1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 43 #include <net/tls.h> 44 45 MODULE_AUTHOR("Mellanox Technologies"); 46 MODULE_DESCRIPTION("Transport Layer Security Support"); 47 MODULE_LICENSE("Dual BSD/GPL"); 48 MODULE_ALIAS_TCP_ULP("tls"); 49 50 enum { 51 TLSV4, 52 TLSV6, 53 TLS_NUM_PROTS, 54 }; 55 56 static struct proto *saved_tcpv6_prot; 57 static DEFINE_MUTEX(tcpv6_prot_mutex); 58 static struct proto *saved_tcpv4_prot; 59 static DEFINE_MUTEX(tcpv4_prot_mutex); 60 static LIST_HEAD(device_list); 61 static DEFINE_SPINLOCK(device_spinlock); 62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 63 static struct proto_ops tls_sw_proto_ops; 64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 65 struct proto *base); 66 67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx) 68 { 69 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 70 71 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]; 72 } 73 74 int wait_on_pending_writer(struct sock *sk, long *timeo) 75 { 76 int rc = 0; 77 DEFINE_WAIT_FUNC(wait, woken_wake_function); 78 79 add_wait_queue(sk_sleep(sk), &wait); 80 while (1) { 81 if (!*timeo) { 82 rc = -EAGAIN; 83 break; 84 } 85 86 if (signal_pending(current)) { 87 rc = sock_intr_errno(*timeo); 88 break; 89 } 90 91 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 92 break; 93 } 94 remove_wait_queue(sk_sleep(sk), &wait); 95 return rc; 96 } 97 98 int tls_push_sg(struct sock *sk, 99 struct tls_context *ctx, 100 struct scatterlist *sg, 101 u16 first_offset, 102 int flags) 103 { 104 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 105 int ret = 0; 106 struct page *p; 107 size_t size; 108 int offset = first_offset; 109 110 size = sg->length - offset; 111 offset += sg->offset; 112 113 ctx->in_tcp_sendpages = true; 114 while (1) { 115 if (sg_is_last(sg)) 116 sendpage_flags = flags; 117 118 /* is sending application-limited? */ 119 tcp_rate_check_app_limited(sk); 120 p = sg_page(sg); 121 retry: 122 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 123 124 if (ret != size) { 125 if (ret > 0) { 126 offset += ret; 127 size -= ret; 128 goto retry; 129 } 130 131 offset -= sg->offset; 132 ctx->partially_sent_offset = offset; 133 ctx->partially_sent_record = (void *)sg; 134 ctx->in_tcp_sendpages = false; 135 return ret; 136 } 137 138 put_page(p); 139 sk_mem_uncharge(sk, sg->length); 140 sg = sg_next(sg); 141 if (!sg) 142 break; 143 144 offset = sg->offset; 145 size = sg->length; 146 } 147 148 ctx->in_tcp_sendpages = false; 149 150 return 0; 151 } 152 153 static int tls_handle_open_record(struct sock *sk, int flags) 154 { 155 struct tls_context *ctx = tls_get_ctx(sk); 156 157 if (tls_is_pending_open_record(ctx)) 158 return ctx->push_pending_record(sk, flags); 159 160 return 0; 161 } 162 163 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 164 unsigned char *record_type) 165 { 166 struct cmsghdr *cmsg; 167 int rc = -EINVAL; 168 169 for_each_cmsghdr(cmsg, msg) { 170 if (!CMSG_OK(msg, cmsg)) 171 return -EINVAL; 172 if (cmsg->cmsg_level != SOL_TLS) 173 continue; 174 175 switch (cmsg->cmsg_type) { 176 case TLS_SET_RECORD_TYPE: 177 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 178 return -EINVAL; 179 180 if (msg->msg_flags & MSG_MORE) 181 return -EINVAL; 182 183 rc = tls_handle_open_record(sk, msg->msg_flags); 184 if (rc) 185 return rc; 186 187 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 188 rc = 0; 189 break; 190 default: 191 return -EINVAL; 192 } 193 } 194 195 return rc; 196 } 197 198 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 199 int flags) 200 { 201 struct scatterlist *sg; 202 u16 offset; 203 204 sg = ctx->partially_sent_record; 205 offset = ctx->partially_sent_offset; 206 207 ctx->partially_sent_record = NULL; 208 return tls_push_sg(sk, ctx, sg, offset, flags); 209 } 210 211 static void tls_write_space(struct sock *sk) 212 { 213 struct tls_context *ctx = tls_get_ctx(sk); 214 215 /* If in_tcp_sendpages call lower protocol write space handler 216 * to ensure we wake up any waiting operations there. For example 217 * if do_tcp_sendpages where to call sk_wait_event. 