1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <crypto/aead.h> 41 42 #include <net/strparser.h> 43 #include <net/tls.h> 44 45 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 46 unsigned int recursion_level) 47 { 48 int start = skb_headlen(skb); 49 int i, chunk = start - offset; 50 struct sk_buff *frag_iter; 51 int elt = 0; 52 53 if (unlikely(recursion_level >= 24)) 54 return -EMSGSIZE; 55 56 if (chunk > 0) { 57 if (chunk > len) 58 chunk = len; 59 elt++; 60 len -= chunk; 61 if (len == 0) 62 return elt; 63 offset += chunk; 64 } 65 66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 67 int end; 68 69 WARN_ON(start > offset + len); 70 71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 72 chunk = end - offset; 73 if (chunk > 0) { 74 if (chunk > len) 75 chunk = len; 76 elt++; 77 len -= chunk; 78 if (len == 0) 79 return elt; 80 offset += chunk; 81 } 82 start = end; 83 } 84 85 if (unlikely(skb_has_frag_list(skb))) { 86 skb_walk_frags(skb, frag_iter) { 87 int end, ret; 88 89 WARN_ON(start > offset + len); 90 91 end = start + frag_iter->len; 92 chunk = end - offset; 93 if (chunk > 0) { 94 if (chunk > len) 95 chunk = len; 96 ret = __skb_nsg(frag_iter, offset - start, chunk, 97 recursion_level + 1); 98 if (unlikely(ret < 0)) 99 return ret; 100 elt += ret; 101 len -= chunk; 102 if (len == 0) 103 return elt; 104 offset += chunk; 105 } 106 start = end; 107 } 108 } 109 BUG_ON(len); 110 return elt; 111 } 112 113 /* Return the number of scatterlist elements required to completely map the 114 * skb, or -EMSGSIZE if the recursion depth is exceeded. 115 */ 116 static int skb_nsg(struct sk_buff *skb, int offset, int len) 117 { 118 return __skb_nsg(skb, offset, len, 0); 119 } 120 121 static int padding_length(struct tls_sw_context_rx *ctx, 122 struct tls_prot_info *prot, struct sk_buff *skb) 123 { 124 struct strp_msg *rxm = strp_msg(skb); 125 int sub = 0; 126 127 /* Determine zero-padding length */ 128 if (prot->version == TLS_1_3_VERSION) { 129 char content_type = 0; 130 int err; 131 int back = 17; 132 133 while (content_type == 0) { 134 if (back > rxm->full_len - prot->prepend_size) 135 return -EBADMSG; 136 err = skb_copy_bits(skb, 137 rxm->offset + rxm->full_len - back, 138 &content_type, 1); 139 if (err) 140 return err; 141 if (content_type) 142 break; 143 sub++; 144 back++; 145 } 146 ctx->control = content_type; 147 } 148 return sub; 149 } 150 151 static void tls_decrypt_done(struct crypto_async_request *req, int err) 152 { 153 struct aead_request *aead_req = (struct aead_request *)req; 154 struct scatterlist *sgout = aead_req->dst; 155 struct scatterlist *sgin = aead_req->src; 156 struct tls_sw_context_rx *ctx; 157 struct tls_context *tls_ctx; 158 struct tls_prot_info *prot; 159 struct scatterlist *sg; 160 struct sk_buff *skb; 161 unsigned int pages; 162 int pending; 163 164 skb = (struct sk_buff *)req->data; 165 tls_ctx = tls_get_ctx(skb->sk); 166 ctx = tls_sw_ctx_rx(tls_ctx); 167 prot = &tls_ctx->prot_info; 168 169 /* Propagate if there was an err */ 170 if (err) { 171 ctx->async_wait.err = err; 172 tls_err_abort(skb->sk, err); 173 } else { 174 struct strp_msg *rxm = strp_msg(skb); 175 int pad; 176 177 pad = padding_length(ctx, prot, skb); 178 if (pad < 0) { 179 ctx->async_wait.err = pad; 180 tls_err_abort(skb->sk, pad); 181 } else { 182 rxm->full_len -= pad; 183 rxm->offset += prot->prepend_size; 184 rxm->full_len -= prot->overhead_size; 185 } 186 } 187 188 /* After using skb->sk to propagate sk through crypto async callback 189 * we need to NULL it again. 190 */ 191 skb->sk = NULL; 192 193 194 /* Free the destination pages if skb was not decrypted inplace */ 195 if (sgout != sgin) { 196 /* Skip the first S/G entry as it points to AAD */ 197 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 198 if (!sg) 199 break; 200 put_page(sg_page(sg)); 201 } 202 } 203 204 kfree(aead_req); 205 206 pending = atomic_dec_return(&ctx->decrypt_pending); 207 208 if (!pending && READ_ONCE(ctx->async_notify)) 209 complete(&ctx->async_wait.completion); 210 } 211 212 static int tls_do_decryption(struct sock *sk, 213 struct sk_buff *skb, 214 struct scatterlist *sgin, 215 struct scatterlist *sgout, 216 char *iv_recv, 217 size_t data_len, 218 struct aead_request *aead_req, 219 bool async) 220 { 221 struct tls_context *tls_ctx = tls_get_ctx(sk); 222 struct tls_prot_info *prot = &tls_ctx->prot_info; 223 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 224 int ret; 225 226 aead_request_set_tfm(aead_req, ctx->aead_recv); 227 aead_request_set_ad(aead_req, prot->aad_size); 228 aead_request_set_crypt(aead_req, sgin, sgout, 229 data_len + prot->tag_size, 230 (u8 *)iv_recv); 231 232 if (async) { 233 /* Using skb->sk to push sk through to crypto async callback 234 * handler. This allows propagating errors up to the socket 235 * if needed. It _must_ be cleared in the async handler 236 * before consume_skb is called. We _know_ skb->sk is NULL 237 * because it is a clone from strparser. 238 */ 239 skb->sk = sk; 240 aead_request_set_callback(aead_req, 241 CRYPTO_TFM_REQ_MAY_BACKLOG, 242 tls_decrypt_done, skb); 243 atomic_inc(&ctx->decrypt_pending); 244 } else { 245 aead_request_set_callback(aead_req, 246 CRYPTO_TFM_REQ_MAY_BACKLOG, 247 crypto_req_done, &ctx->async_wait); 248 } 249 250 ret = crypto_aead_decrypt(aead_req); 251 if (ret == -EINPROGRESS) { 252 if (async) 253 return ret; 254 255 ret = crypto_wait_req(ret, &ctx->async_wait); 256 } 257 258 if (async) 259 atomic_dec(&ctx->decrypt_pending); 260 261 return ret; 262 } 263 264 static void tls_trim_both_msgs(struct sock *sk, int target_size) 265 { 266 struct tls_context *tls_ctx = tls_get_ctx(sk); 267 struct tls_prot_info *prot = &tls_ctx->prot_info; 268 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 269 struct tls_rec *rec = ctx->open_rec; 270 271 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 272 if (target_size > 0) 273 target_size += prot->overhead_size; 274 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 275 } 276 277 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 278 { 279 struct tls_context *tls_ctx = tls_get_ctx(sk); 280 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 281 struct tls_rec *rec = ctx->open_rec; 282 struct sk_msg *msg_en = &rec->msg_encrypted; 283 284 return sk_msg_alloc(sk, msg_en, len, 0); 285 } 286 287 static int tls_clone_plaintext_msg(struct sock *sk, int required) 288 { 289 struct tls_context *tls_ctx = tls_get_ctx(sk); 290 struct tls_prot_info *prot = &tls_ctx->prot_info; 291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 292 struct tls_rec *rec = ctx->open_rec; 293 struct sk_msg *msg_pl = &rec->msg_plaintext; 294 struct sk_msg *msg_en = &rec->msg_encrypted; 295 int skip, len; 296 297 /* We add page references worth len bytes from encrypted sg 298 * at the end of plaintext sg. It is guaranteed that msg_en 299 * has enough required room (ensured by caller). 300 */ 301 len = required - msg_pl->sg.size; 302 303 /* Skip initial bytes in msg_en's data to be able to use 304 * same offset of both plain and encrypted data. 305 */ 306 skip = prot->prepend_size + msg_pl->sg.size; 307 308 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 309 } 310 311 static struct tls_rec *tls_get_rec(struct sock *sk) 312 { 313 struct tls_context *tls_ctx = tls_get_ctx(sk); 314 struct tls_prot_info *prot = &tls_ctx->prot_info; 315 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 316 struct sk_msg *msg_pl, *msg_en; 317 struct tls_rec *rec; 318 int mem_size; 319 320 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 321 322 rec = kzalloc(mem_size, sk->sk_allocation); 323 if (!rec) 324 return NULL; 325 326 msg_pl = &rec->msg_plaintext; 327 msg_en = &rec->msg_encrypted; 328 329 sk_msg_init(msg_pl); 330 sk_msg_init(msg_en); 331 332 sg_init_table(rec->sg_aead_in, 2); 333 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 334 sg_unmark_end(&rec->sg_aead_in[1]); 335 336 sg_init_table(rec->sg_aead_out, 2); 337 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 338 sg_unmark_end(&rec->sg_aead_out[1]); 339 340 return rec; 341 } 342 343 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 344 { 345 sk_msg_free(sk, &rec->msg_encrypted); 346 sk_msg_free(sk, &rec->msg_plaintext); 347 kfree(rec); 348 } 349 350 static void tls_free_open_rec(struct sock *sk) 351 { 352 struct tls_context *tls_ctx = tls_get_ctx(sk); 353 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 354 struct tls_rec *rec = ctx->open_rec; 355 356 if (rec) { 357 tls_free_rec(sk, rec); 358 ctx->open_rec = NULL; 359 } 360 } 361 362 int tls_tx_records(struct sock *sk, int flags) 363 { 364 struct tls_context *tls_ctx = tls_get_ctx(sk); 365 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 366 struct tls_rec *rec, *tmp; 367 struct sk_msg *msg_en; 368 int tx_flags, rc = 0; 369 370 if (tls_is_partially_sent_record(tls_ctx)) { 371 rec = list_first_entry(&ctx->tx_list, 372 struct tls_rec, list); 373 374 if (flags == -1) 375 tx_flags = rec->tx_flags; 376 else 377 tx_flags = flags; 378 379 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 380 if (rc) 381 goto tx_err; 382 383 /* Full record has been transmitted. 