } 1920 1921 WRITE_ONCE(ctx->reader_present, 0); 1922 release_sock(sk); 1923 } 1924 1925 int tls_sw_recvmsg(struct sock *sk, 1926 struct msghdr *msg, 1927 size_t len, 1928 int flags, 1929 int *addr_len) 1930 { 1931 struct tls_context *tls_ctx = tls_get_ctx(sk); 1932 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1933 struct tls_prot_info *prot = &tls_ctx->prot_info; 1934 ssize_t decrypted = 0, async_copy_bytes = 0; 1935 struct sk_psock *psock; 1936 unsigned char control = 0; 1937 size_t flushed_at = 0; 1938 struct strp_msg *rxm; 1939 struct tls_msg *tlm; 1940 ssize_t copied = 0; 1941 bool async = false; 1942 int target, err; 1943 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1944 bool is_peek = flags & MSG_PEEK; 1945 bool released = true; 1946 bool bpf_strp_enabled; 1947 bool zc_capable; 1948 1949 if (unlikely(flags & MSG_ERRQUEUE)) 1950 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1951 1952 psock = sk_psock_get(sk); 1953 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); 1954 if (err < 0) 1955 return err; 1956 bpf_strp_enabled = sk_psock_strp_enabled(psock); 1957 1958 /* If crypto failed the connection is broken */ 1959 err = ctx->async_wait.err; 1960 if (err) 1961 goto end; 1962 1963 /* Process pending decrypted records. It must be non-zero-copy */ 1964 err = process_rx_list(ctx, msg, &control, 0, len, is_peek); 1965 if (err < 0) 1966 goto end; 1967 1968 copied = err; 1969 if (len <= copied) 1970 goto end; 1971 1972 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1973 len = len - copied; 1974 1975 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && 1976 ctx->zc_capable; 1977 decrypted = 0; 1978 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { 1979 struct tls_decrypt_arg darg; 1980 int to_decrypt, chunk; 1981 1982 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, 1983 released); 1984 if (err <= 0) { 1985 if (psock) { 1986 chunk = sk_msg_recvmsg(sk, psock, msg, len, 1987 flags); 1988 if (chunk > 0) { 1989 decrypted += chunk; 1990 len -= chunk; 1991 continue; 1992 } 1993 } 1994 goto recv_end; 1995 } 1996 1997 memset(&darg.inargs, 0, sizeof(darg.inargs)); 1998 1999 rxm = strp_msg(tls_strp_msg(ctx)); 2000 tlm = tls_msg(tls_strp_msg(ctx)); 2001 2002 to_decrypt = rxm->full_len - prot->overhead_size; 2003 2004 if (zc_capable && to_decrypt <= len && 2005 tlm->control == TLS_RECORD_TYPE_DATA) 2006 darg.zc = true; 2007 2008 /* Do not use async mode if record is non-data */ 2009 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 2010 darg.async = ctx->async_capable; 2011 else 2012 darg.async = false; 2013 2014 err = tls_rx_one_record(sk, msg, &darg); 2015 if (err < 0) { 2016 tls_err_abort(sk, -EBADMSG); 2017 goto recv_end; 2018 } 2019 2020 async |= darg.async; 2021 2022 /* If the type of records being processed is not known yet, 2023 * set it to record type just dequeued. If it is already known, 2024 * but does not match the record type just dequeued, go to end. 2025 * We always get record type here since for tls1.2, record type 2026 * is known just after record is dequeued from stream parser. 2027 * For tls1.3, we disable async. 2028 */ 2029 err = tls_record_content_type(msg, tls_msg(darg.skb), &control); 2030 if (err <= 0) { 2031 DEBUG_NET_WARN_ON_ONCE(darg.zc); 2032 tls_rx_rec_done(ctx); 2033 put_on_rx_list_err: 2034 __skb_queue_tail(&ctx->rx_list, darg.skb); 2035 goto recv_end; 2036 } 2037 2038 /* periodically flush backlog, and feed strparser */ 2039 released = tls_read_flush_backlog(sk, prot, len, to_decrypt, 2040 decrypted + copied, 2041 &flushed_at); 2042 2043 /* TLS 1.3 may have updated the length by more than overhead */ 2044 rxm = strp_msg(darg.skb); 2045 chunk = rxm->full_len; 2046 tls_rx_rec_done(ctx); 2047 2048 if (!darg.zc) { 2049 bool partially_consumed = chunk > len; 2050 struct sk_buff *skb = darg.skb; 2051 2052 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); 2053 2054 if (async) { 2055 /* TLS 1.2-only, to_decrypt must be text len */ 2056 chunk = min_t(int, to_decrypt, len); 2057 async_copy_bytes += chunk; 2058 put_on_rx_list: 2059 decrypted += chunk; 2060 len -= chunk; 2061 __skb_queue_tail(&ctx->rx_list, skb); 2062 continue; 2063 } 2064 2065 if (bpf_strp_enabled) { 2066 released = true; 2067 err = sk_psock_tls_strp_read(psock, skb); 2068 if (err != __SK_PASS) { 2069 rxm->offset = rxm->offset + rxm->full_len; 2070 rxm->full_len = 0; 2071 if (err == __SK_DROP) 2072 consume_skb(skb); 2073 continue; 2074 } 2075 } 2076 2077 if (partially_consumed) 2078 chunk = len; 2079 2080 err = skb_copy_datagram_msg(skb, rxm->offset, 2081 msg, chunk); 2082 if (err < 0) 2083 goto put_on_rx_list_err; 2084 2085 if (is_peek) 2086 goto put_on_rx_list; 2087 2088 if (partially_consumed) { 2089 rxm->offset += chunk; 2090 rxm->full_len -= chunk; 2091 goto put_on_rx_list; 2092 } 2093 2094 consume_skb(skb); 2095 } 2096 2097 decrypted += chunk; 2098 len -= chunk; 2099 2100 /* Return full control message to userspace before trying 2101 * to parse another message type 2102 */ 2103 msg->msg_flags |= MSG_EOR; 2104 if (control != TLS_RECORD_TYPE_DATA) 2105 break; 2106 } 2107 2108 recv_end: 2109 if (async) { 2110 int ret, pending; 2111 2112 /* Wait for all previously submitted records to be decrypted */ 2113 spin_lock_bh(&ctx->decrypt_compl_lock); 2114 reinit_completion(&ctx->async_wait.completion); 2115 pending = atomic_read(&ctx->decrypt_pending); 2116 spin_unlock_bh(&ctx->decrypt_compl_lock); 2117 ret = 0; 2118 if (pending) 2119 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2120 __skb_queue_purge(&ctx->async_hold); 2121 2122 if (ret) { 2123 if (err >= 0 || err == -EINPROGRESS) 2124 err = ret; 2125 decrypted = 0; 2126 goto end; 2127 } 2128 2129 /* Drain records from the rx_list & copy if required */ 2130 if (is_peek || is_kvec) 2131 err = process_rx_list(ctx, msg, &control, copied, 2132 decrypted, is_peek); 2133 else 2134 err = process_rx_list(ctx, msg, &control, 0, 2135 async_copy_bytes, is_peek); 2136 decrypted += max(err, 0); 2137 } 2138 2139 copied += decrypted; 2140 2141 end: 2142 tls_rx_reader_unlock(sk, ctx); 2143 if (psock) 2144 sk_psock_put(sk, psock); 2145 return copied ? : err; 2146 } 2147 2148 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 2149 struct pipe_inode_info *pipe, 2150 size_t len, unsigned int flags) 2151 { 2152 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 2153 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2154 struct strp_msg *rxm = NULL; 2155 struct sock *sk = sock->sk; 2156 struct tls_msg *tlm; 2157 struct sk_buff *skb; 2158 ssize_t copied = 0; 2159 int chunk; 2160 int err; 2161 2162 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); 2163 if (err < 0) 2164 return err; 2165 2166 if (!skb_queue_empty(&ctx->rx_list)) { 2167 skb = __skb_dequeue(&ctx->rx_list); 2168 } else { 2169 struct tls_decrypt_arg darg; 2170 2171 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, 2172 true); 2173 if (err <= 0) 2174 goto splice_read_end; 2175 2176 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2177 2178 err = tls_rx_one_record(sk, NULL, &darg); 2179 if (err < 0) { 2180 tls_err_abort(sk, -EBADMSG); 2181 goto splice_read_end; 2182 } 2183 2184 tls_rx_rec_done(ctx); 2185 skb = darg.skb; 2186 } 2187 2188 rxm = strp_msg(skb); 2189 tlm = tls_msg(skb); 2190 2191 /* splice does not support reading control messages */ 2192 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2193 err = -EINVAL; 2194 goto splice_requeue; 2195 } 2196 2197 chunk = min_t(unsigned int, rxm->full_len, len); 2198 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2199 