218 */ 219 if (ctx->in_tcp_sendpages) { 220 ctx->sk_write_space(sk); 221 return; 222 } 223 224 #ifdef CONFIG_TLS_DEVICE 225 if (ctx->tx_conf == TLS_HW) 226 tls_device_write_space(sk, ctx); 227 else 228 #endif 229 tls_sw_write_space(sk, ctx); 230 231 ctx->sk_write_space(sk); 232 } 233 234 static void tls_ctx_free(struct tls_context *ctx) 235 { 236 if (!ctx) 237 return; 238 239 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 240 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 241 kfree(ctx); 242 } 243 244 static void tls_sk_proto_close(struct sock *sk, long timeout) 245 { 246 struct tls_context *ctx = tls_get_ctx(sk); 247 long timeo = sock_sndtimeo(sk, 0); 248 void (*sk_proto_close)(struct sock *sk, long timeout); 249 bool free_ctx = false; 250 251 lock_sock(sk); 252 sk_proto_close = ctx->sk_proto_close; 253 254 if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) 255 goto skip_tx_cleanup; 256 257 if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) { 258 free_ctx = true; 259 goto skip_tx_cleanup; 260 } 261 262 if (!tls_complete_pending_work(sk, ctx, 0, &timeo)) 263 tls_handle_open_record(sk, 0); 264 265 /* We need these for tls_sw_fallback handling of other packets */ 266 if (ctx->tx_conf == TLS_SW) { 267 kfree(ctx->tx.rec_seq); 268 kfree(ctx->tx.iv); 269 tls_sw_free_resources_tx(sk); 270 } 271 272 if (ctx->rx_conf == TLS_SW) { 273 kfree(ctx->rx.rec_seq); 274 kfree(ctx->rx.iv); 275 tls_sw_free_resources_rx(sk); 276 } 277 278 #ifdef CONFIG_TLS_DEVICE 279 if (ctx->rx_conf == TLS_HW) 280 tls_device_offload_cleanup_rx(sk); 281 282 if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) { 283 #else 284 { 285 #endif 286 tls_ctx_free(ctx); 287 ctx = NULL; 288 } 289 290 skip_tx_cleanup: 291 release_sock(sk); 292 sk_proto_close(sk, timeout); 293 /* free ctx for TLS_HW_RECORD, used by tcp_set_state 294 * for sk->sk_prot->unhash [tls_hw_unhash] 295 */ 296 if (free_ctx) 297 tls_ctx_free(ctx); 298 } 299 300 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, 301 int __user *optlen) 302 { 303 int rc = 0; 304 struct tls_context *ctx = tls_get_ctx(sk); 305 struct tls_crypto_info *crypto_info; 306 int len; 307 308 if (get_user(len, optlen)) 309 return -EFAULT; 310 311 if (!optval || (len < sizeof(*crypto_info))) { 312 rc = -EINVAL; 313 goto out; 314 } 315 316 if (!ctx) { 317 rc = -EBUSY; 318 goto out; 319 } 320 321 /* get user crypto info */ 322 crypto_info = &ctx->crypto_send.info; 323 324 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 325 rc = -EBUSY; 326 goto out; 327 } 328 329 if (len == sizeof(*crypto_info)) { 330 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 331 rc = -EFAULT; 332 goto out; 333 } 334 335 switch (crypto_info->cipher_type) { 336 case TLS_CIPHER_AES_GCM_128: { 337 struct tls12_crypto_info_aes_gcm_128 * 338 crypto_info_aes_gcm_128 = 339 container_of(crypto_info, 340 struct tls12_crypto_info_aes_gcm_128, 341 info); 342 343 if (len != sizeof(*crypto_info_aes_gcm_128)) { 344 rc = -EINVAL; 345 goto out; 346 } 347 lock_sock(sk); 348 memcpy(crypto_info_aes_gcm_128->iv, 349 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 350 TLS_CIPHER_AES_GCM_128_IV_SIZE); 351 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, 352 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 353 release_sock(sk); 354 if (copy_to_user(optval, 355 crypto_info_aes_gcm_128, 356 sizeof(*crypto_info_aes_gcm_128))) 357 rc = -EFAULT; 358 break; 359 } 360 case TLS_CIPHER_AES_GCM_256: { 361 struct tls12_crypto_info_aes_gcm_256 * 362 crypto_info_aes_gcm_256 = 363 container_of(crypto_info, 364 struct tls12_crypto_info_aes_gcm_256, 365 info); 366 367 if (len != sizeof(*crypto_info_aes_gcm_256)) { 368 rc = -EINVAL; 369 goto out; 370 } 371 lock_sock(sk); 372 memcpy(crypto_info_aes_gcm_256->iv, 