384 * Remove the head of tx_list 385 */ 386 list_del(&rec->list); 387 sk_msg_free(sk, &rec->msg_plaintext); 388 kfree(rec); 389 } 390 391 /* Tx all ready records */ 392 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 393 if (READ_ONCE(rec->tx_ready)) { 394 if (flags == -1) 395 tx_flags = rec->tx_flags; 396 else 397 tx_flags = flags; 398 399 msg_en = &rec->msg_encrypted; 400 rc = tls_push_sg(sk, tls_ctx, 401 &msg_en->sg.data[msg_en->sg.curr], 402 0, tx_flags); 403 if (rc) 404 goto tx_err; 405 406 list_del(&rec->list); 407 sk_msg_free(sk, &rec->msg_plaintext); 408 kfree(rec); 409 } else { 410 break; 411 } 412 } 413 414 tx_err: 415 if (rc < 0 && rc != -EAGAIN) 416 tls_err_abort(sk, EBADMSG); 417 418 return rc; 419 } 420 421 static void tls_encrypt_done(struct crypto_async_request *req, int err) 422 { 423 struct aead_request *aead_req = (struct aead_request *)req; 424 struct sock *sk = req->data; 425 struct tls_context *tls_ctx = tls_get_ctx(sk); 426 struct tls_prot_info *prot = &tls_ctx->prot_info; 427 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 428 struct scatterlist *sge; 429 struct sk_msg *msg_en; 430 struct tls_rec *rec; 431 bool ready = false; 432 int pending; 433 434 rec = container_of(aead_req, struct tls_rec, aead_req); 435 msg_en = &rec->msg_encrypted; 436 437 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 438 sge->offset -= prot->prepend_size; 439 sge->length += prot->prepend_size; 440 441 /* Check if error is previously set on socket */ 442 if (err || sk->sk_err) { 443 rec = NULL; 444 445 /* If err is already set on socket, return the same code */ 446 if (sk->sk_err) { 447 ctx->async_wait.err = sk->sk_err; 448 } else { 449 ctx->async_wait.err = err; 450 tls_err_abort(sk, err); 451 } 452 } 453 454 if (rec) { 455 struct tls_rec *first_rec; 456 457 /* Mark the record as ready for transmission */ 458 smp_store_mb(rec->tx_ready, true); 459 460 /* If received record is at head of tx_list, schedule tx */ 461 first_rec = list_first_entry(&ctx->tx_list, 462 struct tls_rec, list); 463 if (rec == first_rec) 464 ready = true; 465 } 466 467 pending = atomic_dec_return(&ctx->encrypt_pending); 468 469 if (!pending && READ_ONCE(ctx->async_notify)) 470 complete(&ctx->async_wait.completion); 471 472 if (!ready) 473 return; 474 475 /* Schedule the transmission */ 476 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 477 schedule_delayed_work(&ctx->tx_work.work, 1); 478 } 479 480 static int tls_do_encryption(struct sock *sk, 481 struct tls_context *tls_ctx, 482 struct tls_sw_context_tx *ctx, 483 struct aead_request *aead_req, 484 size_t data_len, u32 start) 485 { 486 struct tls_prot_info *prot = &tls_ctx->prot_info; 487 struct tls_rec *rec = ctx->open_rec; 488 struct sk_msg *msg_en = &rec->msg_encrypted; 489 struct scatterlist *sge = sk_msg_elem(msg_en, start); 490 int rc, iv_offset = 0; 491 492 /* For CCM based ciphers, first byte of IV is a constant */ 493 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 494 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 495 iv_offset = 1; 496 } 497 498 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 499 prot->iv_size + prot->salt_size); 500 501 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq); 502 503 sge->offset += prot->prepend_size; 504 sge->length -= prot->prepend_size; 505 506 msg_en->sg.curr = start; 507 508 aead_request_set_tfm(aead_req, ctx->aead_send); 509 aead_request_set_ad(aead_req, prot->aad_size); 510 aead_request_set_crypt(aead_req, rec->sg_aead_in, 511 rec->sg_aead_out, 512 data_len, rec->iv_data); 513 514 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 515 tls_encrypt_done, sk); 516 517 /* Add the record in tx_list */ 518 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 519 atomic_inc(&ctx->encrypt_pending); 520 521 rc = crypto_aead_encrypt(aead_req); 522 if (!rc || rc != -EINPROGRESS) { 523 atomic_dec(&ctx->encrypt_pending); 524 sge->offset -= prot->prepend_size; 525 sge->length += prot->prepend_size; 526 } 527 528 if (!rc) { 529 WRITE_ONCE(rec->tx_ready, true); 530 } else if (rc != -EINPROGRESS) { 531 list_del(&rec->list); 532 return rc; 533 } 534 535 /* Unhook the record from context if encryption is not failure */ 536 ctx->open_rec = NULL; 537 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 538 return rc; 539 } 540 541 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 542 struct tls_rec **to, struct sk_msg *msg_opl, 543 struct sk_msg *msg_oen, u32 split_point, 544 u32 tx_overhead_size, u32 *orig_end) 545 { 546 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 547 struct scatterlist *sge, *osge, *nsge; 548 u32 orig_size = msg_opl->sg.size; 549 struct scatterlist tmp = { }; 550 struct sk_msg *msg_npl; 551 struct tls_rec *new; 552 int ret; 553 554 new = tls_get_rec(sk); 555 if (!new) 556 return -ENOMEM; 557 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 558 tx_overhead_size, 0); 559 if (ret < 0) { 560 tls_free_rec(sk, new); 561 return ret; 562 } 563 564 *orig_end = msg_opl->sg.end; 565 i = msg_opl->sg.start; 566 sge = sk_msg_elem(msg_opl, i); 567 while (apply && sge->length) { 568 if (sge->length > apply) { 569 u32 len = sge->length - apply; 570 571 get_page(sg_page(sge)); 572 sg_set_page(&tmp, sg_page(sge), len, 573 sge->offset + apply); 574 sge->length = apply; 575 bytes += apply; 576 apply = 0; 577 } else { 578 apply -= sge->length; 579 bytes += sge->length; 580 } 581 582 sk_msg_iter_var_next(i); 583 if (i == msg_opl->sg.end) 584 break; 585 sge = sk_msg_elem(msg_opl, i); 586 } 587 588 msg_opl->sg.end = i; 589 msg_opl->sg.curr = i; 590 msg_opl->sg.copybreak = 0; 591 msg_opl->apply_bytes = 0; 592 msg_opl->sg.size = bytes; 593 594 msg_npl = &new->msg_plaintext; 595 msg_npl->apply_bytes = apply; 596 msg_npl->sg.size = orig_size - bytes; 597 598 j = msg_npl->sg.start; 599 nsge = sk_msg_elem(msg_npl, j); 600 if (tmp.length) { 601 memcpy(nsge, &tmp, sizeof(*nsge)); 602 sk_msg_iter_var_next(j); 603 nsge = sk_msg_elem(msg_npl, j); 604 } 605 606 osge = sk_msg_elem(msg_opl, i); 607 while (osge->length) { 608 memcpy(nsge, osge, sizeof(*nsge)); 609 sg_unmark_end(nsge); 610 sk_msg_iter_var_next(i); 611 sk_msg_iter_var_next(j); 612 if (i == *orig_end) 613 break; 614 osge = sk_msg_elem(msg_opl, i); 615 nsge = sk_msg_elem(msg_npl, j); 616 } 617 618 msg_npl->sg.end = j; 619 msg_npl->sg.curr = j; 620 msg_npl->sg.copybreak = 0; 621 622 *to = new; 623 return 0; 624 } 625 626 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 627 struct tls_rec *from, u32 orig_end) 628 { 629 struct sk_msg *msg_npl = &from->msg_plaintext; 630 struct sk_msg *msg_opl = &to->msg_plaintext; 631 struct scatterlist *osge, *nsge; 632 u32 i, j; 633 634 i = msg_opl->sg.end; 635 sk_msg_iter_var_prev(i); 636 j = msg_npl->sg.start; 637 638 osge = sk_msg_elem(msg_opl, i); 639 nsge = sk_msg_elem(msg_npl, j); 640 641 if (sg_page(osge) == sg_page(nsge) && 642 osge->offset + osge->length == nsge->offset) { 643 osge->length += nsge->length; 644 put_page(sg_page(nsge)); 645 } 646 647 