1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <crypto/aead.h> 41 42 #include <net/strparser.h> 43 #include <net/tls.h> 44 45 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 46 unsigned int recursion_level) 47 { 48 int start = skb_headlen(skb); 49 int i, chunk = start - offset; 50 struct sk_buff *frag_iter; 51 int elt = 0; 52 53 if (unlikely(recursion_level >= 24)) 54 return -EMSGSIZE; 55 56 if (chunk > 0) { 57 if (chunk > len) 58 chunk = len; 59 elt++; 60 len -= chunk; 61 if (len == 0) 62 return elt; 63 offset += chunk; 64 } 65 66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 67 int end; 68 69 WARN_ON(start > offset + len); 70 71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 72 chunk = end - offset; 73 if (chunk > 0) { 74 if (chunk > len) 75 chunk = len; 76 elt++; 77 len -= chunk; 78 if (len == 0) 79 return elt; 80 offset += chunk; 81 } 82 start = end; 83 } 84 85 if (unlikely(skb_has_frag_list(skb))) { 86 skb_walk_frags(skb, frag_iter) { 87 int end, ret; 88 89 WARN_ON(start > offset + len); 90 91 end = start + frag_iter->len; 92 chunk = end - offset; 93 if (chunk > 0) { 94 if (chunk > len) 95 chunk = len; 96 ret = __skb_nsg(frag_iter, offset - start, chunk, 97 recursion_level + 1); 98 if (unlikely(ret < 0)) 99 return ret; 100 elt += ret; 101 len -= chunk; 102 if (len == 0) 103 return elt; 104 offset += chunk; 105 } 106 start = end; 107 } 108 } 109 BUG_ON(len); 110 return elt; 111 } 112 113 /* Return the number of scatterlist elements required to completely map the 114 * skb, or -EMSGSIZE if the recursion depth is exceeded. 115 */ 116 static int skb_nsg(struct sk_buff *skb, int offset, int len) 117 { 118 return __skb_nsg(skb, offset, len, 0); 119 } 120 121 static int padding_length(struct tls_sw_context_rx *ctx, 122 struct tls_context *tls_ctx, struct sk_buff *skb) 123 { 124 struct strp_msg *rxm = strp_msg(skb); 125 int sub = 0; 126 127 /* Determine zero-padding length */ 128 if (tls_ctx->prot_info.version == TLS_1_3_VERSION) { 129 char content_type = 0; 130 int err; 131 int back = 17; 132 133 while (content_type == 0) { 134 if (back > rxm->full_len) 135 return -EBADMSG; 136 err = skb_copy_bits(skb, 137 rxm->offset + rxm->full_len - back, 138 &content_type, 1); 139 if (content_type) 140 break; 141 sub++; 142 back++; 143 } 144 ctx->control = content_type; 145 } 146 return sub; 147 } 148 149 static void tls_decrypt_done(struct crypto_async_request *req, int err) 150 { 151 struct aead_request *aead_req = (struct aead_request *)req; 152 struct scatterlist *sgout = aead_req->dst; 153 struct scatterlist *sgin = aead_req->src; 154 struct tls_sw_context_rx *ctx; 155 struct tls_context *tls_ctx; 156 struct tls_prot_info *prot; 157 struct scatterlist *sg; 158 struct sk_buff *skb; 159 unsigned int pages; 160 int pending; 161 162 skb = (struct sk_buff *)req->data; 163 tls_ctx = tls_get_ctx(skb->sk); 164 ctx = tls_sw_ctx_rx(tls_ctx); 165 prot = &tls_ctx->prot_info; 166 167 /* Propagate if there was an err */ 168 if (err) { 169 ctx->async_wait.err = err; 170 tls_err_abort(skb->sk, err); 171 } else { 172 struct strp_msg *rxm = strp_msg(skb); 173 rxm->full_len -= padding_length(ctx, tls_ctx, skb); 174 rxm->offset += prot->prepend_size; 175 rxm->full_len -= prot->overhead_size; 176 } 177 178 /* After using skb->sk to propagate sk through crypto async callback 179 * we need to NULL it again. 180 */ 181 skb->sk = NULL; 182 183 184 /* Free the destination pages if skb was not decrypted inplace */ 185 if (sgout != sgin) { 186 /* Skip the first S/G entry as it points to AAD */ 187 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 188 if (!sg) 189 break; 190 put_page(sg_page(sg)); 191 } 192 } 193 194 kfree(aead_req); 195 196 pending = atomic_dec_return(&ctx->decrypt_pending); 197 198 if (!pending && READ_ONCE(ctx->async_notify)) 199 complete(&ctx->async_wait.completion); 200 } 201 202 static int tls_do_decryption(struct sock *sk, 203 struct sk_buff *skb, 204 struct scatterlist *sgin, 205 struct scatterlist *sgout, 206 char *iv_recv, 207 size_t data_len, 208 struct aead_request *aead_req, 209 bool async) 210 { 211 struct tls_context *tls_ctx = tls_get_ctx(sk); 212 struct tls_prot_info *prot = &tls_ctx->prot_info; 213 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 214 int ret; 215 216 aead_request_set_tfm(aead_req, ctx->aead_recv); 217 aead_request_set_ad(aead_req, prot->aad_size); 218 aead_request_set_crypt(aead_req, sgin, sgout, 219 data_len + prot->tag_size, 220 (u8 *)iv_recv); 221 222 if (async) { 223 /* Using skb->sk to push sk through to crypto async callback 224 * handler. This allows propagating errors up to the socket 225 * if needed. It _must_ be cleared in the async handler 226 * before consume_skb is called. We _know_ skb->sk is NULL 227 * because it is a clone from strparser. 228 */ 229 skb->sk = sk; 230 aead_request_set_callback(aead_req, 231 CRYPTO_TFM_REQ_MAY_BACKLOG, 232 tls_decrypt_done, skb); 233 atomic_inc(&ctx->decrypt_pending); 234 } else { 235 aead_request_set_callback(aead_req, 236 CRYPTO_TFM_REQ_MAY_BACKLOG, 237 crypto_req_done, &ctx->async_wait); 238 } 239 240 ret = crypto_aead_decrypt(aead_req); 241 if (ret == -EINPROGRESS) { 242 if (async) 243 return ret; 244 245 ret = crypto_wait_req(ret, &ctx->async_wait); 246 } 247 248 if (async) 249 atomic_dec(&ctx->decrypt_pending); 250 251 return ret; 252 } 253 254 static void tls_trim_both_msgs(struct sock *sk, int target_size) 255 { 256 struct tls_context *tls_ctx = tls_get_ctx(sk); 257 struct tls_prot_info *prot = &tls_ctx->prot_info; 258 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 259 struct tls_rec *rec = ctx->open_rec; 260 261 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 262 if (target_size > 0) 263 target_size += prot->overhead_size; 264 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 265 } 266 267 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 268 { 269 struct tls_context *tls_ctx = tls_get_ctx(sk); 270 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 271 struct tls_rec *rec = ctx->open_rec; 272 struct sk_msg *msg_en = &rec->msg_encrypted; 273 274 return sk_msg_alloc(sk, msg_en, len, 0); 275 } 276 277 static int tls_clone_plaintext_msg(struct sock *sk, int required) 278 { 279 struct tls_context *tls_ctx = tls_get_ctx(sk); 280 struct tls_prot_info *prot = &tls_ctx->prot_info; 281 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 282 struct tls_rec *rec = ctx->open_rec; 283 struct sk_msg *msg_pl = &rec->msg_plaintext; 284 struct sk_msg *msg_en = &rec->msg_encrypted; 285 int skip, len; 286 287 /* We add page references worth len bytes from encrypted sg 288 * at the end of plaintext sg. It is guaranteed that msg_en 289 * has enough required room (ensured by caller). 290 */ 291 len = required - msg_pl->sg.size; 292 293 /* Skip initial bytes in msg_en's data to be able to use 294 * same offset of both plain and encrypted data. 295 */ 296 skip = prot->prepend_size + msg_pl->sg.size; 297 298 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 299 } 300 301 static struct tls_rec *tls_get_rec(struct sock *sk) 302 { 303 struct tls_context *tls_ctx = tls_get_ctx(sk); 304 struct tls_prot_info *prot = &tls_ctx->prot_info; 305 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 306 struct sk_msg *msg_pl, *msg_en; 307 struct tls_rec *rec; 308 int mem_size; 309 310 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 311 312 rec = kzalloc(mem_size, sk->sk_allocation); 313 if (!rec) 314 return NULL; 315 316 msg_pl = &rec->msg_plaintext; 317 msg_en = &rec->msg_encrypted; 318 319 sk_msg_init(msg_pl); 320 sk_msg_init(msg_en); 321 322 sg_init_table(rec->sg_aead_in, 2); 323 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 324 sg_unmark_end(&rec->sg_aead_in[1]); 325 326 sg_init_table(rec->sg_aead_out, 2); 327 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 328 sg_unmark_end(&rec->sg_aead_out[1]); 329 330 return rec; 331 } 332 333 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 334 { 335 sk_msg_free(sk, &rec->msg_encrypted); 336 sk_msg_free(sk, &rec->msg_plaintext); 337 kfree(rec); 338 } 339 340 static void tls_free_open_rec(struct sock *sk) 341 { 342 struct tls_context *tls_ctx = tls_get_ctx(sk); 343 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 344 struct tls_rec *rec = ctx->open_rec; 345 346 if (rec) { 347 tls_free_rec(sk, rec); 348 ctx->open_rec = NULL; 349 } 350 } 351 352 int tls_tx_records(struct sock *sk, int flags) 353 { 354 struct tls_context *tls_ctx = tls_get_ctx(sk); 355 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 356 struct tls_rec *rec, *tmp; 357 struct sk_msg *msg_en; 358 int tx_flags, rc = 0; 359 360 if (tls_is_partially_sent_record(tls_ctx)) { 361 rec = list_first_entry(&ctx->tx_list, 362 struct tls_rec, list); 363 364 if (flags == -1) 365 tx_flags = rec->tx_flags; 366 else 367 tx_flags = flags; 368 369 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 370 if (rc) 371 goto tx_err; 372 373 /* Full record has been transmitted. 