373 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 374 TLS_CIPHER_AES_GCM_256_IV_SIZE); 375 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq, 376 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 377 release_sock(sk); 378 if (copy_to_user(optval, 379 crypto_info_aes_gcm_256, 380 sizeof(*crypto_info_aes_gcm_256))) 381 rc = -EFAULT; 382 break; 383 } 384 default: 385 rc = -EINVAL; 386 } 387 388 out: 389 return rc; 390 } 391 392 static int do_tls_getsockopt(struct sock *sk, int optname, 393 char __user *optval, int __user *optlen) 394 { 395 int rc = 0; 396 397 switch (optname) { 398 case TLS_TX: 399 rc = do_tls_getsockopt_tx(sk, optval, optlen); 400 break; 401 default: 402 rc = -ENOPROTOOPT; 403 break; 404 } 405 return rc; 406 } 407 408 static int tls_getsockopt(struct sock *sk, int level, int optname, 409 char __user *optval, int __user *optlen) 410 { 411 struct tls_context *ctx = tls_get_ctx(sk); 412 413 if (level != SOL_TLS) 414 return ctx->getsockopt(sk, level, optname, optval, optlen); 415 416 return do_tls_getsockopt(sk, optname, optval, optlen); 417 } 418 419 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval, 420 unsigned int optlen, int tx) 421 { 422 struct tls_crypto_info *crypto_info; 423 struct tls_crypto_info *alt_crypto_info; 424 struct tls_context *ctx = tls_get_ctx(sk); 425 size_t optsize; 426 int rc = 0; 427 int conf; 428 429 if (!optval || (optlen < sizeof(*crypto_info))) { 430 rc = -EINVAL; 431 goto out; 432 } 433 434 if (tx) { 435 crypto_info = &ctx->crypto_send.info; 436 alt_crypto_info = &ctx->crypto_recv.info; 437 } else { 438 crypto_info = &ctx->crypto_recv.info; 439 alt_crypto_info = &ctx->crypto_send.info; 440 } 441 442 /* Currently we don't support set crypto info more than one time */ 443 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 444 rc = -EBUSY; 445 goto out; 446 } 447 448 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); 449 if (rc) { 450 rc = -EFAULT; 451 goto err_crypto_info; 452 } 453 454 /* check version */ 455 if (crypto_info->version != TLS_1_2_VERSION && 456 crypto_info->version != TLS_1_3_VERSION) { 457 rc = -ENOTSUPP; 458 goto err_crypto_info; 459 } 460 461 /* Ensure that TLS version and ciphers are same in both directions */ 462 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 463 if (alt_crypto_info->version != crypto_info->version || 464 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 465 rc = -EINVAL; 466 goto err_crypto_info; 467 } 468 } 469 470 switch (crypto_info->cipher_type) { 471 case TLS_CIPHER_AES_GCM_128: 472 case TLS_CIPHER_AES_GCM_256: { 473 optsize = crypto_info->cipher_type == TLS_CIPHER_AES_GCM_128 ? 474 sizeof(struct tls12_crypto_info_aes_gcm_128) : 475 sizeof(struct tls12_crypto_info_aes_gcm_256); 476 if (optlen != optsize) { 477 rc = -EINVAL; 478 goto err_crypto_info; 479 } 480 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), 481 optlen - sizeof(*crypto_info)); 482 if (rc) { 483 rc = -EFAULT; 484 goto err_crypto_info; 485 } 486 break; 487 } 488 default: 489 rc = -EINVAL; 490 goto err_crypto_info; 491 } 492 493 if (tx) { 494 #ifdef CONFIG_TLS_DEVICE 495 rc = tls_set_device_offload(sk, ctx); 496 conf = TLS_HW; 497 if (rc) { 498 #else 499 { 500 #endif 501 rc = tls_set_sw_offload(sk, ctx, 1); 502 conf = TLS_SW; 503 } 504 } else { 505 #ifdef CONFIG_TLS_DEVICE 506 rc = tls_set_device_offload_rx(sk, ctx); 507 conf = TLS_HW; 508 if (rc) { 509 #else 510 { 511 #endif 512 rc = tls_set_sw_offload(sk, ctx, 0); 513 conf = TLS_SW; 514 } 515 } 516 517 if (rc) 518 goto err_crypto_info; 519 520 if (tx) 521 ctx->tx_conf = conf; 522 else 523 ctx->rx_conf = conf; 524 update_sk_prot(sk, ctx); 525 if (tx) { 526 ctx->sk_write_space = sk->sk_write_space; 527 sk->sk_write_space = tls_write_space; 528 } else { 529 sk->sk_socket->ops = &tls_sw_proto_ops; 530 } 531 goto out; 532 533 err_crypto_info: 534 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 