msg_opl->sg.end = orig_end; 648 msg_opl->sg.curr = orig_end; 649 msg_opl->sg.copybreak = 0; 650 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 651 msg_opl->sg.size += msg_npl->sg.size; 652 653 sk_msg_free(sk, &to->msg_encrypted); 654 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 655 656 kfree(from); 657 } 658 659 static int tls_push_record(struct sock *sk, int flags, 660 unsigned char record_type) 661 { 662 struct tls_context *tls_ctx = tls_get_ctx(sk); 663 struct tls_prot_info *prot = &tls_ctx->prot_info; 664 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 665 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 666 u32 i, split_point, uninitialized_var(orig_end); 667 struct sk_msg *msg_pl, *msg_en; 668 struct aead_request *req; 669 bool split; 670 int rc; 671 672 if (!rec) 673 return 0; 674 675 msg_pl = &rec->msg_plaintext; 676 msg_en = &rec->msg_encrypted; 677 678 split_point = msg_pl->apply_bytes; 679 split = split_point && split_point < msg_pl->sg.size; 680 if (split) { 681 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 682 split_point, prot->overhead_size, 683 &orig_end); 684 if (rc < 0) 685 return rc; 686 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 687 prot->overhead_size); 688 } 689 690 rec->tx_flags = flags; 691 req = &rec->aead_req; 692 693 i = msg_pl->sg.end; 694 sk_msg_iter_var_prev(i); 695 696 rec->content_type = record_type; 697 if (prot->version == TLS_1_3_VERSION) { 698 /* Add content type to end of message. No padding added */ 699 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 700 sg_mark_end(&rec->sg_content_type); 701 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 702 &rec->sg_content_type); 703 } else { 704 sg_mark_end(sk_msg_elem(msg_pl, i)); 705 } 706 707 i = msg_pl->sg.start; 708 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ? 709 &msg_en->sg.data[i] : &msg_pl->sg.data[i]); 710 711 i = msg_en->sg.end; 712 sk_msg_iter_var_prev(i); 713 sg_mark_end(sk_msg_elem(msg_en, i)); 714 715 i = msg_en->sg.start; 716 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 717 718 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 719 tls_ctx->tx.rec_seq, prot->rec_seq_size, 720 record_type, prot->version); 721 722 tls_fill_prepend(tls_ctx, 723 page_address(sg_page(&msg_en->sg.data[i])) + 724 msg_en->sg.data[i].offset, 725 msg_pl->sg.size + prot->tail_size, 726 record_type, prot->version); 727 728 tls_ctx->pending_open_record_frags = false; 729 730 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 731 msg_pl->sg.size + prot->tail_size, i); 732 if (rc < 0) { 733 if (rc != -EINPROGRESS) { 734 tls_err_abort(sk, EBADMSG); 735 if (split) { 736 tls_ctx->pending_open_record_frags = true; 737 tls_merge_open_record(sk, rec, tmp, orig_end); 738 } 739 } 740 ctx->async_capable = 1; 741 return rc; 742 } else if (split) { 743 msg_pl = &tmp->msg_plaintext; 744 msg_en = &tmp->msg_encrypted; 745 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 746 tls_ctx->pending_open_record_frags = true; 747 ctx->open_rec = tmp; 748 } 749 750 return tls_tx_records(sk, flags); 751 } 752 753 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 754 bool full_record, u8 record_type, 755 size_t *copied, int flags) 756 { 757 struct tls_context *tls_ctx = tls_get_ctx(sk); 758 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 759 struct sk_msg msg_redir = { }; 760 struct sk_psock *psock; 761 struct sock *sk_redir; 762 struct tls_rec *rec; 763 bool enospc, policy; 764 int err = 0, send; 765 u32 delta = 0; 766 767 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 768 psock = sk_psock_get(sk); 769 if (!psock || !policy) 770 return tls_push_record(sk, flags, record_type); 771 more_data: 772 enospc = sk_msg_full(msg); 773 if (psock->eval == __SK_NONE) { 774 delta = msg->sg.size; 775 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 776 if (delta < msg->sg.size) 777 delta -= msg->sg.size; 778 else 779 delta = 0; 780 } 781 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 782 !enospc && !full_record) { 783 err = -ENOSPC; 784 goto out_err; 785 } 786 msg->cork_bytes = 0; 787 send = msg->sg.size; 788 if (msg->apply_bytes && msg->apply_bytes < send) 789 send = msg->apply_bytes; 790 791 switch (psock->eval) { 792 case __SK_PASS: 793 err = tls_push_record(sk, flags, record_type); 794 if (err < 0) { 795 *copied -= sk_msg_free(sk, msg); 796 tls_free_open_rec(sk); 797 goto out_err; 798 } 799 break; 800 case __SK_REDIRECT: 801 sk_redir = psock->sk_redir; 802 memcpy(&msg_redir, msg, sizeof(*msg)); 803 if (msg->apply_bytes < send) 804 msg->apply_bytes = 0; 805 else 806 msg->apply_bytes -= send; 807 sk_msg_return_zero(sk, msg, send); 808 msg->sg.size -= send; 809 release_sock(sk); 810 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 811 lock_sock(sk); 812 if (err < 0) { 813 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 814 msg->sg.size = 0; 815 } 816 if (msg->sg.size == 0) 817 tls_free_open_rec(sk); 818 break; 819 case __SK_DROP: 820 default: 821 sk_msg_free_partial(sk, msg, send); 822 if (msg->apply_bytes < send) 823 msg->apply_bytes = 0; 824 else 825 msg->apply_bytes -= send; 826 if (msg->sg.size == 0) 827 tls_free_open_rec(sk); 828 *copied -= (send + delta); 829 err = -EACCES; 830 } 831 832 if (likely(!err)) { 833 bool reset_eval = !ctx->open_rec; 834 835 rec = ctx->open_rec; 836 if (rec) { 837 msg = &rec->msg_plaintext; 838 if (!msg->apply_bytes) 839 reset_eval = true; 840 } 841 if (reset_eval) { 842 psock->eval = __SK_NONE; 843 if (psock->sk_redir) { 844 sock_put(psock->sk_redir); 845 psock->sk_redir = NULL; 846 } 847 } 848 if (rec) 849 goto more_data; 850 } 851 out_err: 852 sk_psock_put(sk, psock); 853 return err; 854 } 855 856 static int tls_sw_push_pending_record(struct sock *sk, int flags) 857 { 858 struct tls_context *tls_ctx = tls_get_ctx(sk); 859 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 860 struct tls_rec *rec = ctx->open_rec; 861 struct sk_msg *msg_pl; 862 size_t copied; 863 864 if (!rec) 865 return 0; 866 867 msg_pl = &rec->msg_plaintext; 868 copied = msg_pl->sg.size; 869 if (!copied) 870 return 0; 871 872 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 873 &copied, flags); 874 } 875 876 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 877 { 878 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 879 struct tls_context *tls_ctx = tls_get_ctx(sk); 880 struct tls_prot_info *prot = &tls_ctx->prot_info; 881 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 882 bool async_capable = ctx->async_capable; 883 unsigned char record_type = TLS_RECORD_TYPE_DATA; 884 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 885 bool eor = !(msg->msg_flags & MSG_MORE); 886 size_t try_to_copy, copied = 0; 887 struct sk_msg *msg_pl, *msg_en; 888 struct tls_rec *rec; 889 int required_size; 890 int num_async = 0; 891 bool full_record; 892 int record_room; 893 int num_zc = 0; 894 int orig_size; 895 int ret = 0; 896 897 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 898 return -ENOTSUPP; 899 900 mutex_lock(&tls_ctx->tx_lock); 901 lock_sock(sk); 902 903 if (unlikely(msg->msg_controllen)) { 904 ret = tls_proccess_cmsg(sk, msg, &record_type); 905 if (ret) { 906 if (ret == -EINPROGRESS) 907 num_async++; 908 else if (ret != -EAGAIN) 909 goto send_end; 910 } 911 } 912 913 while (msg_data_left(msg)) { 914 if (sk->sk_err) { 915 ret = -sk->sk_err; 916 goto send_end; 917 } 918 919 if (ctx->open_rec) 920 rec = ctx->open_rec; 921 else 922 rec = ctx->open_rec = tls_get_rec(sk); 923 if (!rec) { 924 ret = -ENOMEM; 925 goto send_end; 926 } 927 928 msg_pl = &rec->msg_plaintext; 929 msg_en = &rec->msg_encrypted; 930 931 orig_size = msg_pl->sg.size; 932 full_record = false; 933 try_to_copy = msg_data_left(msg); 934 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 935 if (try_to_copy >= record_room) { 936 try_to_copy = record_room; 937 full_record = true; 938 } 939 940 required_size = msg_pl->sg.size + try_to_copy + 941 prot->overhead_size; 942 943 if (!sk_stream_memory_free(sk)) 944 goto wait_for_sndbuf; 945 946 alloc_encrypted: 947 ret = tls_alloc_encrypted_msg(sk, required_size); 948 if (ret) { 949 if (ret != -ENOSPC) 950 goto wait_for_memory; 951 952 /* Adjust try_to_copy according to the amount that was 953 * actually allocated. The difference is due 954 * to max sg elements limit 955 */ 956 try_to_copy -= required_size - msg_en->sg.size; 957 full_record = true; 958 } 959 960 if (!is_kvec && (full_record || eor) && !async_capable) { 961 u32 first = msg_pl->sg.end; 962 963 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 964 msg_pl, try_to_copy); 965 if (ret) 966 goto fallback_to_reg_send; 967 968 rec->inplace_crypto = 0; 969 970 num_zc++; 971 copied += try_to_copy; 972 973 sk_msg_sg_copy_set(msg_pl, first); 974 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 975 record_type, &copied, 976 msg->msg_flags); 977 if (ret) { 978 if (ret == -EINPROGRESS) 979 num_async++; 980 else if (ret == -ENOMEM) 981 goto wait_for_memory; 982 else if (ret == -ENOSPC) 983 goto rollback_iter; 984 else if (ret != -EAGAIN) 985 goto send_end; 986 } 987 continue; 988 rollback_iter: 989 copied -= try_to_copy; 990 sk_msg_sg_copy_clear(msg_pl, first); 991 iov_iter_revert(&msg->msg_iter, 992 msg_pl->sg.size - orig_size); 993 fallback_to_reg_send: 994 sk_msg_trim(sk, msg_pl, orig_size); 995 } 996 997 required_size = msg_pl->sg.size + try_to_copy; 998 999 ret = tls_clone_plaintext_msg(sk, required_size); 1000 if (ret) { 1001 if (ret != -ENOSPC) 1002 goto send_end; 1003 1004 /* Adjust try_to_copy according to the amount that was 1005 * actually allocated. The difference is due 1006 * to max sg elements limit 1007 */ 1008 try_to_copy -= required_size - msg_pl->sg.size; 1009 full_record = true; 1010 sk_msg_trim(sk, msg_en, 1011 msg_pl->sg.size + prot->overhead_size); 1012 } 1013 1014 if (try_to_copy) { 1015 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1016 msg_pl, try_to_copy); 1017 if (ret < 0) 1018 goto trim_sgl; 1019 } 1020 1021 /* Open records defined only if successfully copied, otherwise 1022 * we would trim the sg but not reset the open record frags. 1023 */ 1024 tls_ctx->pending_open_record_frags = true; 1025 copied += try_to_copy; 1026 if (full_record || eor) { 1027 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1028 record_type, &copied, 1029 msg->msg_flags); 1030 if (ret) { 1031 if (ret == -EINPROGRESS) 1032 num_async++; 1033 else if (ret == -ENOMEM) 1034 goto wait_for_memory; 1035 else if (ret != -EAGAIN) { 1036 if (ret == -ENOSPC) 1037 ret = 0; 1038 goto send_end; 1039 } 1040 } 1041 } 1042 1043 continue; 1044 1045 wait_for_sndbuf: 1046 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1047 wait_for_memory: 1048 ret = sk_stream_wait_memory(sk, &timeo); 1049 if (ret) { 1050 trim_sgl: 1051 tls_trim_both_msgs(sk, orig_size); 1052 goto send_end; 1053 } 1054 1055 if (msg_en->sg.size < required_size) 1056 goto alloc_encrypted; 1057 } 1058 1059 if (!num_async) { 1060 goto send_end; 1061 } else if (num_zc) { 1062 /* Wait for pending encryptions to get completed */ 1063 smp_store_mb(ctx->async_notify, true); 1064 1065 if (atomic_read(&ctx->encrypt_pending)) 1066 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1067 else 1068 reinit_completion(&ctx->async_wait.completion); 1069 1070 WRITE_ONCE(ctx->async_notify, false); 1071 1072 if (ctx->async_wait.err) { 1073 ret = ctx->async_wait.err; 1074 copied = 0; 1075 } 1076 } 1077 1078 /* Transmit if any encryptions have completed */ 1079 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1080 cancel_delayed_work(&ctx->tx_work.work); 1081 tls_tx_records(sk, msg->msg_flags); 1082 } 1083 1084 send_end: 1085 ret = sk_stream_error(sk, msg->msg_flags, ret); 1086 1087 release_sock(sk); 1088 mutex_unlock(&tls_ctx->tx_lock); 1089 return copied ? copied : ret; 1090 } 1091 1092 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1093 int offset, size_t size, int flags) 1094 { 1095 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1096 struct tls_context *tls_ctx = tls_get_ctx(sk); 1097 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1098 struct tls_prot_info *prot = &tls_ctx->prot_info; 1099 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1100 struct sk_msg *msg_pl; 1101 struct tls_rec *rec; 1102 int num_async = 0; 1103 size_t copied = 0; 1104 bool full_record; 1105 int record_room; 1106 int ret = 0; 1107 bool eor; 1108 1109 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1110 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1111 1112 /* Call the sk_stream functions to manage the sndbuf mem. */ 1113 while (size > 0) { 1114 size_t copy, required_size; 1115 1116 if (sk->sk_err) { 1117 ret = -sk->sk_err; 1118 goto sendpage_end; 1119 } 1120 1121 if (ctx->open_rec) 1122 rec = ctx->open_rec; 1123 else 1124 rec = ctx->open_rec = tls_get_rec(sk); 1125 if (!rec) { 1126 ret = -ENOMEM; 1127 goto sendpage_end; 1128 } 1129 1130 msg_pl = &rec->msg_plaintext; 1131 1132 full_record = false; 1133 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1134 copy = size; 1135 if (copy >= record_room) { 1136 copy = record_room; 1137 full_record = true; 1138 } 1139 1140 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1141 1142 if (!sk_stream_memory_free(sk)) 1143 goto wait_for_sndbuf; 1144 alloc_payload: 1145 ret = tls_alloc_encrypted_msg(sk, required_size); 1146 if (ret) { 1147 if (ret != -ENOSPC) 1148 goto wait_for_memory; 1149 1150 /* Adjust copy according to the amount that was 1151 * actually allocated. The difference is due 1152 * to max sg elements limit 1153 */ 1154 copy -= required_size - msg_pl->sg.size; 1155 full_record = true; 1156 } 1157 1158 sk_msg_page_add(msg_pl, page, copy, offset); 1159 sk_mem_charge(sk, copy); 1160 1161 offset += copy; 1162 size -= copy; 1163 copied += copy; 1164 1165 tls_ctx->pending_open_record_frags = true; 1166 if (full_record || eor || sk_msg_full(msg_pl)) { 1167 rec->inplace_crypto = 0; 1168 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1169 record_type, &copied, flags); 1170 if (ret) { 1171 if (ret == -EINPROGRESS) 1172 num_async++; 1173 else if (ret == -ENOMEM) 1174 goto wait_for_memory; 1175 else if (ret != -EAGAIN) { 1176 if (ret == -ENOSPC) 1177 ret = 0; 1178 goto sendpage_end; 1179 } 1180 } 1181 } 1182 continue; 1183 wait_for_sndbuf: 1184 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1185 wait_for_memory: 1186 ret = sk_stream_wait_memory(sk, &timeo); 1187 if (ret) { 1188 tls_trim_both_msgs(sk, msg_pl->sg.size); 1189 goto sendpage_end; 1190 } 1191 1192 goto alloc_payload; 1193 } 1194 1195 if (num_async) { 1196 /* Transmit if any encryptions have completed */ 1197 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1198 cancel_delayed_work(&ctx->tx_work.work); 1199 tls_tx_records(sk, flags); 1200 } 1201 } 1202 sendpage_end: 1203 ret = sk_stream_error(sk, flags, ret); 1204 return copied ? copied : ret; 1205 } 1206 1207 int tls_sw_sendpage(struct sock *sk, struct page *page, 1208 int offset, size_t size, int flags) 1209 { 1210 struct tls_context *tls_ctx = tls_get_ctx(sk); 1211 int ret; 1212 1213 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1214 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1215 return -ENOTSUPP; 1216 1217 mutex_lock(&tls_ctx->tx_lock); 1218 lock_sock(sk); 1219 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1220 release_sock(sk); 1221 mutex_unlock(&tls_ctx->tx_lock); 1222 return ret; 1223 } 1224 1225 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1226 int flags, long timeo, int *err) 1227 { 1228 struct tls_context *tls_ctx = tls_get_ctx(sk); 1229 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1230 struct sk_buff *skb; 1231 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1232 1233 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1234 if (sk->sk_err) { 1235 *err = sock_error(sk); 1236 return NULL; 1237 } 1238 1239 if (sk->sk_shutdown & RCV_SHUTDOWN) 1240 return NULL; 1241 1242 if (sock_flag(sk, SOCK_DONE)) 1243 return NULL; 1244 1245 if ((flags & MSG_DONTWAIT) || !timeo) { 1246 *err = -EAGAIN; 1247 return NULL; 1248 } 1249 1250 add_wait_queue(sk_sleep(sk), &wait); 1251 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1252 