374 * Remove the head of tx_list 375 */ 376 list_del(&rec->list); 377 sk_msg_free(sk, &rec->msg_plaintext); 378 kfree(rec); 379 } 380 381 /* Tx all ready records */ 382 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 383 if (READ_ONCE(rec->tx_ready)) { 384 if (flags == -1) 385 tx_flags = rec->tx_flags; 386 else 387 tx_flags = flags; 388 389 msg_en = &rec->msg_encrypted; 390 rc = tls_push_sg(sk, tls_ctx, 391 &msg_en->sg.data[msg_en->sg.curr], 392 0, tx_flags); 393 if (rc) 394 goto tx_err; 395 396 list_del(&rec->list); 397 sk_msg_free(sk, &rec->msg_plaintext); 398 kfree(rec); 399 } else { 400 break; 401 } 402 } 403 404 tx_err: 405 if (rc < 0 && rc != -EAGAIN) 406 tls_err_abort(sk, EBADMSG); 407 408 return rc; 409 } 410 411 static void tls_encrypt_done(struct crypto_async_request *req, int err) 412 { 413 struct aead_request *aead_req = (struct aead_request *)req; 414 struct sock *sk = req->data; 415 struct tls_context *tls_ctx = tls_get_ctx(sk); 416 struct tls_prot_info *prot = &tls_ctx->prot_info; 417 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 418 struct scatterlist *sge; 419 struct sk_msg *msg_en; 420 struct tls_rec *rec; 421 bool ready = false; 422 int pending; 423 424 rec = container_of(aead_req, struct tls_rec, aead_req); 425 msg_en = &rec->msg_encrypted; 426 427 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 428 sge->offset -= prot->prepend_size; 429 sge->length += prot->prepend_size; 430 431 /* Check if error is previously set on socket */ 432 if (err || sk->sk_err) { 433 rec = NULL; 434 435 /* If err is already set on socket, return the same code */ 436 if (sk->sk_err) { 437 ctx->async_wait.err = sk->sk_err; 438 } else { 439 ctx->async_wait.err = err; 440 tls_err_abort(sk, err); 441 } 442 } 443 444 if (rec) { 445 struct tls_rec *first_rec; 446 447 /* Mark the record as ready for transmission */ 448 smp_store_mb(rec->tx_ready, true); 449 450 /* If received record is at head of tx_list, schedule tx */ 451 first_rec = list_first_entry(&ctx->tx_list, 452 struct tls_rec, list); 453 if (rec == first_rec) 454 ready = true; 455 } 456 457 pending = atomic_dec_return(&ctx->encrypt_pending); 458 459 if (!pending && READ_ONCE(ctx->async_notify)) 460 complete(&ctx->async_wait.completion); 461 462 if (!ready) 463 return; 464 465 /* Schedule the transmission */ 466 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 467 schedule_delayed_work(&ctx->tx_work.work, 1); 468 } 469 470 static int tls_do_encryption(struct sock *sk, 471 struct tls_context *tls_ctx, 472 struct tls_sw_context_tx *ctx, 473 struct aead_request *aead_req, 474 size_t data_len, u32 start) 475 { 476 struct tls_prot_info *prot = &tls_ctx->prot_info; 477 struct tls_rec *rec = ctx->open_rec; 478 struct sk_msg *msg_en = &rec->msg_encrypted; 479 struct scatterlist *sge = sk_msg_elem(msg_en, start); 480 int rc, iv_offset = 0; 481 482 /* For CCM based ciphers, first byte of IV is a constant */ 483 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 484 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 485 iv_offset = 1; 486 } 487 488 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 489 prot->iv_size + prot->salt_size); 490 491 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq); 492 493 sge->offset += prot->prepend_size; 494 sge->length -= prot->prepend_size; 495 496 msg_en->sg.curr = start; 497 498 aead_request_set_tfm(aead_req, ctx->aead_send); 499 aead_request_set_ad(aead_req, prot->aad_size); 500 aead_request_set_crypt(aead_req, rec->sg_aead_in, 501 rec->sg_aead_out, 502 data_len, rec->iv_data); 503 504 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 505 tls_encrypt_done, sk); 506 507 /* Add the record in tx_list */ 508 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 509 atomic_inc(&ctx->encrypt_pending); 510 511 rc = crypto_aead_encrypt(aead_req); 512 if (!rc || rc != -EINPROGRESS) { 513 atomic_dec(&ctx->encrypt_pending); 514 sge->offset -= prot->prepend_size; 515 sge->length += prot->prepend_size; 516 } 517 518 if (!rc) { 519 WRITE_ONCE(rec->tx_ready, true); 520 } else if (rc != -EINPROGRESS) { 521 list_del(&rec->list); 522 return rc; 523 } 524 525 /* Unhook the record from context if encryption is not failure */ 526 ctx->open_rec = NULL; 527 tls_advance_record_sn(sk, &tls_ctx->tx, prot->version); 528 return rc; 529 } 530 531 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 532 struct tls_rec **to, struct sk_msg *msg_opl, 533 struct sk_msg *msg_oen, u32 split_point, 534 u32 tx_overhead_size, u32 *orig_end) 535 { 536 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 537 struct scatterlist *sge, *osge, *nsge; 538 u32 orig_size = msg_opl->sg.size; 539 struct scatterlist tmp = { }; 540 struct sk_msg *msg_npl; 541 struct tls_rec *new; 542 int ret; 543 544 new = tls_get_rec(sk); 545 if (!new) 546 return -ENOMEM; 547 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 548 tx_overhead_size, 0); 549 if (ret < 0) { 550 tls_free_rec(sk, new); 551 return ret; 552 } 553 554 *orig_end = msg_opl->sg.end; 555 i = msg_opl->sg.start; 556 sge = sk_msg_elem(msg_opl, i); 557 while (apply && sge->length) { 558 if (sge->length > apply) { 559 u32 len = sge->length - apply; 560 561 get_page(sg_page(sge)); 562 sg_set_page(&tmp, sg_page(sge), len, 563 sge->offset + apply); 564 sge->length = apply; 565 bytes += apply; 566 apply = 0; 567 } else { 568 apply -= sge->length; 569 bytes += sge->length; 570 } 571 572 sk_msg_iter_var_next(i); 573 if (i == msg_opl->sg.end) 574 break; 575 sge = sk_msg_elem(msg_opl, i); 576 } 577 578 msg_opl->sg.end = i; 579 msg_opl->sg.curr = i; 580 msg_opl->sg.copybreak = 0; 581 msg_opl->apply_bytes = 0; 582 msg_opl->sg.size = bytes; 583 584 msg_npl = &new->msg_plaintext; 585 msg_npl->apply_bytes = apply; 586 msg_npl->sg.size = orig_size - bytes; 587 588 j = msg_npl->sg.start; 589 nsge = sk_msg_elem(msg_npl, j); 590 if (tmp.length) { 591 memcpy(nsge, &tmp, sizeof(*nsge)); 592 sk_msg_iter_var_next(j); 593 nsge = sk_msg_elem(msg_npl, j); 594 } 595 596 osge = sk_msg_elem(msg_opl, i); 597 while (osge->length) { 598 memcpy(nsge, osge, sizeof(*nsge)); 599 sg_unmark_end(nsge); 600 sk_msg_iter_var_next(i); 601 sk_msg_iter_var_next(j); 602 if (i == *orig_end) 603 break; 604 osge = sk_msg_elem(msg_opl, i); 605 nsge = sk_msg_elem(msg_npl, j); 606 } 607 608 msg_npl->sg.end = j; 609 msg_npl->sg.curr = j; 610 msg_npl->sg.copybreak = 0; 611 612 *to = new; 613 return 0; 614 } 615 616 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 617 struct tls_rec *from, u32 orig_end) 618 { 619 struct sk_msg *msg_npl = &from->msg_plaintext; 620 struct sk_msg *msg_opl = &to->msg_plaintext; 621 struct scatterlist *osge, *nsge; 622 u32 i, j; 623 624 i = msg_opl->sg.end; 625 sk_msg_iter_var_prev(i); 626 j = msg_npl->sg.start; 627 628 osge = sk_msg_elem(msg_opl, i); 629 nsge = sk_msg_elem(msg_npl, j); 630 631 if (sg_page(osge) == sg_page(nsge) && 632 osge->offset + osge->length == nsge->offset) { 633 osge->length += nsge->length; 634 put_page(sg_page(nsge)); 635 } 636 637 msg_opl->sg.end = orig_end; 638 msg_opl->sg.curr = orig_end; 639 msg_opl->sg.copybreak = 0; 640 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 641 msg_opl->sg.size += msg_npl->sg.size; 642 643 sk_msg_free(sk, &to->msg_encrypted); 644 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 645 646 kfree(from); 647 } 648 649 static int tls_push_record(struct sock *sk, int flags, 650 unsigned char record_type) 651 { 652 struct tls_context *tls_ctx = tls_get_ctx(sk); 653 struct tls_prot_info *prot = &tls_ctx->prot_info; 654 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 655 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 656 u32 i, split_point, uninitialized_var(orig_end); 657 struct sk_msg *msg_pl, *msg_en; 658 struct aead_request *req; 659 bool split; 660 int rc; 661 662 if (!rec) 663 return 0; 664 665 msg_pl = &rec->msg_plaintext; 666 msg_en = &rec->msg_encrypted; 667 668 split_point = msg_pl->apply_bytes; 669 split = split_point && split_point < msg_pl->sg.size; 670 if (split) { 671 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 672 split_point, prot->overhead_size, 673 &orig_end); 674 if (rc < 0) 675 return rc; 676 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 677 prot->overhead_size); 678 } 679 680 rec->tx_flags = flags; 681 req = &rec->aead_req; 682 683 i = msg_pl->sg.end; 684 sk_msg_iter_var_prev(i); 685 686 rec->content_type = record_type; 687 if (prot->version == TLS_1_3_VERSION) { 688 /* Add content type to end of message. No padding added */ 689 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 690 sg_mark_end(&rec->sg_content_type); 691 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 692 &rec->sg_content_type); 693 } else { 694 sg_mark_end(sk_msg_elem(msg_pl, i)); 695 } 696 697 i = msg_pl->sg.start; 698 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ? 699 &msg_en->sg.data[i] : &msg_pl->sg.data[i]); 700 701 i = msg_en->sg.end; 702 sk_msg_iter_var_prev(i); 703 sg_mark_end(sk_msg_elem(msg_en, i)); 704 705 i = msg_en->sg.start; 706 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 707 708 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 709 tls_ctx->tx.rec_seq, prot->rec_seq_size, 710 record_type, prot->version); 711 712 tls_fill_prepend(tls_ctx, 713 page_address(sg_page(&msg_en->sg.data[i])) + 714 msg_en->sg.data[i].offset, 715 msg_pl->sg.size + prot->tail_size, 716 record_type, prot->version); 717 718 tls_ctx->pending_open_record_frags = false; 719 720 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 721 msg_pl->sg.size + prot->tail_size, i); 722 if (rc < 0) { 723 if (rc != -EINPROGRESS) { 724 tls_err_abort(sk, EBADMSG); 725 if (split) { 726 tls_ctx->pending_open_record_frags = true; 727 tls_merge_open_record(sk, rec, tmp, orig_end); 728 } 729 } 730 ctx->async_capable = 1; 731 return rc; 732 } else if (split) { 733 msg_pl = &tmp->msg_plaintext; 734 msg_en = &tmp->msg_encrypted; 735 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 736 tls_ctx->pending_open_record_frags = true; 737 ctx->open_rec = tmp; 738 } 739 740 return tls_tx_records(sk, flags); 741 } 742 743 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 744 bool full_record, u8 record_type, 745 size_t *copied, int flags) 746 { 747 struct tls_context *tls_ctx = tls_get_ctx(sk); 748 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 749 struct sk_msg msg_redir = { }; 750 struct sk_psock *psock; 751 struct sock *sk_redir; 752 struct tls_rec *rec; 753 bool enospc, policy; 754 int err = 0, send; 755 u32 delta = 0; 756 757 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 758 psock = sk_psock_get(sk); 759 if (!psock || !policy) 760 return tls_push_record(sk, flags, record_type); 761 more_data: 762 enospc = sk_msg_full(msg); 763 if (psock->eval == __SK_NONE) { 764 delta = msg->sg.size; 765 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 766 if (delta < msg->sg.size) 767 delta -= msg->sg.size; 768 else 769 delta = 0; 770 } 771 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 772 !enospc && !full_record) { 773 err = -ENOSPC; 774 goto out_err; 775 } 776 msg->cork_bytes = 0; 777 send = msg->sg.size; 778 if (msg->apply_bytes && msg->apply_bytes < send) 779 send = msg->apply_bytes; 780 781 switch (psock->eval) { 782 case __SK_PASS: 783 err = tls_push_record(sk, flags, record_type); 784 if (err < 0) { 785 *copied -= sk_msg_free(sk, msg); 786 tls_free_open_rec(sk); 787 goto out_err; 788 } 789 break; 790 case __SK_REDIRECT: 791 sk_redir = psock->sk_redir; 792 memcpy(&msg_redir, msg, sizeof(*msg)); 793 if (msg->apply_bytes < send) 794 msg->apply_bytes = 0; 795 else 796 msg->apply_bytes -= send; 797 sk_msg_return_zero(sk, msg, send); 798 msg->sg.size -= send; 799 release_sock(sk); 800 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 801 lock_sock(sk); 802 if (err < 0) { 803 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 804 msg->sg.size = 0; 805 } 806 if (msg->sg.size == 0) 807 tls_free_open_rec(sk); 808 break; 809 case __SK_DROP: 810 default: 811 sk_msg_free_partial(sk, msg, send); 812 if (msg->apply_bytes < send) 813 msg->apply_bytes = 0; 814 else 815 msg->apply_bytes -= send; 816 if (msg->sg.size == 0) 817 tls_free_open_rec(sk); 818 *copied -= (send + delta); 819 err = -EACCES; 820 } 821 822 if (likely(!err)) { 823 bool reset_eval = !ctx->open_rec; 824 825 rec = ctx->open_rec; 826 if (rec) { 827 msg = &rec->msg_plaintext; 828 if (!msg->apply_bytes) 829 reset_eval = true; 830 } 831 if (reset_eval) { 832 psock->eval = __SK_NONE; 833 if (psock->sk_redir) { 834 sock_put(psock->sk_redir); 835 psock->sk_redir = NULL; 836 } 837 } 838 if (rec) 839 goto more_data; 840 } 841 out_err: 842 sk_psock_put(sk, psock); 843 return err; 844 } 845 846 static int tls_sw_push_pending_record(struct sock *sk, int flags) 847 { 848 struct tls_context *tls_ctx = tls_get_ctx(sk); 849 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 850 struct tls_rec *rec = ctx->open_rec; 851 struct sk_msg *msg_pl; 852 size_t copied; 853 854 if (!rec) 855 return 0; 856 857 msg_pl = &rec->msg_plaintext; 858 copied = msg_pl->sg.size; 859 if (!copied) 860 return 0; 861 862 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 863 &copied, flags); 864 } 865 866 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 867 { 868 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 869 struct tls_context *tls_ctx = tls_get_ctx(sk); 870 struct tls_prot_info *prot = &tls_ctx->prot_info; 871 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 872 bool async_capable = ctx->async_capable; 873 unsigned char record_type = TLS_RECORD_TYPE_DATA; 874 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 875 bool eor = !(msg->msg_flags & MSG_MORE); 876 size_t try_to_copy, copied = 0; 877 struct sk_msg *msg_pl, *msg_en; 878 struct tls_rec *rec; 879 int required_size; 880 int num_async = 0; 881 bool full_record; 882 int record_room; 883 int num_zc = 0; 884 int orig_size; 885 int ret = 0; 886 887 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 888 return -ENOTSUPP; 889 890 lock_sock(sk); 891 892 /* Wait till there is any pending write on socket */ 893 if (unlikely(sk->sk_write_pending)) { 894 ret = wait_on_pending_writer(sk, &timeo); 895 if (unlikely(ret)) 896 goto send_end; 897 } 898 899 if (unlikely(msg->msg_controllen)) { 900 ret = tls_proccess_cmsg(sk, msg, &record_type); 901 if (ret) { 902 if (ret == -EINPROGRESS) 903 num_async++; 904 else if (ret != -EAGAIN) 905 goto send_end; 906 } 907 } 908 909 while (msg_data_left(msg)) { 910 if (sk->sk_err) { 911 ret = -sk->sk_err; 912 goto send_end; 913 } 914 915 if (ctx->open_rec) 916 rec = ctx->open_rec; 917 else 918 rec = ctx->open_rec = tls_get_rec(sk); 919 if (!rec) { 920 ret = -ENOMEM; 921 goto send_end; 922 } 923 924 msg_pl = &rec->msg_plaintext; 925 msg_en = &rec->msg_encrypted; 926 927 orig_size = msg_pl->sg.size; 928 full_record = false; 929 try_to_copy = msg_data_left(msg); 930 