if (copied < 0) 2200 goto splice_requeue; 2201 2202 if (chunk < rxm->full_len) { 2203 rxm->offset += len; 2204 rxm->full_len -= len; 2205 goto splice_requeue; 2206 } 2207 2208 consume_skb(skb); 2209 2210 splice_read_end: 2211 tls_rx_reader_unlock(sk, ctx); 2212 return copied ? : err; 2213 2214 splice_requeue: 2215 __skb_queue_head(&ctx->rx_list, skb); 2216 goto splice_read_end; 2217 } 2218 2219 bool tls_sw_sock_is_readable(struct sock *sk) 2220 { 2221 struct tls_context *tls_ctx = tls_get_ctx(sk); 2222 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2223 bool ingress_empty = true; 2224 struct sk_psock *psock; 2225 2226 rcu_read_lock(); 2227 psock = sk_psock(sk); 2228 if (psock) 2229 ingress_empty = list_empty(&psock->ingress_msg); 2230 rcu_read_unlock(); 2231 2232 return !ingress_empty || tls_strp_msg_ready(ctx) || 2233 !skb_queue_empty(&ctx->rx_list); 2234 } 2235 2236 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) 2237 { 2238 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2239 struct tls_prot_info *prot = &tls_ctx->prot_info; 2240 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 2241 size_t cipher_overhead; 2242 size_t data_len = 0; 2243 int ret; 2244 2245 /* Verify that we have a full TLS header, or wait for more data */ 2246 if (strp->stm.offset + prot->prepend_size > skb->len) 2247 return 0; 2248 2249 /* Sanity-check size of on-stack buffer. */ 2250 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2251 ret = -EINVAL; 2252 goto read_failure; 2253 } 2254 2255 /* Linearize header to local buffer */ 2256 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); 2257 if (ret < 0) 2258 goto read_failure; 2259 2260 strp->mark = header[0]; 2261 2262 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2263 2264 cipher_overhead = prot->tag_size; 2265 if (prot->version != TLS_1_3_VERSION && 2266 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2267 cipher_overhead += prot->iv_size; 2268 2269 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2270 prot->tail_size) { 2271 ret = -EMSGSIZE; 2272 goto read_failure; 2273 } 2274 if (data_len < cipher_overhead) { 2275 ret = -EBADMSG; 2276 goto read_failure; 2277 } 2278 2279 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2280 if (header[1] != TLS_1_2_VERSION_MINOR || 2281 header[2] != TLS_1_2_VERSION_MAJOR) { 2282 ret = -EINVAL; 2283 goto read_failure; 2284 } 2285 2286 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2287 TCP_SKB_CB(skb)->seq + strp->stm.offset); 2288 return data_len + TLS_HEADER_SIZE; 2289 2290 read_failure: 2291 tls_err_abort(strp->sk, ret); 2292 2293 return ret; 2294 } 2295 2296 void tls_rx_msg_ready(struct tls_strparser *strp) 2297 { 2298 struct tls_sw_context_rx *ctx; 2299 2300 ctx = container_of(strp, struct tls_sw_context_rx, strp); 2301 ctx->saved_data_ready(strp->sk); 2302 } 2303 2304 static void tls_data_ready(struct sock *sk) 2305 { 2306 struct tls_context *tls_ctx = tls_get_ctx(sk); 2307 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2308 struct sk_psock *psock; 2309 gfp_t alloc_save; 2310 2311 trace_sk_data_ready(sk); 2312 2313 alloc_save = sk->sk_allocation; 2314 sk->sk_allocation = GFP_ATOMIC; 2315 tls_strp_data_ready(&ctx->strp); 2316 sk->sk_allocation = alloc_save; 2317 2318 psock = sk_psock_get(sk); 2319 if (psock) { 2320 if (!list_empty(&psock->ingress_msg)) 2321 ctx->saved_data_ready(sk); 2322 sk_psock_put(sk, psock); 2323 } 2324 } 2325 2326 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2327 { 2328 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2329 2330 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2331 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2332 cancel_delayed_work_sync(&ctx->tx_work.work); 2333 } 2334 2335 void