sk_wait_event(sk, &timeo, 1253 ctx->recv_pkt != skb || 1254 !sk_psock_queue_empty(psock), 1255 &wait); 1256 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1257 remove_wait_queue(sk_sleep(sk), &wait); 1258 1259 /* Handle signals */ 1260 if (signal_pending(current)) { 1261 *err = sock_intr_errno(timeo); 1262 return NULL; 1263 } 1264 } 1265 1266 return skb; 1267 } 1268 1269 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1270 int length, int *pages_used, 1271 unsigned int *size_used, 1272 struct scatterlist *to, 1273 int to_max_pages) 1274 { 1275 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1276 struct page *pages[MAX_SKB_FRAGS]; 1277 unsigned int size = *size_used; 1278 ssize_t copied, use; 1279 size_t offset; 1280 1281 while (length > 0) { 1282 i = 0; 1283 maxpages = to_max_pages - num_elem; 1284 if (maxpages == 0) { 1285 rc = -EFAULT; 1286 goto out; 1287 } 1288 copied = iov_iter_get_pages(from, pages, 1289 length, 1290 maxpages, &offset); 1291 if (copied <= 0) { 1292 rc = -EFAULT; 1293 goto out; 1294 } 1295 1296 iov_iter_advance(from, copied); 1297 1298 length -= copied; 1299 size += copied; 1300 while (copied) { 1301 use = min_t(int, copied, PAGE_SIZE - offset); 1302 1303 sg_set_page(&to[num_elem], 1304 pages[i], use, offset); 1305 sg_unmark_end(&to[num_elem]); 1306 /* We do not uncharge memory from this API */ 1307 1308 offset = 0; 1309 copied -= use; 1310 1311 i++; 1312 num_elem++; 1313 } 1314 } 1315 /* Mark the end in the last sg entry if newly added */ 1316 if (num_elem > *pages_used) 1317 sg_mark_end(&to[num_elem - 1]); 1318 out: 1319 if (rc) 1320 iov_iter_revert(from, size - *size_used); 1321 *size_used = size; 1322 *pages_used = num_elem; 1323 1324 return rc; 1325 } 1326 1327 /* This function decrypts the input skb into either out_iov or in out_sg 1328 * or in skb buffers itself. The input parameter 'zc' indicates if 1329 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1330 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1331 * NULL, then the decryption happens inside skb buffers itself, i.e. 1332 * zero-copy gets disabled and 'zc' is updated. 1333 */ 1334 1335 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1336 struct iov_iter *out_iov, 1337 struct scatterlist *out_sg, 1338 int *chunk, bool *zc, bool async) 1339 { 1340 struct tls_context *tls_ctx = tls_get_ctx(sk); 1341 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1342 struct tls_prot_info *prot = &tls_ctx->prot_info; 1343 struct strp_msg *rxm = strp_msg(skb); 1344 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1345 struct aead_request *aead_req; 1346 struct sk_buff *unused; 1347 u8 *aad, *iv, *mem = NULL; 1348 struct scatterlist *sgin = NULL; 1349 struct scatterlist *sgout = NULL; 1350 const int data_len = rxm->full_len - prot->overhead_size + 1351 prot->tail_size; 1352 int iv_offset = 0; 1353 1354 if (*zc && (out_iov || out_sg)) { 1355 if (out_iov) 1356 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1357 else 1358 n_sgout = sg_nents(out_sg); 1359 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1360 rxm->full_len - prot->prepend_size); 1361 } else { 1362 n_sgout = 0; 1363 *zc = false; 1364 n_sgin = skb_cow_data(skb, 0, &unused); 1365 } 1366 1367 if (n_sgin < 1) 1368 return -EBADMSG; 1369 1370 /* Increment to accommodate AAD */ 1371 n_sgin = n_sgin + 1; 1372 1373 nsg = n_sgin + n_sgout; 1374 1375 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1376 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1377 mem_size = mem_size + prot->aad_size; 1378 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1379 1380 /* Allocate a single block of memory which contains 1381 * aead_req || sgin[] || sgout[] || aad || iv. 1382 * This order achieves correct alignment for aead_req, sgin, sgout. 1383 */ 1384 mem = kmalloc(mem_size, sk->sk_allocation); 1385 if (!mem) 1386 return -ENOMEM; 1387 1388 /* Segment the allocated memory */ 1389 aead_req = (struct aead_request *)mem; 1390 sgin = (struct scatterlist *)(mem + aead_size); 1391 sgout = sgin + n_sgin; 1392 aad = (u8 *)(sgout + n_sgout); 1393 iv = aad + prot->aad_size; 1394 1395 /* For CCM based ciphers, first byte of nonce+iv is always '2' */ 1396 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 1397 iv[0] = 2; 1398 iv_offset = 1; 1399 } 1400 1401 /* Prepare IV */ 1402 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1403 iv + iv_offset + prot->salt_size, 1404 prot->iv_size); 1405 if (err < 0) { 1406 kfree(mem); 1407 return err; 1408 } 1409 if (prot->version == TLS_1_3_VERSION) 1410 memcpy(iv + iv_offset, tls_ctx->rx.iv, 1411 crypto_aead_ivsize(ctx->aead_recv)); 1412 else 1413 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); 1414 1415 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq); 1416 1417 /* Prepare AAD */ 1418 tls_make_aad(aad, rxm->full_len - prot->overhead_size + 1419 prot->tail_size, 1420 tls_ctx->rx.rec_seq, prot->rec_seq_size, 1421 ctx->control, prot->version); 1422 1423 /* Prepare sgin */ 1424 sg_init_table(sgin, n_sgin); 1425 sg_set_buf(&sgin[0], aad, prot->aad_size); 1426 err = skb_to_sgvec(skb, &sgin[1], 1427 rxm->offset + prot->prepend_size, 1428 rxm->full_len - prot->prepend_size); 1429 if (err < 0) { 1430 kfree(mem); 1431 return err; 1432 } 1433 1434 if (n_sgout) { 1435 if (out_iov) { 1436 sg_init_table(sgout, n_sgout); 1437 sg_set_buf(&sgout[0], aad, prot->aad_size); 1438 1439 *chunk = 0; 1440 err = tls_setup_from_iter(sk, out_iov, data_len, 1441 &pages, chunk, &sgout[1], 1442 (n_sgout - 1)); 1443 if (err < 0) 1444 goto fallback_to_reg_recv; 1445 } else if (out_sg) { 1446 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1447 } else { 1448 goto fallback_to_reg_recv; 1449 } 1450 } else { 1451 fallback_to_reg_recv: 1452 sgout = sgin; 1453 pages = 0; 1454 *chunk = data_len; 1455 *zc = false; 1456 } 1457 1458 /* Prepare and submit AEAD request */ 1459 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1460 data_len, aead_req, async); 1461 if (err == -EINPROGRESS) 1462 return err; 1463 1464 /* Release the pages in case iov was mapped to pages */ 1465 for (; pages > 0; pages--) 1466 put_page(sg_page(&sgout[pages])); 1467 1468 kfree(mem); 1469 return err; 1470 } 1471 1472 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1473 struct iov_iter *dest, int *chunk, bool *zc, 1474 bool async) 1475 { 1476 struct tls_context *tls_ctx = tls_get_ctx(sk); 1477 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1478 struct tls_prot_info *prot = &tls_ctx->prot_info; 1479 struct strp_msg *rxm = strp_msg(skb); 1480 int pad, err = 0; 1481 1482 if (!ctx->decrypted) { 1483 if (tls_ctx->rx_conf == TLS_HW) { 1484 err = tls_device_decrypted(sk, skb); 1485 if (err < 0) 1486 return err; 1487 } 1488 1489 /* Still not decrypted after tls_device */ 1490 if (!ctx->decrypted) { 1491 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, 1492 async); 1493 if (err < 0) { 1494 if (err == -EINPROGRESS) 1495 tls_advance_record_sn(sk, prot, 1496 &tls_ctx->rx); 1497 1498 return err; 1499 } 1500 } else { 1501 *zc = false; 1502 } 1503 1504 pad = padding_length(ctx, prot, skb); 1505 if (pad < 0) 1506 return pad; 1507 1508 rxm->full_len -= pad; 1509 rxm->offset += prot->prepend_size; 1510 rxm->full_len -= prot->overhead_size; 1511 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1512 ctx->decrypted = true; 1513 ctx->saved_data_ready(sk); 1514 } else { 1515 *zc = false; 1516 } 1517 1518 return err; 1519 } 1520 1521 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1522 struct scatterlist *sgout) 1523 { 1524 bool zc = true; 1525 int chunk; 1526 1527 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); 1528 } 1529 1530 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1531 unsigned int len) 1532 { 1533 struct tls_context *tls_ctx = tls_get_ctx(sk); 1534 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1535 1536 if (skb) { 1537 struct strp_msg *rxm = strp_msg(skb); 1538 1539 if (len < rxm->full_len) { 1540 rxm->offset += len; 1541 rxm->full_len -= len; 1542 return false; 1543 } 1544 consume_skb(skb); 1545 } 1546 1547 /* Finished with message */ 1548 ctx->recv_pkt = NULL; 1549 __strp_unpause(&ctx->strp); 1550 1551 return true; 1552 } 1553 1554 /* This function traverses the rx_list in tls receive context to copies the 1555 * decrypted records into the buffer provided by caller zero copy is not 1556 * true. Further, the records are removed from the rx_list if it is not a peek 1557 * case and the record has been consumed completely. 