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 931 if (try_to_copy >= record_room) { 932 try_to_copy = record_room; 933 full_record = true; 934 } 935 936 required_size = msg_pl->sg.size + try_to_copy + 937 prot->overhead_size; 938 939 if (!sk_stream_memory_free(sk)) 940 goto wait_for_sndbuf; 941 942 alloc_encrypted: 943 ret = tls_alloc_encrypted_msg(sk, required_size); 944 if (ret) { 945 if (ret != -ENOSPC) 946 goto wait_for_memory; 947 948 /* Adjust try_to_copy according to the amount that was 949 * actually allocated. The difference is due 950 * to max sg elements limit 951 */ 952 try_to_copy -= required_size - msg_en->sg.size; 953 full_record = true; 954 } 955 956 if (!is_kvec && (full_record || eor) && !async_capable) { 957 u32 first = msg_pl->sg.end; 958 959 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 960 msg_pl, try_to_copy); 961 if (ret) 962 goto fallback_to_reg_send; 963 964 rec->inplace_crypto = 0; 965 966 num_zc++; 967 copied += try_to_copy; 968 969 sk_msg_sg_copy_set(msg_pl, first); 970 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 971 record_type, &copied, 972 msg->msg_flags); 973 if (ret) { 974 if (ret == -EINPROGRESS) 975 num_async++; 976 else if (ret == -ENOMEM) 977 goto wait_for_memory; 978 else if (ret == -ENOSPC) 979 goto rollback_iter; 980 else if (ret != -EAGAIN) 981 goto send_end; 982 } 983 continue; 984 rollback_iter: 985 copied -= try_to_copy; 986 sk_msg_sg_copy_clear(msg_pl, first); 987 iov_iter_revert(&msg->msg_iter, 988 msg_pl->sg.size - orig_size); 989 fallback_to_reg_send: 990 sk_msg_trim(sk, msg_pl, orig_size); 991 } 992 993 required_size = msg_pl->sg.size + try_to_copy; 994 995 ret = tls_clone_plaintext_msg(sk, required_size); 996 if (ret) { 997 if (ret != -ENOSPC) 998 goto send_end; 999 1000 /* Adjust try_to_copy according to the amount that was 1001 * actually allocated. The difference is due 1002 * to max sg elements limit 1003 */ 1004 try_to_copy -= required_size - msg_pl->sg.size; 1005 full_record = true; 1006 sk_msg_trim(sk, msg_en, 1007 msg_pl->sg.size + prot->overhead_size); 1008 } 1009 1010 if (try_to_copy) { 1011 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1012 msg_pl, try_to_copy); 1013 if (ret < 0) 1014 goto trim_sgl; 1015 } 1016 1017 /* Open records defined only if successfully copied, otherwise 1018 * we would trim the sg but not reset the open record frags. 1019 */ 1020 tls_ctx->pending_open_record_frags = true; 1021 copied += try_to_copy; 1022 if (full_record || eor) { 1023 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1024 record_type, &copied, 1025 msg->msg_flags); 1026 if (ret) { 1027 if (ret == -EINPROGRESS) 1028 num_async++; 1029 else if (ret == -ENOMEM) 1030 goto wait_for_memory; 1031 else if (ret != -EAGAIN) { 1032 if (ret == -ENOSPC) 1033 ret = 0; 1034 goto send_end; 1035 } 1036 } 1037 } 1038 1039 continue; 1040 1041 wait_for_sndbuf: 1042 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1043 wait_for_memory: 1044 ret = sk_stream_wait_memory(sk, &timeo); 1045 if (ret) { 1046 trim_sgl: 1047 tls_trim_both_msgs(sk, orig_size); 1048 goto send_end; 1049 } 1050 1051 if (msg_en->sg.size < required_size) 1052 goto alloc_encrypted; 1053 } 1054 1055 if (!num_async) { 1056 goto send_end; 1057 } else if (num_zc) { 1058 /* Wait for pending encryptions to get completed */ 1059 smp_store_mb(ctx->async_notify, true); 1060 1061 if (atomic_read(&ctx->encrypt_pending)) 1062 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1063 else 1064 reinit_completion(&ctx->async_wait.completion); 1065 1066 WRITE_ONCE(ctx->async_notify, false); 1067 1068 if (ctx->async_wait.err) { 1069 ret = ctx->async_wait.err; 1070 copied = 0; 1071 } 1072 } 1073 1074 /* Transmit if any encryptions have completed */ 1075 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1076 cancel_delayed_work(&ctx->tx_work.work); 1077 tls_tx_records(sk, msg->msg_flags); 1078 } 1079 1080 send_end: 1081 ret = sk_stream_error(sk, msg->msg_flags, ret); 1082 1083 release_sock(sk); 1084 return copied ? copied : ret; 1085 } 1086 1087 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1088 int offset, size_t size, int flags) 1089 { 1090 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1091 struct tls_context *tls_ctx = tls_get_ctx(sk); 1092 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1093 struct tls_prot_info *prot = &tls_ctx->prot_info; 1094 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1095 struct sk_msg *msg_pl; 1096 struct tls_rec *rec; 1097 int num_async = 0; 1098 size_t copied = 0; 1099 bool full_record; 1100 int record_room; 1101 int ret = 0; 1102 bool eor; 1103 1104 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1105 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1106 1107 /* Wait till there is any pending write on socket */ 1108 if (unlikely(sk->sk_write_pending)) { 1109 ret = wait_on_pending_writer(sk, &timeo); 1110 if (unlikely(ret)) 1111 goto sendpage_end; 1112 } 1113 1114 /* Call the sk_stream functions to manage the sndbuf mem. */ 1115 while (size > 0) { 1116 size_t copy, required_size; 1117 1118 if (sk->sk_err) { 1119 ret = -sk->sk_err; 1120 goto sendpage_end; 1121 } 1122 1123 if (ctx->open_rec) 1124 rec = ctx->open_rec; 1125 else 1126 rec = ctx->open_rec = tls_get_rec(sk); 1127 if (!rec) { 1128 ret = -ENOMEM; 1129 goto sendpage_end; 1130 } 1131 1132 msg_pl = &rec->msg_plaintext; 1133 1134 full_record = false; 1135 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1136 copied = 0; 1137 copy = size; 1138 if (copy >= record_room) { 1139 copy = record_room; 1140 full_record = true; 1141 } 1142 1143 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1144 1145 if (!sk_stream_memory_free(sk)) 1146 goto wait_for_sndbuf; 1147 alloc_payload: 1148 ret = tls_alloc_encrypted_msg(sk, required_size); 1149 if (ret) { 1150 if (ret != -ENOSPC) 1151 goto wait_for_memory; 1152 1153 /* Adjust copy according to the amount that was 1154 * actually allocated. The difference is due 1155 * to max sg elements limit 1156 */ 1157 copy -= required_size - msg_pl->sg.size; 1158 full_record = true; 1159 } 1160 1161 sk_msg_page_add(msg_pl, page, copy, offset); 1162 sk_mem_charge(sk, copy); 1163 1164 offset += copy; 1165 size -= copy; 1166 copied += copy; 1167 1168 tls_ctx->pending_open_record_frags = true; 1169 if (full_record || eor || sk_msg_full(msg_pl)) { 1170 rec->inplace_crypto = 0; 1171 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1172 record_type, &copied, flags); 1173 if (ret) { 1174 if (ret == -EINPROGRESS) 1175 num_async++; 1176 else if (ret == -ENOMEM) 1177 goto wait_for_memory; 1178 else if (ret != -EAGAIN) { 1179 if (ret == -ENOSPC) 1180 ret = 0; 1181 goto sendpage_end; 1182 } 1183 } 1184 } 1185 continue; 1186 wait_for_sndbuf: 1187 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1188 wait_for_memory: 1189 ret = sk_stream_wait_memory(sk, &timeo); 1190 if (ret) { 1191 tls_trim_both_msgs(sk, msg_pl->sg.size); 1192 goto sendpage_end; 1193 } 1194 1195 goto alloc_payload; 1196 } 1197 1198 if (num_async) { 1199 /* Transmit if any encryptions have completed */ 1200 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1201 cancel_delayed_work(&ctx->tx_work.work); 1202 tls_tx_records(sk, flags); 1203 } 1204 } 1205 sendpage_end: 1206 ret = sk_stream_error(sk, flags, ret); 1207 return copied ? copied : ret; 1208 } 1209 1210 int tls_sw_sendpage(struct sock *sk, struct page *page, 1211 int offset, size_t size, int flags) 1212 { 1213 int ret; 1214 1215 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1216 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1217 return -ENOTSUPP; 1218 1219 lock_sock(sk); 1220 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1221 release_sock(sk); 1222 return ret; 1223 } 1224 1225 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1226 int flags, long timeo, int *err) 1227 { 1228 struct tls_context *tls_ctx = tls_get_ctx(sk); 1229 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1230 