535 out: 536 return rc; 537 } 538 539 static int do_tls_setsockopt(struct sock *sk, int optname, 540 char __user *optval, unsigned int optlen) 541 { 542 int rc = 0; 543 544 switch (optname) { 545 case TLS_TX: 546 case TLS_RX: 547 lock_sock(sk); 548 rc = do_tls_setsockopt_conf(sk, optval, optlen, 549 optname == TLS_TX); 550 release_sock(sk); 551 break; 552 default: 553 rc = -ENOPROTOOPT; 554 break; 555 } 556 return rc; 557 } 558 559 static int tls_setsockopt(struct sock *sk, int level, int optname, 560 char __user *optval, unsigned int optlen) 561 { 562 struct tls_context *ctx = tls_get_ctx(sk); 563 564 if (level != SOL_TLS) 565 return ctx->setsockopt(sk, level, optname, optval, optlen); 566 567 return do_tls_setsockopt(sk, optname, optval, optlen); 568 } 569 570 static struct tls_context *create_ctx(struct sock *sk) 571 { 572 struct inet_connection_sock *icsk = inet_csk(sk); 573 struct tls_context *ctx; 574 575 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 576 if (!ctx) 577 return NULL; 578 579 icsk->icsk_ulp_data = ctx; 580 ctx->setsockopt = sk->sk_prot->setsockopt; 581 ctx->getsockopt = sk->sk_prot->getsockopt; 582 ctx->sk_proto_close = sk->sk_prot->close; 583 return ctx; 584 } 585 586 static void tls_build_proto(struct sock *sk) 587 { 588 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 589 590 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 591 if (ip_ver == TLSV6 && 592 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { 593 mutex_lock(&tcpv6_prot_mutex); 594 if (likely(sk->sk_prot != saved_tcpv6_prot)) { 595 build_protos(tls_prots[TLSV6], sk->sk_prot); 596 smp_store_release(&saved_tcpv6_prot, sk->sk_prot); 597 } 598 mutex_unlock(&tcpv6_prot_mutex); 599 } 600 601 if (ip_ver == TLSV4 && 602 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) { 603 mutex_lock(&tcpv4_prot_mutex); 604 if (likely(sk->sk_prot != saved_tcpv4_prot)) { 605 build_protos(tls_prots[TLSV4], sk->sk_prot); 606 smp_store_release(&saved_tcpv4_prot, sk->sk_prot); 607 } 608 mutex_unlock(&tcpv4_prot_mutex); 609 } 610 } 611 612 static void tls_hw_sk_destruct(struct sock *sk) 613 { 614 struct tls_context *ctx = tls_get_ctx(sk); 615 struct inet_connection_sock *icsk = inet_csk(sk); 616 617 ctx->sk_destruct(sk); 618 /* Free ctx */ 619 kfree(ctx); 620 icsk->icsk_ulp_data = NULL; 621 } 622 623 static int tls_hw_prot(struct sock *sk) 624 { 625 struct tls_context *ctx; 626 struct tls_device *dev; 627 int rc = 0; 628 629 spin_lock_bh(&device_spinlock); 630 list_for_each_entry(dev, &device_list, dev_list) { 631 if (dev->feature && dev->feature(dev)) { 632 ctx = create_ctx(sk); 633 if (!ctx) 634 goto out; 635 636 spin_unlock_bh(&device_spinlock); 637 tls_build_proto(sk); 638 ctx->hash = sk->sk_prot->hash; 639 ctx->unhash = sk->sk_prot->unhash; 640 ctx->sk_proto_close = sk->sk_prot->close; 641 ctx->sk_destruct = sk->sk_destruct; 642 sk->sk_destruct = tls_hw_sk_destruct; 643 ctx->rx_conf = TLS_HW_RECORD; 644 ctx->tx_conf = TLS_HW_RECORD; 645 update_sk_prot(sk, ctx); 646 spin_lock_bh(&device_spinlock); 647 rc = 1; 648 break; 649 } 650 } 651 out: 652 spin_unlock_bh(&device_spinlock); 653 return rc; 654 } 655 656 static void tls_hw_unhash(struct sock *sk) 657 { 658 struct tls_context *ctx = tls_get_ctx(sk); 659 struct tls_device *dev; 660 661 spin_lock_bh(&device_spinlock); 662 list_for_each_entry(dev, &device_list, dev_list) { 663 if (dev->unhash) { 664 kref_get(&dev->kref); 665 spin_unlock_bh(&device_spinlock); 666 dev->unhash(dev, sk); 667 kref_put(&dev->kref, dev->release); 668 spin_lock_bh(&device_spinlock); 669 } 670 } 671 spin_unlock_bh(&device_spinlock); 672 ctx->unhash(sk); 673 } 674 675 static int tls_hw_hash(struct sock *sk) 676 { 677 struct tls_context *ctx = tls_get_ctx(sk); 678 struct tls_device *dev; 679 int err; 680 681 err = ctx->hash(sk); 682 spin_lock_bh(&device_spinlock); 683 list_for_each_entry(dev, &device_list, dev_list) { 684 if (dev->hash) { 