1558 */ 1559 static int process_rx_list(struct tls_sw_context_rx *ctx, 1560 struct msghdr *msg, 1561 u8 *control, 1562 bool *cmsg, 1563 size_t skip, 1564 size_t len, 1565 bool zc, 1566 bool is_peek) 1567 { 1568 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1569 u8 ctrl = *control; 1570 u8 msgc = *cmsg; 1571 struct tls_msg *tlm; 1572 ssize_t copied = 0; 1573 1574 /* Set the record type in 'control' if caller didn't pass it */ 1575 if (!ctrl && skb) { 1576 tlm = tls_msg(skb); 1577 ctrl = tlm->control; 1578 } 1579 1580 while (skip && skb) { 1581 struct strp_msg *rxm = strp_msg(skb); 1582 tlm = tls_msg(skb); 1583 1584 /* Cannot process a record of different type */ 1585 if (ctrl != tlm->control) 1586 return 0; 1587 1588 if (skip < rxm->full_len) 1589 break; 1590 1591 skip = skip - rxm->full_len; 1592 skb = skb_peek_next(skb, &ctx->rx_list); 1593 } 1594 1595 while (len && skb) { 1596 struct sk_buff *next_skb; 1597 struct strp_msg *rxm = strp_msg(skb); 1598 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1599 1600 tlm = tls_msg(skb); 1601 1602 /* Cannot process a record of different type */ 1603 if (ctrl != tlm->control) 1604 return 0; 1605 1606 /* Set record type if not already done. For a non-data record, 1607 * do not proceed if record type could not be copied. 1608 */ 1609 if (!msgc) { 1610 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1611 sizeof(ctrl), &ctrl); 1612 msgc = true; 1613 if (ctrl != TLS_RECORD_TYPE_DATA) { 1614 if (cerr || msg->msg_flags & MSG_CTRUNC) 1615 return -EIO; 1616 1617 *cmsg = msgc; 1618 } 1619 } 1620 1621 if (!zc || (rxm->full_len - skip) > len) { 1622 int err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1623 msg, chunk); 1624 if (err < 0) 1625 return err; 1626 } 1627 1628 len = len - chunk; 1629 copied = copied + chunk; 1630 1631 /* Consume the data from record if it is non-peek case*/ 1632 if (!is_peek) { 1633 rxm->offset = rxm->offset + chunk; 1634 rxm->full_len = rxm->full_len - chunk; 1635 1636 /* Return if there is unconsumed data in the record */ 1637 if (rxm->full_len - skip) 1638 break; 1639 } 1640 1641 /* The remaining skip-bytes must lie in 1st record in rx_list. 1642 * So from the 2nd record, 'skip' should be 0. 1643 */ 1644 skip = 0; 1645 1646 if (msg) 1647 msg->msg_flags |= MSG_EOR; 1648 1649 next_skb = skb_peek_next(skb, &ctx->rx_list); 1650 1651 if (!is_peek) { 1652 skb_unlink(skb, &ctx->rx_list); 1653 consume_skb(skb); 1654 } 1655 1656 skb = next_skb; 1657 } 1658 1659 *control = ctrl; 1660 return copied; 1661 } 1662 1663 int tls_sw_recvmsg(struct sock *sk, 1664 struct msghdr *msg, 1665 size_t len, 1666 int nonblock, 1667 int flags, 1668 int *addr_len) 1669 { 1670 struct tls_context *tls_ctx = tls_get_ctx(sk); 1671 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1672 struct tls_prot_info *prot = &tls_ctx->prot_info; 1673 struct sk_psock *psock; 1674 unsigned char control = 0; 1675 ssize_t decrypted = 0; 1676 struct strp_msg *rxm; 1677 struct tls_msg *tlm; 1678 struct sk_buff *skb; 1679 ssize_t copied = 0; 1680 bool cmsg = false; 1681 int target, err = 0; 1682 long timeo; 1683 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1684 bool is_peek = flags & MSG_PEEK; 1685 int num_async = 0; 1686 1687 flags |= nonblock; 1688 1689 if (unlikely(flags & MSG_ERRQUEUE)) 1690 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1691 1692 psock = sk_psock_get(sk); 1693 lock_sock(sk); 1694 1695 /* Process pending decrypted records. It must be non-zero-copy */ 1696 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, 1697 is_peek); 1698 if (err < 0) { 1699 tls_err_abort(sk, err); 1700 goto end; 1701 } else { 1702 copied = err; 1703 } 1704 1705 if (len <= copied) 1706 goto recv_end; 1707 1708 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1709 len = len - copied; 1710 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1711 1712 while (len && (decrypted + copied < target || ctx->recv_pkt)) { 1713 bool retain_skb = false; 1714 bool zc = false; 1715 int to_decrypt; 1716 int chunk = 0; 1717 bool async_capable; 1718 bool async = false; 1719 1720 skb = tls_wait_data(sk, psock, flags, timeo, &err); 1721 if (!skb) { 1722 if (psock) { 1723 int ret = __tcp_bpf_recvmsg(sk, psock, 1724 msg, len, flags); 1725 1726 if (ret > 0) { 1727 decrypted += ret; 1728 len -= ret; 1729 continue; 1730 } 1731 } 1732 goto recv_end; 1733 } else { 1734 tlm = tls_msg(skb); 1735 if (prot->version == TLS_1_3_VERSION) 1736 tlm->control = 0; 1737 else 1738 tlm->control = ctx->control; 1739 } 1740 1741 rxm = strp_msg(skb); 1742 1743 to_decrypt = rxm->full_len - prot->overhead_size; 1744 1745 if (to_decrypt <= len && !is_kvec && !is_peek && 1746 ctx->control == TLS_RECORD_TYPE_DATA && 1747 prot->version != TLS_1_3_VERSION) 1748 zc = true; 1749 1750 /* Do not use async mode if record is non-data */ 1751 if (ctx->control == TLS_RECORD_TYPE_DATA) 1752 async_capable = ctx->async_capable; 1753 else 1754 async_capable = false; 1755 1756 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1757 &chunk, &zc, async_capable); 1758 if (err < 0 && err != -EINPROGRESS) { 1759 tls_err_abort(sk, EBADMSG); 1760 goto recv_end; 1761 } 1762 1763 if (err == -EINPROGRESS) { 1764 async = true; 1765 num_async++; 1766 } else if (prot->version == TLS_1_3_VERSION) { 1767 tlm->control = ctx->control; 1768 } 1769 1770 /* If the type of records being processed is not known yet, 1771 * set it to record type just dequeued. If it is already known, 1772 * but does not match the record type just dequeued, go to end. 1773 * We always get record type here since for tls1.2, record type 1774 * is known just after record is dequeued from stream parser. 1775 * For tls1.3, we disable async. 1776 */ 1777 1778 if (!control) 1779 control = tlm->control; 1780 else if (control != tlm->control) 1781 goto recv_end; 1782 1783 if (!cmsg) { 1784 int cerr; 1785 1786 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1787 sizeof(control), &control); 1788 cmsg = true; 1789 if (control != TLS_RECORD_TYPE_DATA) { 1790 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1791 err = -EIO; 1792 goto recv_end; 1793 } 1794 } 1795 } 1796 1797 if (async) 1798 goto pick_next_record; 1799 1800 if (!zc) { 1801 if (rxm->full_len > len) { 1802 retain_skb = true; 1803 chunk = len; 1804 } else { 1805 chunk = rxm->full_len; 1806 } 1807 1808 err = skb_copy_datagram_msg(skb, rxm->offset, 1809 msg, chunk); 1810 if (err < 0) 1811 goto recv_end; 1812 1813 if (!is_peek) { 1814 rxm->offset = rxm->offset + chunk; 1815 rxm->full_len = rxm->full_len - chunk; 1816 } 1817 } 1818 1819 pick_next_record: 1820 if (chunk > len) 1821 chunk = len; 1822 1823 decrypted += chunk; 1824 len -= chunk; 1825 1826 /* For async or peek case, queue the current skb */ 1827 if (async || is_peek || retain_skb) { 1828 skb_queue_tail(&ctx->rx_list, skb); 1829 skb = NULL; 1830 } 1831 1832 if (tls_sw_advance_skb(sk, skb, chunk)) { 1833 /* Return full control message to 1834 * userspace before trying to parse 1835 * another message type 1836 */ 1837 msg->msg_flags |= MSG_EOR; 1838 if (ctx->control != TLS_RECORD_TYPE_DATA) 1839 goto recv_end; 1840 } else { 1841 break; 1842 } 1843 } 1844 1845 recv_end: 1846 if (num_async) { 1847 /* Wait for all previously submitted records to be decrypted */ 1848 smp_store_mb(ctx->async_notify, true); 1849 if (atomic_read(&ctx->decrypt_pending)) { 1850 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1851 if (err) { 1852 /* one of async decrypt failed */ 1853 tls_err_abort(sk, err); 1854 copied = 0; 1855 decrypted = 0; 1856 goto end; 1857 } 1858 } else { 1859 reinit_completion(&ctx->async_wait.completion); 1860 } 1861 