struct sk_buff *skb; 1231 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1232 1233 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1234 if (sk->sk_err) { 1235 *err = sock_error(sk); 1236 return NULL; 1237 } 1238 1239 if (sk->sk_shutdown & RCV_SHUTDOWN) 1240 return NULL; 1241 1242 if (sock_flag(sk, SOCK_DONE)) 1243 return NULL; 1244 1245 if ((flags & MSG_DONTWAIT) || !timeo) { 1246 *err = -EAGAIN; 1247 return NULL; 1248 } 1249 1250 add_wait_queue(sk_sleep(sk), &wait); 1251 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1252 sk_wait_event(sk, &timeo, 1253 ctx->recv_pkt != skb || 1254 !sk_psock_queue_empty(psock), 1255 &wait); 1256 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1257 remove_wait_queue(sk_sleep(sk), &wait); 1258 1259 /* Handle signals */ 1260 if (signal_pending(current)) { 1261 *err = sock_intr_errno(timeo); 1262 return NULL; 1263 } 1264 } 1265 1266 return skb; 1267 } 1268 1269 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1270 int length, int *pages_used, 1271 unsigned int *size_used, 1272 struct scatterlist *to, 1273 int to_max_pages) 1274 { 1275 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1276 struct page *pages[MAX_SKB_FRAGS]; 1277 unsigned int size = *size_used; 1278 ssize_t copied, use; 1279 size_t offset; 1280 1281 while (length > 0) { 1282 i = 0; 1283 maxpages = to_max_pages - num_elem; 1284 if (maxpages == 0) { 1285 rc = -EFAULT; 1286 goto out; 1287 } 1288 copied = iov_iter_get_pages(from, pages, 1289 length, 1290 maxpages, &offset); 1291 if (copied <= 0) { 1292 rc = -EFAULT; 1293 goto out; 1294 } 1295 1296 iov_iter_advance(from, copied); 1297 1298 length -= copied; 1299 size += copied; 1300 while (copied) { 1301 use = min_t(int, copied, PAGE_SIZE - offset); 1302 1303 sg_set_page(&to[num_elem], 1304 pages[i], use, offset); 1305 sg_unmark_end(&to[num_elem]); 1306 /* We do not uncharge memory from this API */ 1307 1308 offset = 0; 1309 copied -= use; 1310 1311 i++; 1312 num_elem++; 1313 } 1314 } 1315 /* Mark the end in the last sg entry if newly added */ 1316 if (num_elem > *pages_used) 1317 sg_mark_end(&to[num_elem - 1]); 1318 out: 1319 if (rc) 1320 iov_iter_revert(from, size - *size_used); 1321 *size_used = size; 1322 *pages_used = num_elem; 1323 1324 return rc; 1325 } 1326 1327 /* This function decrypts the input skb into either out_iov or in out_sg 1328 * or in skb buffers itself. The input parameter 'zc' indicates if 1329 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1330 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1331 * NULL, then the decryption happens inside skb buffers itself, i.e. 1332 * zero-copy gets disabled and 'zc' is updated. 1333 */ 1334 1335 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1336 struct iov_iter *out_iov, 1337 struct scatterlist *out_sg, 1338 int *chunk, bool *zc, bool async) 1339 { 1340 struct tls_context *tls_ctx = tls_get_ctx(sk); 1341 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1342 struct tls_prot_info *prot = &tls_ctx->prot_info; 1343 struct strp_msg *rxm = strp_msg(skb); 1344 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1345 struct aead_request *aead_req; 1346 struct sk_buff *unused; 1347 u8 *aad, *iv, *mem = NULL; 1348 struct scatterlist *sgin = NULL; 1349 struct scatterlist *sgout = NULL; 1350 const int data_len = rxm->full_len - prot->overhead_size + 1351 prot->tail_size; 1352 int iv_offset = 0; 1353 1354 if (*zc && (out_iov || out_sg)) { 1355 if (out_iov) 1356 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1357 else 1358 n_sgout = sg_nents(out_sg); 1359 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1360 rxm->full_len - prot->prepend_size); 1361 } else { 1362 n_sgout = 0; 1363 *zc = false; 1364 n_sgin = skb_cow_data(skb, 0, &unused); 1365 } 1366 1367 if (n_sgin < 1) 1368 return -EBADMSG; 1369 1370 /* Increment to accommodate AAD */ 1371 n_sgin = n_sgin + 1; 1372 1373 nsg = n_sgin + n_sgout; 1374 1375 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1376 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1377 mem_size = mem_size + prot->aad_size; 1378 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1379 1380 /* Allocate a single block of memory which contains 1381 * aead_req || sgin[] || sgout[] || aad || iv. 1382 * This order achieves correct alignment for aead_req, sgin, sgout. 1383 */ 1384 mem = kmalloc(mem_size, sk->sk_allocation); 1385 if (!mem) 1386 return -ENOMEM; 1387 1388 /* Segment the allocated memory */ 1389 aead_req = (struct aead_request *)mem; 1390 sgin = (struct scatterlist *)(mem + aead_size); 1391 sgout = sgin + n_sgin; 1392 aad = (u8 *)(sgout + n_sgout); 1393 iv = aad + prot->aad_size; 1394 1395 /* For CCM based ciphers, first byte of nonce+iv is always '2' */ 1396 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 1397 iv[0] = 2; 1398 iv_offset = 1; 1399 } 1400 1401 /* Prepare IV */ 1402 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1403 iv + iv_offset + prot->salt_size, 1404 prot->iv_size); 1405 if (err < 0) { 1406 kfree(mem); 1407 return err; 1408 } 1409 if (prot->version == TLS_1_3_VERSION) 1410 memcpy(iv + iv_offset, tls_ctx->rx.iv, 1411 crypto_aead_ivsize(ctx->aead_recv)); 1412 else 1413 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); 1414 1415 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq); 1416 1417 /* Prepare AAD */ 1418 tls_make_aad(aad, rxm->full_len - prot->overhead_size + 1419 prot->tail_size, 1420 tls_ctx->rx.rec_seq, prot->rec_seq_size, 1421 ctx->control, prot->version); 1422 1423 /* Prepare sgin */ 1424 sg_init_table(sgin, n_sgin); 1425 sg_set_buf(&sgin[0], aad, prot->aad_size); 1426 err = skb_to_sgvec(skb, &sgin[1], 1427 rxm->offset + prot->prepend_size, 1428 rxm->full_len - prot->prepend_size); 1429 if (err < 0) { 1430 kfree(mem); 1431 return err; 1432 } 1433 1434 if (n_sgout) { 1435 if (out_iov) { 1436 sg_init_table(sgout, n_sgout); 1437 sg_set_buf(&sgout[0], aad, prot->aad_size); 1438 1439 *chunk = 0; 1440 err = tls_setup_from_iter(sk, out_iov, data_len, 1441 &pages, chunk, &sgout[1], 1442 (n_sgout - 1)); 1443 if (err < 0) 1444 goto fallback_to_reg_recv; 1445 } else if (out_sg) { 1446 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1447 } else { 1448 goto fallback_to_reg_recv; 1449 } 1450 } else { 1451 fallback_to_reg_recv: 1452 sgout = sgin; 1453 pages = 0; 1454 *chunk = data_len; 1455 *zc = false; 1456 } 1457 1458 /* Prepare and submit AEAD request */ 1459 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1460 data_len, aead_req, async); 1461 if (err == -EINPROGRESS) 1462 return err; 1463 1464 /* Release the pages in case iov was mapped to pages */ 1465 for (; pages > 0; pages--) 1466 put_page(sg_page(&sgout[pages])); 1467 1468 kfree(mem); 1469 return err; 1470 } 1471 1472 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1473 struct iov_iter *dest, int *chunk, bool *zc, 1474 bool async) 1475 { 1476 struct tls_context *tls_ctx = tls_get_ctx(sk); 1477 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1478 struct tls_prot_info *prot = &tls_ctx->prot_info; 1479 int version = prot->version; 1480 struct strp_msg *rxm = strp_msg(skb); 1481 int err = 0; 1482 1483 if (!ctx->decrypted) { 1484 #ifdef CONFIG_TLS_DEVICE 1485 err = tls_device_decrypted(sk, skb); 1486 if (err < 0) 1487 return err; 1488 #endif 1489 /* Still not decrypted after tls_device */ 1490 if (!ctx->decrypted) { 1491 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, 1492 async); 1493 if (err < 0) { 1494 if (err == -EINPROGRESS) 1495 tls_advance_record_sn(sk, &tls_ctx->rx, 1496 version); 1497 1498 return err; 1499 } 1500 } else { 1501 *zc = false; 1502 } 1503 1504 rxm->full_len -= padding_length(ctx, tls_ctx, skb); 1505 rxm->offset += prot->prepend_size; 1506 rxm->full_len -= prot->overhead_size; 1507 tls_advance_record_sn(sk, &tls_ctx->rx, version); 1508 ctx->decrypted = true; 1509 ctx->saved_data_ready(sk); 1510 } else { 1511 *zc = false; 1512 } 1513 1514 return err; 1515 } 1516 1517 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1518 struct scatterlist *sgout) 1519 { 1520 bool zc = true; 1521 int chunk; 1522 1523 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); 1524 } 1525 1526 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1527 unsigned int len) 1528 { 1529 struct tls_context *tls_ctx = tls_get_ctx(sk); 1530 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1531 1532 if (skb) { 1533 struct strp_msg *rxm = strp_msg(skb); 1534 1535 if (len < rxm->full_len) { 1536 rxm->offset += len; 1537 rxm->full_len -= len; 1538 return false; 1539 } 1540 consume_skb(skb); 1541 } 1542 1543 /* Finished with message */ 1544 ctx->recv_pkt = NULL; 1545 __strp_unpause(&ctx->strp); 1546 1547 return true; 1548 } 1549 1550 /* This function traverses the rx_list in tls receive context to copies the 1551 * decrypted records into the buffer provided by caller zero copy is not 1552 * true. Further, the records are removed from the rx_list if it is not a peek 1553 * case and the record has been consumed completely. 