tls_sw_release_resources_tx(struct sock *sk) 2336 { 2337 struct tls_context *tls_ctx = tls_get_ctx(sk); 2338 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2339 struct tls_rec *rec, *tmp; 2340 int pending; 2341 2342 /* Wait for any pending async encryptions to complete */ 2343 spin_lock_bh(&ctx->encrypt_compl_lock); 2344 ctx->async_notify = true; 2345 pending = atomic_read(&ctx->encrypt_pending); 2346 spin_unlock_bh(&ctx->encrypt_compl_lock); 2347 2348 if (pending) 2349 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2350 2351 tls_tx_records(sk, -1); 2352 2353 /* Free up un-sent records in tx_list. First, free 2354 * the partially sent record if any at head of tx_list. 2355 */ 2356 if (tls_ctx->partially_sent_record) { 2357 tls_free_partial_record(sk, tls_ctx); 2358 rec = list_first_entry(&ctx->tx_list, 2359 struct tls_rec, list); 2360 list_del(&rec->list); 2361 sk_msg_free(sk, &rec->msg_plaintext); 2362 kfree(rec); 2363 } 2364 2365 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2366 list_del(&rec->list); 2367 sk_msg_free(sk, &rec->msg_encrypted); 2368 sk_msg_free(sk, &rec->msg_plaintext); 2369 kfree(rec); 2370 } 2371 2372 crypto_free_aead(ctx->aead_send); 2373 tls_free_open_rec(sk); 2374 } 2375 2376 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2377 { 2378 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2379 2380 kfree(ctx); 2381 } 2382 2383 void tls_sw_release_resources_rx(struct sock *sk) 2384 { 2385 struct tls_context *tls_ctx = tls_get_ctx(sk); 2386 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2387 2388 kfree(tls_ctx->rx.rec_seq); 2389 kfree(tls_ctx->rx.iv); 2390 2391 if (ctx->aead_recv) { 2392 __skb_queue_purge(&ctx->rx_list); 2393 crypto_free_aead(ctx->aead_recv); 2394 tls_strp_stop(&ctx->strp); 2395 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2396 * we still want to tls_strp_stop(), but sk->sk_data_ready was 2397 * never swapped. 2398 */ 2399 if (ctx->saved_data_ready) { 2400 write_lock_bh(&sk->sk_callback_lock); 2401 sk->sk_data_ready = ctx->saved_data_ready; 2402 write_unlock_bh(&sk->sk_callback_lock); 2403 } 2404 } 2405 } 2406 2407 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2408 { 2409 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2410 2411 tls_strp_done(&ctx->strp); 2412 } 2413 2414 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2415 { 2416 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2417 2418 kfree(ctx); 2419 } 2420 2421 void tls_sw_free_resources_rx(struct sock *sk) 2422 { 2423 struct tls_context *tls_ctx = tls_get_ctx(sk); 2424 2425 tls_sw_release_resources_rx(sk); 2426 tls_sw_free_ctx_rx(tls_ctx); 2427 } 2428 2429 /* The work handler to transmitt the encrypted records in tx_list */ 2430 static void tx_work_handler(struct work_struct *work) 2431 { 2432 struct delayed_work *delayed_work = to_delayed_work(work); 2433 struct tx_work *tx_work = container_of(delayed_work, 2434 struct tx_work, work); 2435 struct sock *sk = tx_work->sk; 2436 struct tls_context *tls_ctx = tls_get_ctx(sk); 2437 struct tls_sw_context_tx *ctx; 2438 2439 if (unlikely(!tls_ctx)) 2440 return; 2441 2442 ctx = tls_sw_ctx_tx(tls_ctx); 2443 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2444 return; 2445 2446 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2447 return; 2448 2449 if (mutex_trylock(&tls_ctx->tx_lock)) { 2450 lock_sock(sk); 2451 tls_tx_records(sk, -1); 2452 release_sock(sk); 2453 mutex_unlock(&tls_ctx->tx_lock); 2454 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 2455 /* Someone is holding the tx_lock, they will likely run Tx 2456 * and cancel the work on their way out of the lock section. 