WRITE_ONCE(ctx->async_notify, false); 1862 1863 /* Drain records from the rx_list & copy if required */ 1864 if (is_peek || is_kvec) 1865 err = process_rx_list(ctx, msg, &control, &cmsg, copied, 1866 decrypted, false, is_peek); 1867 else 1868 err = process_rx_list(ctx, msg, &control, &cmsg, 0, 1869 decrypted, true, is_peek); 1870 if (err < 0) { 1871 tls_err_abort(sk, err); 1872 copied = 0; 1873 goto end; 1874 } 1875 } 1876 1877 copied += decrypted; 1878 1879 end: 1880 release_sock(sk); 1881 if (psock) 1882 sk_psock_put(sk, psock); 1883 return copied ? : err; 1884 } 1885 1886 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1887 struct pipe_inode_info *pipe, 1888 size_t len, unsigned int flags) 1889 { 1890 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1891 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1892 struct strp_msg *rxm = NULL; 1893 struct sock *sk = sock->sk; 1894 struct sk_buff *skb; 1895 ssize_t copied = 0; 1896 int err = 0; 1897 long timeo; 1898 int chunk; 1899 bool zc = false; 1900 1901 lock_sock(sk); 1902 1903 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1904 1905 skb = tls_wait_data(sk, NULL, flags, timeo, &err); 1906 if (!skb) 1907 goto splice_read_end; 1908 1909 if (!ctx->decrypted) { 1910 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); 1911 1912 /* splice does not support reading control messages */ 1913 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1914 err = -ENOTSUPP; 1915 goto splice_read_end; 1916 } 1917 1918 if (err < 0) { 1919 tls_err_abort(sk, EBADMSG); 1920 goto splice_read_end; 1921 } 1922 ctx->decrypted = true; 1923 } 1924 rxm = strp_msg(skb); 1925 1926 chunk = min_t(unsigned int, rxm->full_len, len); 1927 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 1928 if (copied < 0) 1929 goto splice_read_end; 1930 1931 if (likely(!(flags & MSG_PEEK))) 1932 tls_sw_advance_skb(sk, skb, copied); 1933 1934 splice_read_end: 1935 release_sock(sk); 1936 return copied ? : err; 1937 } 1938 1939 bool tls_sw_stream_read(const struct sock *sk) 1940 { 1941 struct tls_context *tls_ctx = tls_get_ctx(sk); 1942 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1943 bool ingress_empty = true; 1944 struct sk_psock *psock; 1945 1946 rcu_read_lock(); 1947 psock = sk_psock(sk); 1948 if (psock) 1949 ingress_empty = list_empty(&psock->ingress_msg); 1950 rcu_read_unlock(); 1951 1952 return !ingress_empty || ctx->recv_pkt || 1953 !skb_queue_empty(&ctx->rx_list); 1954 } 1955 1956 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 1957 { 1958 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1959 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1960 struct tls_prot_info *prot = &tls_ctx->prot_info; 1961 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 1962 struct strp_msg *rxm = strp_msg(skb); 1963 size_t cipher_overhead; 1964 size_t data_len = 0; 1965 int ret; 1966 1967 /* Verify that we have a full TLS header, or wait for more data */ 1968 if (rxm->offset + prot->prepend_size > skb->len) 1969 return 0; 1970 1971 /* Sanity-check size of on-stack buffer. */ 1972 if (WARN_ON(prot->prepend_size > sizeof(header))) { 1973 ret = -EINVAL; 1974 goto read_failure; 1975 } 1976 1977 /* Linearize header to local buffer */ 1978 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 1979 1980 if (ret < 0) 1981 goto read_failure; 1982 1983 ctx->control = header[0]; 1984 1985 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 1986 1987 cipher_overhead = prot->tag_size; 1988 if (prot->version != TLS_1_3_VERSION) 1989 cipher_overhead += prot->iv_size; 1990 1991 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 1992 prot->tail_size) { 1993 ret = -EMSGSIZE; 1994 goto read_failure; 1995 } 1996 if (data_len < cipher_overhead) { 1997 ret = -EBADMSG; 1998 goto read_failure; 1999 } 2000 2001 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2002 if (header[1] != TLS_1_2_VERSION_MINOR || 2003 header[2] != TLS_1_2_VERSION_MAJOR) { 2004 ret = -EINVAL; 2005 goto read_failure; 2006 } 2007 2008 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2009 TCP_SKB_CB(skb)->seq + rxm->offset); 2010 return data_len + TLS_HEADER_SIZE; 2011 2012 read_failure: 2013 tls_err_abort(strp->sk, ret); 2014 2015 return ret; 2016 } 2017 2018 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2019 { 2020 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2021 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2022 2023 ctx->decrypted = false; 2024 2025 ctx->recv_pkt = skb; 2026 strp_pause(strp); 2027 2028 ctx->saved_data_ready(strp->sk); 2029 } 2030 2031 static void tls_data_ready(struct sock *sk) 2032 { 2033 struct tls_context *tls_ctx = tls_get_ctx(sk); 2034 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2035 struct sk_psock *psock; 2036 2037 strp_data_ready(&ctx->strp); 2038 2039 psock = sk_psock_get(sk); 2040 if (psock && !list_empty(&psock->ingress_msg)) { 2041 ctx->saved_data_ready(sk); 2042 sk_psock_put(sk, psock); 2043 } 2044 } 2045 2046 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2047 { 2048 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2049 2050 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2051 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2052 cancel_delayed_work_sync(&ctx->tx_work.work); 2053 } 2054 2055 void tls_sw_release_resources_tx(struct sock *sk) 2056 { 2057 struct tls_context *tls_ctx = tls_get_ctx(sk); 2058 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2059 struct tls_rec *rec, *tmp; 2060 2061 /* Wait for any pending async encryptions to complete */ 2062 smp_store_mb(ctx->async_notify, true); 2063 if (atomic_read(&ctx->encrypt_pending)) 2064 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2065 2066 tls_tx_records(sk, -1); 2067 2068 /* Free up un-sent records in tx_list. First, free 2069 * the partially sent record if any at head of tx_list. 2070 */ 2071 if (tls_free_partial_record(sk, tls_ctx)) { 2072 rec = list_first_entry(&ctx->tx_list, 2073 struct tls_rec, list); 2074 list_del(&rec->list); 2075 sk_msg_free(sk, &rec->msg_plaintext); 2076 kfree(rec); 2077 } 2078 2079 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2080 list_del(&rec->list); 2081 sk_msg_free(sk, &rec->msg_encrypted); 2082 sk_msg_free(sk, &rec->msg_plaintext); 2083 kfree(rec); 2084 } 2085 2086 crypto_free_aead(ctx->aead_send); 2087 tls_free_open_rec(sk); 2088 } 2089 2090 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2091 { 2092 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2093 2094 kfree(ctx); 2095 } 2096 2097 void tls_sw_release_resources_rx(struct sock *sk) 2098 { 2099 struct tls_context *tls_ctx = tls_get_ctx(sk); 2100 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2101 2102 kfree(tls_ctx->rx.rec_seq); 2103 kfree(tls_ctx->rx.iv); 2104 2105 if (ctx->aead_recv) { 2106 kfree_skb(ctx->recv_pkt); 2107 ctx->recv_pkt = NULL; 2108 skb_queue_purge(&ctx->rx_list); 2109 crypto_free_aead(ctx->aead_recv); 2110 strp_stop(&ctx->strp); 2111 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2112 * we still want to strp_stop(), but sk->sk_data_ready was 2113 * never swapped. 