1554 */ 1555 static int process_rx_list(struct tls_sw_context_rx *ctx, 1556 struct msghdr *msg, 1557 u8 *control, 1558 bool *cmsg, 1559 size_t skip, 1560 size_t len, 1561 bool zc, 1562 bool is_peek) 1563 { 1564 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1565 u8 ctrl = *control; 1566 u8 msgc = *cmsg; 1567 struct tls_msg *tlm; 1568 ssize_t copied = 0; 1569 1570 /* Set the record type in 'control' if caller didn't pass it */ 1571 if (!ctrl && skb) { 1572 tlm = tls_msg(skb); 1573 ctrl = tlm->control; 1574 } 1575 1576 while (skip && skb) { 1577 struct strp_msg *rxm = strp_msg(skb); 1578 tlm = tls_msg(skb); 1579 1580 /* Cannot process a record of different type */ 1581 if (ctrl != tlm->control) 1582 return 0; 1583 1584 if (skip < rxm->full_len) 1585 break; 1586 1587 skip = skip - rxm->full_len; 1588 skb = skb_peek_next(skb, &ctx->rx_list); 1589 } 1590 1591 while (len && skb) { 1592 struct sk_buff *next_skb; 1593 struct strp_msg *rxm = strp_msg(skb); 1594 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1595 1596 tlm = tls_msg(skb); 1597 1598 /* Cannot process a record of different type */ 1599 if (ctrl != tlm->control) 1600 return 0; 1601 1602 /* Set record type if not already done. For a non-data record, 1603 * do not proceed if record type could not be copied. 1604 */ 1605 if (!msgc) { 1606 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1607 sizeof(ctrl), &ctrl); 1608 msgc = true; 1609 if (ctrl != TLS_RECORD_TYPE_DATA) { 1610 if (cerr || msg->msg_flags & MSG_CTRUNC) 1611 return -EIO; 1612 1613 *cmsg = msgc; 1614 } 1615 } 1616 1617 if (!zc || (rxm->full_len - skip) > len) { 1618 int err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1619 msg, chunk); 1620 if (err < 0) 1621 return err; 1622 } 1623 1624 len = len - chunk; 1625 copied = copied + chunk; 1626 1627 /* Consume the data from record if it is non-peek case*/ 1628 if (!is_peek) { 1629 rxm->offset = rxm->offset + chunk; 1630 rxm->full_len = rxm->full_len - chunk; 1631 1632 /* Return if there is unconsumed data in the record */ 1633 if (rxm->full_len - skip) 1634 break; 1635 } 1636 1637 /* The remaining skip-bytes must lie in 1st record in rx_list. 1638 * So from the 2nd record, 'skip' should be 0. 1639 */ 1640 skip = 0; 1641 1642 if (msg) 1643 msg->msg_flags |= MSG_EOR; 1644 1645 next_skb = skb_peek_next(skb, &ctx->rx_list); 1646 1647 if (!is_peek) { 1648 skb_unlink(skb, &ctx->rx_list); 1649 consume_skb(skb); 1650 } 1651 1652 skb = next_skb; 1653 } 1654 1655 *control = ctrl; 1656 return copied; 1657 } 1658 1659 int tls_sw_recvmsg(struct sock *sk, 1660 struct msghdr *msg, 1661 size_t len, 1662 int nonblock, 1663 int flags, 1664 int *addr_len) 1665 { 1666 struct tls_context *tls_ctx = tls_get_ctx(sk); 1667 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1668 struct tls_prot_info *prot = &tls_ctx->prot_info; 1669 struct sk_psock *psock; 1670 unsigned char control = 0; 1671 ssize_t decrypted = 0; 1672 struct strp_msg *rxm; 1673 struct tls_msg *tlm; 1674 struct sk_buff *skb; 1675 ssize_t copied = 0; 1676 bool cmsg = false; 1677 int target, err = 0; 1678 long timeo; 1679 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1680 bool is_peek = flags & MSG_PEEK; 1681 int num_async = 0; 1682 1683 flags |= nonblock; 1684 1685 if (unlikely(flags & MSG_ERRQUEUE)) 1686 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1687 1688 psock = sk_psock_get(sk); 1689 lock_sock(sk); 1690 1691 /* Process pending decrypted records. It must be non-zero-copy */ 1692 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, 1693 is_peek); 1694 if (err < 0) { 1695 tls_err_abort(sk, err); 1696 goto end; 1697 } else { 1698 copied = err; 1699 } 1700 1701 len = len - copied; 1702 if (len) { 1703 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1704 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1705 } else { 1706 goto recv_end; 1707 } 1708 1709 do { 1710 bool retain_skb = false; 1711 bool zc = false; 1712 int to_decrypt; 1713 int chunk = 0; 1714 bool async_capable; 1715 bool async = false; 1716 1717 skb = tls_wait_data(sk, psock, flags, timeo, &err); 1718 if (!skb) { 1719 if (psock) { 1720 int ret = __tcp_bpf_recvmsg(sk, psock, 1721 msg, len, flags); 1722 1723 if (ret > 0) { 1724 decrypted += ret; 1725 len -= ret; 1726 continue; 1727 } 1728 } 1729 goto recv_end; 1730 } else { 1731 tlm = tls_msg(skb); 1732 if (prot->version == TLS_1_3_VERSION) 1733 tlm->control = 0; 1734 else 1735 tlm->control = ctx->control; 1736 } 1737 1738 rxm = strp_msg(skb); 1739 1740 to_decrypt = rxm->full_len - prot->overhead_size; 1741 1742 if (to_decrypt <= len && !is_kvec && !is_peek && 1743 ctx->control == TLS_RECORD_TYPE_DATA && 1744 prot->version != TLS_1_3_VERSION) 1745 zc = true; 1746 1747 /* Do not use async mode if record is non-data */ 1748 if (ctx->control == TLS_RECORD_TYPE_DATA) 1749 async_capable = ctx->async_capable; 1750 else 1751 async_capable = false; 1752 1753 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1754 &chunk, &zc, async_capable); 1755 if (err < 0 && err != -EINPROGRESS) { 1756 tls_err_abort(sk, EBADMSG); 1757 goto recv_end; 1758 } 1759 1760 if (err == -EINPROGRESS) { 1761 async = true; 1762 num_async++; 1763 } else if (prot->version == TLS_1_3_VERSION) { 1764 tlm->control = ctx->control; 1765 } 1766 1767 /* If the type of records being processed is not known yet, 1768 * set it to record type just dequeued. If it is already known, 1769 * but does not match the record type just dequeued, go to end. 1770 * We always get record type here since for tls1.2, record type 1771 * is known just after record is dequeued from stream parser. 1772 * For tls1.3, we disable async. 1773 */ 1774 1775 if (!control) 1776 control = tlm->control; 1777 else if (control != tlm->control) 1778 goto recv_end; 1779 1780 if (!cmsg) { 1781 int cerr; 1782 1783 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1784 sizeof(control), &control); 1785 cmsg = true; 1786 if (control != TLS_RECORD_TYPE_DATA) { 1787 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1788 err = -EIO; 1789 goto recv_end; 1790 } 1791 } 1792 } 1793 1794 if (async) 1795 goto pick_next_record; 1796 1797 if (!zc) { 1798 if (rxm->full_len > len) { 1799 retain_skb = true; 1800 chunk = len; 1801 } else { 1802 chunk = rxm->full_len; 1803 } 1804 1805 err = skb_copy_datagram_msg(skb, rxm->offset, 1806 msg, chunk); 1807 if (err < 0) 1808 goto recv_end; 1809 1810 if (!is_peek) { 1811 rxm->offset = rxm->offset + chunk; 1812 rxm->full_len = rxm->full_len - chunk; 1813 } 1814 } 1815 1816 pick_next_record: 1817 if (chunk > len) 1818 chunk = len; 1819 1820 decrypted += chunk; 1821 len -= chunk; 1822 1823 /* For async or peek case, queue the current skb */ 1824 if (async || is_peek || retain_skb) { 1825 skb_queue_tail(&ctx->rx_list, skb); 1826 skb = NULL; 1827 } 1828 1829 if (tls_sw_advance_skb(sk, skb, chunk)) { 1830 /* Return full control message to 1831 * userspace before trying