2457 * Schedule a long delay just in case. 2458 */ 2459 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10)); 2460 } 2461 } 2462 2463 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) 2464 { 2465 struct tls_rec *rec; 2466 2467 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list); 2468 if (!rec) 2469 return false; 2470 2471 return READ_ONCE(rec->tx_ready); 2472 } 2473 2474 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2475 { 2476 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2477 2478 /* Schedule the transmission if tx list is ready */ 2479 if (tls_is_tx_ready(tx_ctx) && 2480 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2481 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2482 } 2483 2484 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2485 { 2486 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2487 2488 write_lock_bh(&sk->sk_callback_lock); 2489 rx_ctx->saved_data_ready = sk->sk_data_ready; 2490 sk->sk_data_ready = tls_data_ready; 2491 write_unlock_bh(&sk->sk_callback_lock); 2492 } 2493 2494 void tls_update_rx_zc_capable(struct tls_context *tls_ctx) 2495 { 2496 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2497 2498 rx_ctx->zc_capable = tls_ctx->rx_no_pad || 2499 tls_ctx->prot_info.version != TLS_1_3_VERSION; 2500 } 2501 2502 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2503 { 2504 struct tls_context *tls_ctx = tls_get_ctx(sk); 2505 struct tls_prot_info *prot = &tls_ctx->prot_info; 2506 struct tls_crypto_info *crypto_info; 2507 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2508 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2509 struct cipher_context *cctx; 2510 struct crypto_aead **aead; 2511 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2512 struct crypto_tfm *tfm; 2513 char *iv, *rec_seq, *key, *salt, *cipher_name; 2514 size_t keysize; 2515 int rc = 0; 2516 2517 if (!ctx) { 2518 rc = -EINVAL; 2519 goto out; 2520 } 2521 2522 if (tx) { 2523 if (!ctx->priv_ctx_tx) { 2524 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2525 if (!sw_ctx_tx) { 2526 rc = -ENOMEM; 2527 goto out; 2528 } 2529 ctx->priv_ctx_tx = sw_ctx_tx; 2530 } else { 2531 sw_ctx_tx = 2532 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2533 } 2534 } else { 2535 if (!ctx->priv_ctx_rx) { 2536 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2537 if (!sw_ctx_rx) { 2538 rc = -ENOMEM; 2539 goto out; 2540 } 2541 ctx->priv_ctx_rx = sw_ctx_rx; 2542 } else { 2543 sw_ctx_rx = 2544 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2545 } 2546 } 2547 2548 if (tx) { 2549 crypto_init_wait(&sw_ctx_tx->async_wait); 2550 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); 2551 crypto_info = &ctx->crypto_send.info; 2552 cctx = &ctx->tx; 2553 aead = &sw_ctx_tx->aead_send; 2554 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2555 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2556 sw_ctx_tx->tx_work.sk = sk; 2557 } else { 2558 crypto_init_wait(&sw_ctx_rx->async_wait); 2559 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); 2560 init_waitqueue_head(&sw_ctx_rx->wq); 2561 crypto_info = &ctx->crypto_recv.info; 2562 cctx = &ctx->rx; 2563 skb_queue_head_init(&sw_ctx_rx->rx_list); 2564 skb_queue_head_init(&sw_ctx_rx->async_hold); 2565 aead = &sw_ctx_rx->aead_recv; 2566 } 2567 2568 switch (crypto_info->cipher_type) { 2569 case TLS_CIPHER_AES_GCM_128: { 2570 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2571 2572 gcm_128_info = (void *)crypto_info; 2573 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2574 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2575 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2576 iv = gcm_128_info->iv; 2577 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2578 rec_seq = gcm_128_info->rec_seq; 2579 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2580 key = gcm_128_info->key; 2581 salt = gcm_128_info->salt; 2582 