685 kref_get(&dev->kref); 686 spin_unlock_bh(&device_spinlock); 687 err |= dev->hash(dev, sk); 688 kref_put(&dev->kref, dev->release); 689 spin_lock_bh(&device_spinlock); 690 } 691 } 692 spin_unlock_bh(&device_spinlock); 693 694 if (err) 695 tls_hw_unhash(sk); 696 return err; 697 } 698 699 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 700 struct proto *base) 701 { 702 prot[TLS_BASE][TLS_BASE] = *base; 703 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 704 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 705 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 706 707 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 708 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 709 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 710 711 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 712 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 713 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read; 714 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 715 716 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 717 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 718 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read; 719 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 720 721 #ifdef CONFIG_TLS_DEVICE 722 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 723 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 724 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 725 726 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 727 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 728 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 729 730 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 731 732 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 733 734 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 735 #endif 736 737 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 738 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash; 739 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash; 740 prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close; 741 } 742 743 static int tls_init(struct sock *sk) 744 { 745 struct tls_context *ctx; 746 int rc = 0; 747 748 if (tls_hw_prot(sk)) 749 goto out; 750 751 /* The TLS ulp is currently supported only for TCP sockets 752 * in ESTABLISHED state. 753 * Supporting sockets in LISTEN state will require us 754 * to modify the accept implementation to clone rather then 755 * share the ulp context. 756 */ 757 if (sk->sk_state != TCP_ESTABLISHED) 758 return -ENOTSUPP; 759 760 /* allocate tls context */ 761 ctx = create_ctx(sk); 762 if (!ctx) { 763 rc = -ENOMEM; 764 goto out; 765 } 766 767 tls_build_proto(sk); 768 ctx->tx_conf = TLS_BASE; 769 ctx->rx_conf = TLS_BASE; 770 update_sk_prot(sk, ctx); 771 out: 772 return rc; 773 } 774 775 void tls_register_device(struct tls_device *device) 776 { 777 spin_lock_bh(&device_spinlock); 778 list_add_tail(&device->dev_list, &device_list); 779 spin_unlock_bh(&device_spinlock); 780 } 781 EXPORT_SYMBOL(tls_register_device); 782 783 void tls_unregister_device(struct tls_device *device) 784 { 785 spin_lock_bh(&device_spinlock); 786 list_del(&device->dev_list); 787 spin_unlock_bh(&device_spinlock); 788 } 789 EXPORT_SYMBOL(tls_unregister_device); 790 791 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 792 .name = "tls", 793 .owner = THIS_MODULE, 794 .init = tls_init, 795 }; 796 797 static int __init tls_register(void) 798 { 799 tls_sw_proto_ops = inet_stream_ops; 800 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 801 802 #ifdef CONFIG_TLS_DEVICE 803 tls_device_init(); 804 #endif 805 tcp_register_ulp(&tcp_tls_ulp_ops); 806 807 return 0; 808 } 809 810 static void __exit tls_unregister(void) 811 { 812 tcp_unregister_ulp(&tcp_tls_ulp_ops); 813 #ifdef CONFIG_TLS_DEVICE 814 tls_device_cleanup(); 815 #endif 816 } 817 818 module_init(tls_register); 819 module_exit(tls_unregister); 820