to parse 1832 * another message type 1833 */ 1834 msg->msg_flags |= MSG_EOR; 1835 if (ctx->control != TLS_RECORD_TYPE_DATA) 1836 goto recv_end; 1837 } else { 1838 break; 1839 } 1840 1841 /* If we have a new message from strparser, continue now. */ 1842 if (decrypted >= target && !ctx->recv_pkt) 1843 break; 1844 } while (len); 1845 1846 recv_end: 1847 if (num_async) { 1848 /* Wait for all previously submitted records to be decrypted */ 1849 smp_store_mb(ctx->async_notify, true); 1850 if (atomic_read(&ctx->decrypt_pending)) { 1851 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1852 if (err) { 1853 /* one of async decrypt failed */ 1854 tls_err_abort(sk, err); 1855 copied = 0; 1856 decrypted = 0; 1857 goto end; 1858 } 1859 } else { 1860 reinit_completion(&ctx->async_wait.completion); 1861 } 1862 WRITE_ONCE(ctx->async_notify, false); 1863 1864 /* Drain records from the rx_list & copy if required */ 1865 if (is_peek || is_kvec) 1866 err = process_rx_list(ctx, msg, &control, &cmsg, copied, 1867 decrypted, false, is_peek); 1868 else 1869 err = process_rx_list(ctx, msg, &control, &cmsg, 0, 1870 decrypted, true, is_peek); 1871 if (err < 0) { 1872 tls_err_abort(sk, err); 1873 copied = 0; 1874 goto end; 1875 } 1876 } 1877 1878 copied += decrypted; 1879 1880 end: 1881 release_sock(sk); 1882 if (psock) 1883 sk_psock_put(sk, psock); 1884 return copied ? : err; 1885 } 1886 1887 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1888 struct pipe_inode_info *pipe, 1889 size_t len, unsigned int flags) 1890 { 1891 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1892 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1893 struct strp_msg *rxm = NULL; 1894 struct sock *sk = sock->sk; 1895 struct sk_buff *skb; 1896 ssize_t copied = 0; 1897 int err = 0; 1898 long timeo; 1899 int chunk; 1900 bool zc = false; 1901 1902 lock_sock(sk); 1903 1904 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1905 1906 skb = tls_wait_data(sk, NULL, flags, timeo, &err); 1907 if (!skb) 1908 goto splice_read_end; 1909 1910 if (!ctx->decrypted) { 1911 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); 1912 1913 /* splice does not support reading control messages */ 1914 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1915 err = -ENOTSUPP; 1916 goto splice_read_end; 1917 } 1918 1919 if (err < 0) { 1920 tls_err_abort(sk, EBADMSG); 1921 goto splice_read_end; 1922 } 1923 ctx->decrypted = true; 1924 } 1925 rxm = strp_msg(skb); 1926 1927 chunk = min_t(unsigned int, rxm->full_len, len); 1928 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 1929 if (copied < 0) 1930 goto splice_read_end; 1931 1932 if (likely(!(flags & MSG_PEEK))) 1933 tls_sw_advance_skb(sk, skb, copied); 1934 1935 splice_read_end: 1936 release_sock(sk); 1937 return copied ? : err; 1938 } 1939 1940 bool tls_sw_stream_read(const struct sock *sk) 1941 { 1942 struct tls_context *tls_ctx = tls_get_ctx(sk); 1943 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1944 bool ingress_empty = true; 1945 struct sk_psock *psock; 1946 1947 rcu_read_lock(); 1948 psock = sk_psock(sk); 1949 if (psock) 1950 ingress_empty = list_empty(&psock->ingress_msg); 1951 rcu_read_unlock(); 1952 1953 return !ingress_empty || ctx->recv_pkt; 1954 } 1955 1956 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 1957 { 1958 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1959 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1960 struct tls_prot_info *prot = &tls_ctx->prot_info; 1961 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 1962 struct strp_msg *rxm = strp_msg(skb); 1963 size_t cipher_overhead; 1964 size_t data_len = 0; 1965 int ret; 1966 1967 /* Verify that we have a full TLS header, or wait for more data */ 1968 if (rxm->offset + prot->prepend_size > skb->len) 1969 return 0; 1970 1971 /* Sanity-check size of on-stack buffer. */ 1972 if (WARN_ON(prot->prepend_size > sizeof(header))) { 1973 ret = -EINVAL; 1974 goto read_failure; 1975 } 1976 1977 /* Linearize header to local buffer */ 1978 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 1979 1980 if (ret < 0) 1981 goto read_failure; 1982 1983 ctx->control = header[0]; 1984 1985 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 1986 1987 cipher_overhead = prot->tag_size; 1988 if (prot->version != TLS_1_3_VERSION) 1989 cipher_overhead += prot->iv_size; 1990 1991 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 1992 prot->tail_size) { 1993 ret = -EMSGSIZE; 1994 goto read_failure; 1995 } 1996 if (data_len < cipher_overhead) { 1997 ret = -EBADMSG; 1998 goto read_failure; 1999 } 2000 2001 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2002 if (header[1] != TLS_1_2_VERSION_MINOR || 2003 header[2] != TLS_1_2_VERSION_MAJOR) { 2004 ret = -EINVAL; 2005 goto read_failure; 2006 } 2007 #ifdef CONFIG_TLS_DEVICE 2008 handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset, 2009 *(u64*)tls_ctx->rx.rec_seq); 2010 #endif 2011 return data_len + TLS_HEADER_SIZE; 2012 2013 read_failure: 2014 tls_err_abort(strp->sk, ret); 2015 2016 return ret; 2017 } 2018 2019 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2020 { 2021 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2022 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2023 2024 ctx->decrypted = false; 2025 2026 ctx->recv_pkt = skb; 2027 strp_pause(strp); 2028 2029 ctx->saved_data_ready(strp->sk); 2030 } 2031 2032 static void tls_data_ready(struct sock *sk) 2033 { 2034 struct tls_context *tls_ctx = tls_get_ctx(sk); 2035 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2036 struct sk_psock *psock; 2037 2038 strp_data_ready(&ctx->strp); 2039 2040 psock = sk_psock_get(sk); 2041 if (psock && !list_empty(&psock->ingress_msg)) { 2042 ctx->saved_data_ready(sk); 2043 sk_psock_put(sk, psock); 2044 } 2045 } 2046 2047 void tls_sw_free_resources_tx(struct sock *sk) 2048 { 2049 struct tls_context *tls_ctx = tls_get_ctx(sk); 2050 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2051 struct tls_rec *rec, *tmp; 2052 2053 /* Wait for any pending async encryptions to complete */ 2054 smp_store_mb(ctx->async_notify, true); 2055 if (atomic_read(&ctx->encrypt_pending)) 2056 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2057 2058 release_sock(sk); 2059 cancel_delayed_work_sync(&ctx->tx_work.work); 2060 lock_sock(sk); 2061 2062 /* Tx whatever records we can transmit and abandon the rest */ 2063 tls_tx_records(sk, -1); 2064 2065 /* Free up un-sent records in tx_list. First, free 2066 * the partially sent record if any at head of tx_list. 2067 */ 2068 if (tls_free_partial_record(sk, tls_ctx)) { 2069 rec = list_first_entry(&ctx->tx_list, 2070 struct tls_rec, list); 2071 list_del(&rec->list); 2072 sk_msg_free(sk, &rec->msg_plaintext); 2073 kfree(rec); 2074 } 2075 2076 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2077 list_del(&rec->list); 2078 sk_msg_free(sk, &rec->msg_encrypted); 2079 sk_msg_free(sk, &rec->msg_plaintext); 2080 kfree(rec); 2081 } 2082 2083 crypto_free_aead(ctx->aead_send); 2084 tls_free_open_rec(sk); 2085 2086 kfree(ctx); 2087 } 2088 2089 void tls_sw_release_resources_rx(struct sock *sk) 2090 { 2091 struct tls_context *tls_ctx = tls_get_ctx(sk); 2092 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2093 2094 if (ctx->aead_recv) { 2095 kfree_skb(ctx->recv_pkt); 2096 ctx->recv_pkt = NULL; 2097 skb_queue_purge(&ctx->rx_list); 2098 crypto_free_aead(ctx->aead_recv); 2099 strp_stop(&ctx->strp); 2100 write_lock_bh(&sk->sk_callback_lock); 2101 sk->sk_data_ready = ctx->saved_data_ready; 2102 write_unlock_bh(&sk->sk_callback_lock); 2103 release_sock(sk); 2104 strp_done(&ctx->strp); 2105 lock_sock(sk); 2106 } 2107 } 2108 2109 void tls_sw_free_resources_rx(struct sock *sk) 2110 { 2111 struct tls_context *tls_ctx = tls_get_ctx(sk); 2112 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2113 2114 tls_sw_release_resources_rx(sk); 2115 2116 kfree(ctx); 2117 } 2118 2119 /* The work handler to transmitt the encrypted records in tx_list */ 2120 static void tx_work_handler(struct work_struct *work) 2121 { 2122 struct delayed_work *delayed_work = to_delayed_work(work); 2123 struct tx_work *tx_work = container_of(delayed_work, 2124 struct tx_work, work); 2125 struct sock *sk = tx_work->sk; 2126 struct tls_context *tls_ctx = tls_get_ctx(sk); 2127 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2128 2129 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2130 return; 2131 2132 lock_sock(sk); 2133 tls_tx_records(sk, -1); 2134 release_sock(sk); 2135 } 2136 2137 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2138 { 2139 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2140 2141 /* Schedule the transmission if tx list is ready */ 2142 if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) { 2143 /* Schedule the transmission */ 2144 if (!test_and_set_bit(BIT_TX_SCHEDULED, 2145 &tx_ctx->tx_bitmask)) 2146 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2147 } 2148 } 2149 2150 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2151 { 2152 struct tls_context *tls_ctx = tls_get_ctx(sk); 2153 struct tls_prot_info *prot = &tls_ctx->prot_info; 2154 struct tls_crypto_info *crypto_info; 2155 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2156 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2157 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2158 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2159 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2160 struct cipher_context *cctx; 2161 struct crypto_aead **aead; 2162 struct strp_callbacks cb; 2163 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2164 struct crypto_tfm *tfm; 2165 char *iv, *rec_seq, *key, *salt, *cipher_name; 2166 size_t keysize; 2167 int rc = 0; 2168 2169 if (!ctx) { 2170 rc = -EINVAL; 2171 goto out; 2172 } 2173 2174 if (tx) { 2175 if (!ctx->priv_ctx_tx) { 2176 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2177 if (!sw_ctx_tx) { 2178 rc = -ENOMEM; 2179 goto out; 2180 } 2181 ctx->priv_ctx_tx = sw_ctx_tx; 2182 } else { 2183 sw_ctx_tx = 2184 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2185 } 2186 } else { 2187 if (!ctx->priv_ctx_rx) { 2188 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2189 if (!sw_ctx_rx) { 2190 rc = -ENOMEM; 2191 goto out; 2192 } 2193 ctx->priv_ctx_rx = sw_ctx_rx; 2194 } else { 2195 sw_ctx_rx = 2196 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2197 } 2198 } 2199 2200 if (tx) { 2201 crypto_init_wait(&sw_ctx_tx->async_wait); 2202 crypto_info = &ctx->crypto_send.info; 2203 cctx = &ctx->tx; 2204 aead = &sw_ctx_tx->aead_send; 2205 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2206 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2207 sw_ctx_tx->tx_work.sk = sk; 2208 } else { 2209 crypto_init_wait(&sw_ctx_rx->async_wait); 2210 crypto_info = &ctx->crypto_recv.info; 2211 cctx = &ctx->rx; 2212 skb_queue_head_init(&sw_ctx_rx->rx_list); 2213 aead = &sw_ctx_rx->aead_recv; 2214 } 2215 2216 switch (crypto_info->cipher_type) { 2217 case TLS_CIPHER_AES_GCM_128: { 2218 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2219 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2220 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2221 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 2222 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2223 rec_seq = 2224 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 2225 gcm_128_info = 2226 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 2227 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2228 key = gcm_128_info->key; 2229 salt = gcm_128_info->salt; 2230 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2231 cipher_name = "gcm(aes)"; 2232 break; 2233 } 2234 case TLS_CIPHER_AES_GCM_256: { 2235 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2236 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2237 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2238 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 2239 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2240 rec_seq = 2241 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 2242 gcm_256_info = 2243 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; 2244 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2245 key = gcm_256_info->key; 2246 salt = gcm_256_info->salt; 2247 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2248 cipher_name = "gcm(aes)"; 2249 break; 2250 } 2251 case TLS_CIPHER_AES_CCM_128: { 2252 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2253 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2254 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2255 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; 2256 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2257 rec_seq = 2258 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; 2259 ccm_128_info = 2260 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info; 2261 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2262 key = ccm_128_info->key; 2263 salt = ccm_128_info->salt; 2264 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2265 cipher_name = "ccm(aes)"; 2266 break; 2267 } 2268 default: 2269 rc = -EINVAL; 2270 goto free_priv; 2271 } 2272 2273 /* Sanity-check the IV size for stack allocations. */ 2274 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) { 2275 rc = -EINVAL; 2276 goto free_priv; 2277 } 2278 2279 if (crypto_info->version == TLS_1_3_VERSION) { 2280 nonce_size = 0; 2281 prot->aad_size = TLS_HEADER_SIZE; 2282 prot->tail_size = 1; 2283 } else { 2284 prot->aad_size = TLS_AAD_SPACE_SIZE; 2285 prot->tail_size = 0; 2286 } 2287 2288 prot->version = crypto_info->version; 2289 prot->cipher_type = crypto_info->cipher_type; 2290 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2291 prot->tag_size = tag_size; 2292 prot->overhead_size = prot->prepend_size + 2293 prot->tag_size + prot->tail_size; 2294 prot->iv_size = iv_size; 2295 prot->salt_size = salt_size; 2296 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2297 if (!cctx->iv) { 2298 rc = -ENOMEM; 2299 goto free_priv; 2300 } 2301 /* Note: 128 & 256 bit salt are the same size */ 2302 prot->rec_seq_size = rec_seq_size; 2303 memcpy(cctx->iv, salt, salt_size); 2304 memcpy(cctx->iv + salt_size, iv, iv_size); 2305 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2306 if (!cctx->rec_seq) { 2307 rc = -ENOMEM; 2308 goto free_iv; 2309 } 2310 2311 if (!*aead) { 2312 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2313 if (IS_ERR(*aead)) { 2314 rc = PTR_ERR(*aead); 2315 *aead = NULL; 2316 goto free_rec_seq; 2317 } 2318 } 2319 2320 ctx->push_pending_record = tls_sw_push_pending_record; 2321 2322 rc = crypto_aead_setkey(*aead, key, keysize); 2323 2324 if (rc) 2325 goto free_aead; 2326 2327 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2328 if (rc) 2329 goto free_aead; 2330 2331 if (sw_ctx_rx) { 2332 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2333 2334 if (crypto_info->version == TLS_1_3_VERSION) 2335 sw_ctx_rx->async_capable = false; 2336 else 2337 sw_ctx_rx->async_capable = 2338 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC; 2339 2340 /* Set up strparser */ 2341 memset(&cb, 0, sizeof(cb)); 2342 cb.rcv_msg = tls_queue; 2343 cb.parse_msg = tls_read_size; 2344 2345 strp_init(&sw_ctx_rx->strp, sk, &cb); 2346 2347 write_lock_bh(&sk->sk_callback_lock); 2348 sw_ctx_rx->saved_data_ready = sk->sk_data_ready; 2349 sk->sk_data_ready = tls_data_ready; 2350 write_unlock_bh(&sk->sk_callback_lock); 2351 2352 strp_check_rcv(&sw_ctx_rx->strp); 2353 } 2354 2355 goto out; 2356 2357 free_aead: 2358 crypto_free_aead(*aead); 2359 *aead = NULL; 2360 free_rec_seq: 2361 kfree(cctx->rec_seq); 2362 cctx->rec_seq = NULL; 2363 free_iv: 2364 kfree(cctx->iv); 2365 cctx->iv = NULL; 2366 free_priv: 2367 if (tx) { 2368 kfree(ctx->priv_ctx_tx); 2369 ctx->priv_ctx_tx = NULL; 2370 } else { 2371 kfree(ctx->priv_ctx_rx); 2372 ctx->priv_ctx_rx = NULL; 2373 } 2374 out: 2375 return rc; 2376 } 2377