2114 */ 2115 if (ctx->saved_data_ready) { 2116 write_lock_bh(&sk->sk_callback_lock); 2117 sk->sk_data_ready = ctx->saved_data_ready; 2118 write_unlock_bh(&sk->sk_callback_lock); 2119 } 2120 } 2121 } 2122 2123 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2124 { 2125 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2126 2127 strp_done(&ctx->strp); 2128 } 2129 2130 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2131 { 2132 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2133 2134 kfree(ctx); 2135 } 2136 2137 void tls_sw_free_resources_rx(struct sock *sk) 2138 { 2139 struct tls_context *tls_ctx = tls_get_ctx(sk); 2140 2141 tls_sw_release_resources_rx(sk); 2142 tls_sw_free_ctx_rx(tls_ctx); 2143 } 2144 2145 /* The work handler to transmitt the encrypted records in tx_list */ 2146 static void tx_work_handler(struct work_struct *work) 2147 { 2148 struct delayed_work *delayed_work = to_delayed_work(work); 2149 struct tx_work *tx_work = container_of(delayed_work, 2150 struct tx_work, work); 2151 struct sock *sk = tx_work->sk; 2152 struct tls_context *tls_ctx = tls_get_ctx(sk); 2153 struct tls_sw_context_tx *ctx; 2154 2155 if (unlikely(!tls_ctx)) 2156 return; 2157 2158 ctx = tls_sw_ctx_tx(tls_ctx); 2159 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2160 return; 2161 2162 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2163 return; 2164 mutex_lock(&tls_ctx->tx_lock); 2165 lock_sock(sk); 2166 tls_tx_records(sk, -1); 2167 release_sock(sk); 2168 mutex_unlock(&tls_ctx->tx_lock); 2169 } 2170 2171 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2172 { 2173 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2174 2175 /* Schedule the transmission if tx list is ready */ 2176 if (is_tx_ready(tx_ctx) && 2177 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2178 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2179 } 2180 2181 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2182 { 2183 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2184 2185 write_lock_bh(&sk->sk_callback_lock); 2186 rx_ctx->saved_data_ready = sk->sk_data_ready; 2187 sk->sk_data_ready = tls_data_ready; 2188 write_unlock_bh(&sk->sk_callback_lock); 2189 2190 strp_check_rcv(&rx_ctx->strp); 2191 } 2192 2193 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2194 { 2195 struct tls_context *tls_ctx = tls_get_ctx(sk); 2196 struct tls_prot_info *prot = &tls_ctx->prot_info; 2197 struct tls_crypto_info *crypto_info; 2198 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2199 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2200 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2201 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2202 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2203 struct cipher_context *cctx; 2204 struct crypto_aead **aead; 2205 struct strp_callbacks cb; 2206 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2207 struct crypto_tfm *tfm; 2208 char *iv, *rec_seq, *key, *salt, *cipher_name; 2209 size_t keysize; 2210 int rc = 0; 2211 2212 if (!ctx) { 2213 rc = -EINVAL; 2214 goto out; 2215 } 2216 2217 if (tx) { 2218 if (!ctx->priv_ctx_tx) { 2219 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2220 if (!sw_ctx_tx) { 2221 rc = -ENOMEM; 2222 goto out; 2223 } 2224 ctx->priv_ctx_tx = sw_ctx_tx; 2225 } else { 2226 sw_ctx_tx = 2227 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2228 } 2229 } else { 2230 if (!ctx->priv_ctx_rx) { 2231 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2232 if (!sw_ctx_rx) { 2233 rc = -ENOMEM; 2234 goto out; 2235 } 2236 ctx->priv_ctx_rx = sw_ctx_rx; 2237 } else { 2238 sw_ctx_rx = 2239 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2240 } 2241 } 2242 2243 if (tx) { 2244 crypto_init_wait(&sw_ctx_tx->async_wait); 2245 crypto_info = &ctx->crypto_send.info; 2246 cctx = &ctx->tx; 2247 aead = &sw_ctx_tx->aead_send; 2248 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2249 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2250 sw_ctx_tx->tx_work.sk = sk; 2251 } else { 2252 crypto_init_wait(&sw_ctx_rx->async_wait); 2253 crypto_info = &ctx->crypto_recv.info; 2254 cctx = &ctx->rx; 2255 skb_queue_head_init(&sw_ctx_rx->rx_list); 2256 aead = &sw_ctx_rx->aead_recv; 2257 } 2258 2259 switch (crypto_info->cipher_type) { 2260 case TLS_CIPHER_AES_GCM_128: { 2261 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2262 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2263 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2264 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 2265 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2266 rec_seq = 2267 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 2268 gcm_128_info = 2269 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 2270 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2271 key = gcm_128_info->key; 2272 salt = gcm_128_info->salt; 2273 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2274 cipher_name = "gcm(aes)"; 2275 break; 2276 } 2277 case TLS_CIPHER_AES_GCM_256: { 2278 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2279 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2280 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2281 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 2282 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2283 rec_seq = 2284 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 2285 gcm_256_info = 2286 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; 2287 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2288 key = gcm_256_info->key; 2289 salt = gcm_256_info->salt; 2290 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2291 cipher_name = "gcm(aes)"; 2292 break; 2293 } 2294 case TLS_CIPHER_AES_CCM_128: { 2295 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2296 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2297 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2298 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; 2299 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2300 rec_seq = 2301 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; 2302 ccm_128_info = 2303 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info; 2304 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2305 key = ccm_128_info->key; 2306 salt = ccm_128_info->salt; 2307 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2308 cipher_name = "ccm(aes)"; 2309 break; 2310 } 2311 default: 2312 rc = -EINVAL; 2313 goto free_priv; 2314 } 2315 2316 /* Sanity-check the sizes for stack allocations. */ 2317 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2318 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 2319 rc = -EINVAL; 2320 goto free_priv; 2321 } 2322 2323 if (crypto_info->version == TLS_1_3_VERSION) { 2324 nonce_size = 0; 2325 prot->aad_size = TLS_HEADER_SIZE; 2326 prot->tail_size = 1; 2327 } else { 2328 prot->aad_size = TLS_AAD_SPACE_SIZE; 2329 prot->tail_size = 0; 2330 } 2331 2332 prot->version = crypto_info->version; 2333 prot->cipher_type = crypto_info->cipher_type; 2334 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2335 prot->tag_size = tag_size; 2336 prot->overhead_size = prot->prepend_size + 2337 prot->tag_size + prot->tail_size; 2338 prot->iv_size = iv_size; 2339 prot->salt_size = salt_size; 2340 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2341 if (!cctx->iv) { 2342 rc = -ENOMEM; 2343 goto free_priv; 2344 } 2345 /* Note: 128 & 256 bit salt are the same size */ 2346 prot->rec_seq_size = rec_seq_size; 2347 memcpy(cctx->iv, salt, salt_size); 2348 memcpy(cctx->iv + salt_size, iv, iv_size); 2349 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2350 if (!cctx->rec_seq) { 2351 rc = -ENOMEM; 2352 goto free_iv; 2353 } 2354 2355 if (!*aead) { 2356 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2357 if (IS_ERR(*aead)) { 2358 rc = PTR_ERR(*aead); 2359 *aead = NULL; 2360 goto free_rec_seq; 2361 } 2362 } 2363 2364 ctx->push_pending_record = tls_sw_push_pending_record; 2365 2366 rc = crypto_aead_setkey(*aead, key, keysize); 2367 2368 if (rc) 2369 goto free_aead; 2370 2371 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2372 if (rc) 2373 goto free_aead; 2374 2375 if (sw_ctx_rx) { 2376 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2377 2378 if (crypto_info->version == TLS_1_3_VERSION) 2379 sw_ctx_rx->async_capable = false; 2380 else 2381 sw_ctx_rx->async_capable = 2382 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC; 2383 2384 /* Set up strparser */ 2385 memset(&cb, 0, sizeof(cb)); 2386 cb.rcv_msg = tls_queue; 2387 cb.parse_msg = tls_read_size; 2388 2389 strp_init(&sw_ctx_rx->strp, sk, &cb); 2390 } 2391 2392 goto out; 2393 2394 free_aead: 2395 crypto_free_aead(*aead); 2396 *aead = NULL; 2397 free_rec_seq: 2398 kfree(cctx->rec_seq); 2399 cctx->rec_seq = NULL; 2400 free_iv: 2401 kfree(cctx->iv); 2402 cctx->iv = NULL; 2403 free_priv: 2404 if (tx) { 2405 kfree(ctx->priv_ctx_tx); 2406 ctx->priv_ctx_tx = NULL; 2407 } else { 2408 kfree(ctx->priv_ctx_rx); 2409 ctx->priv_ctx_rx = NULL; 2410 } 2411 out: 2412 return rc; 2413 } 2414