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2583 cipher_name = "gcm(aes)"; 2584 break; 2585 } 2586 case TLS_CIPHER_AES_GCM_256: { 2587 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2588 2589 gcm_256_info = (void *)crypto_info; 2590 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2591 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2592 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2593 iv = gcm_256_info->iv; 2594 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2595 rec_seq = gcm_256_info->rec_seq; 2596 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2597 key = gcm_256_info->key; 2598 salt = gcm_256_info->salt; 2599 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2600 cipher_name = "gcm(aes)"; 2601 break; 2602 } 2603 case TLS_CIPHER_AES_CCM_128: { 2604 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2605 2606 ccm_128_info = (void *)crypto_info; 2607 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2608 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2609 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2610 iv = ccm_128_info->iv; 2611 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2612 rec_seq = ccm_128_info->rec_seq; 2613 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2614 key = ccm_128_info->key; 2615 salt = ccm_128_info->salt; 2616 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2617 cipher_name = "ccm(aes)"; 2618 break; 2619 } 2620 case TLS_CIPHER_CHACHA20_POLY1305: { 2621 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info; 2622 2623 chacha20_poly1305_info = (void *)crypto_info; 2624 nonce_size = 0; 2625 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE; 2626 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE; 2627 iv = chacha20_poly1305_info->iv; 2628 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE; 2629 rec_seq = chacha20_poly1305_info->rec_seq; 2630 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE; 2631 key = chacha20_poly1305_info->key; 2632 salt = chacha20_poly1305_info->salt; 2633 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE; 2634 cipher_name = "rfc7539(chacha20,poly1305)"; 2635 break; 2636 } 2637 case TLS_CIPHER_SM4_GCM: { 2638 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info; 2639 2640 sm4_gcm_info = (void *)crypto_info; 2641 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE; 2642 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE; 2643 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE; 2644 iv = sm4_gcm_info->iv; 2645 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE; 2646 rec_seq = sm4_gcm_info->rec_seq; 2647 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE; 2648 key = sm4_gcm_info->key; 2649 salt = sm4_gcm_info->salt; 2650 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE; 2651 cipher_name = "gcm(sm4)"; 2652 break; 2653 } 2654 case TLS_CIPHER_SM4_CCM: { 2655 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info; 2656 2657 sm4_ccm_info = (void *)crypto_info; 2658 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE; 2659 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE; 2660 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE; 2661 iv = sm4_ccm_info->iv; 2662 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE; 2663 rec_seq = sm4_ccm_info->rec_seq; 2664 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE; 2665 key = sm4_ccm_info->key; 2666 salt = sm4_ccm_info->salt; 2667 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE; 2668 cipher_name = "ccm(sm4)"; 2669 break; 2670 } 2671 case TLS_CIPHER_ARIA_GCM_128: { 2672 struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info; 2673 2674 aria_gcm_128_info = (void *)crypto_info; 2675 nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE; 2676 tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE; 2677 iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE; 2678 iv = aria_gcm_128_info->iv; 2679 rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE; 2680 rec_seq = aria_gcm_128_info->rec_seq; 2681 keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE; 2682 key = aria_gcm_128_info->key; 2683 salt = aria_gcm_128_info->salt; 2684 salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE; 2685 cipher_name = "gcm(aria)"; 2686 break; 2687 } 2688 case TLS_CIPHER_ARIA_GCM_256: { 2689 struct tls12_crypto_info_aria_gcm_256 *gcm_256_info; 2690 2691 gcm_256_info = (void *)crypto_info; 2692 nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE; 2693 tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE; 2694 iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE; 2695 iv = gcm_256_info->iv; 2696 rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE; 2697 rec_seq = gcm_256_info->rec_seq; 2698 keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE; 2699 key = gcm_256_info->key; 2700 salt = gcm_256_info->salt; 2701 salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE; 2702 cipher_name = "gcm(aria)"; 2703 break; 2704 } 2705 default: 2706 rc = -EINVAL; 2707 goto free_priv; 2708 } 2709 2710 if (crypto_info->version == TLS_1_3_VERSION) { 2711 nonce_size = 0; 2712 prot->aad_size = TLS_HEADER_SIZE; 2713 prot->tail_size = 1; 2714 } else { 2715 prot->aad_size = TLS_AAD_SPACE_SIZE; 2716 prot->tail_size = 0; 2717 } 2718 2719 /* Sanity-check the sizes for stack allocations. */ 2720 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2721 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE || 2722 prot->aad_size > TLS_MAX_AAD_SIZE) { 2723 rc = -EINVAL; 2724 goto free_priv; 2725 } 2726 2727 prot->version = crypto_info->version; 2728 prot->cipher_type = crypto_info->cipher_type; 2729 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2730 prot->tag_size = tag_size; 2731 prot->overhead_size = prot->prepend_size + 2732 prot->tag_size + prot->tail_size; 2733 prot->iv_size = iv_size; 2734 prot->salt_size = salt_size; 2735 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2736 if (!cctx->iv) { 2737 rc = -ENOMEM; 2738 goto free_priv; 2739 } 2740 /* Note: 128 & 256 bit salt are the same size */ 2741 prot->rec_seq_size = rec_seq_size; 2742 memcpy(cctx->iv, salt, salt_size); 2743 memcpy(cctx->iv + salt_size, iv, iv_size); 2744 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2745 if (!cctx->rec_seq) { 2746 rc = -ENOMEM; 2747 goto free_iv; 2748 } 2749 2750 if (!*aead) { 2751 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2752 if (IS_ERR(*aead)) { 2753 rc = PTR_ERR(*aead); 2754 *aead = NULL; 2755 goto free_rec_seq; 2756 } 2757 } 2758 2759 ctx->push_pending_record = tls_sw_push_pending_record; 2760 2761 rc = crypto_aead_setkey(*aead, key, keysize); 2762 2763 if (rc) 2764 goto free_aead; 2765 2766 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2767 if (rc) 2768 goto free_aead; 2769 2770 if (sw_ctx_rx) { 2771 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2772 2773 tls_update_rx_zc_capable(ctx); 2774 sw_ctx_rx->async_capable = 2775 crypto_info->version != TLS_1_3_VERSION && 2776 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); 2777 2778 rc = tls_strp_init(&sw_ctx_rx->strp, sk); 2779 if (rc) 2780 goto free_aead; 2781 } 2782 2783 goto out; 2784 2785 free_aead: 2786 crypto_free_aead(*aead); 2787 *aead = NULL; 2788 free_rec_seq: 2789 kfree(cctx->rec_seq); 2790 cctx->rec_seq = NULL; 2791 free_iv: 2792 kfree(cctx->iv); 2793 cctx->iv = NULL; 2794 free_priv: 2795 if (tx) { 2796 kfree(ctx->priv_ctx_tx); 2797 ctx->priv_ctx_tx = NULL; 2798 } else { 2799 kfree(ctx->priv_ctx_rx); 2800 ctx->priv_ctx_rx = NULL; 2801 } 2802 out: 2803 return rc; 2804 } 2805