xref: /openbmc/linux/net/tls/tls_main.c (revision f4356947f0297b0962fdd197672db7edf9f58be6)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43 
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47 
48 #include "tls.h"
49 
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54 
55 enum {
56 	TLSV4,
57 	TLSV6,
58 	TLS_NUM_PROTS,
59 };
60 
61 #define CIPHER_SIZE_DESC(cipher) [cipher] = { \
62 	.iv = cipher ## _IV_SIZE, \
63 	.key = cipher ## _KEY_SIZE, \
64 	.salt = cipher ## _SALT_SIZE, \
65 	.tag = cipher ## _TAG_SIZE, \
66 	.rec_seq = cipher ## _REC_SEQ_SIZE, \
67 }
68 
69 const struct tls_cipher_size_desc tls_cipher_size_desc[] = {
70 	CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128),
71 	CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256),
72 	CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128),
73 	CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305),
74 	CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM),
75 	CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM),
76 };
77 
78 static const struct proto *saved_tcpv6_prot;
79 static DEFINE_MUTEX(tcpv6_prot_mutex);
80 static const struct proto *saved_tcpv4_prot;
81 static DEFINE_MUTEX(tcpv4_prot_mutex);
82 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
83 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
84 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
85 			 const struct proto *base);
86 
87 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
88 {
89 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
90 
91 	WRITE_ONCE(sk->sk_prot,
92 		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
93 	WRITE_ONCE(sk->sk_socket->ops,
94 		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
95 }
96 
97 int wait_on_pending_writer(struct sock *sk, long *timeo)
98 {
99 	int rc = 0;
100 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
101 
102 	add_wait_queue(sk_sleep(sk), &wait);
103 	while (1) {
104 		if (!*timeo) {
105 			rc = -EAGAIN;
106 			break;
107 		}
108 
109 		if (signal_pending(current)) {
110 			rc = sock_intr_errno(*timeo);
111 			break;
112 		}
113 
114 		if (sk_wait_event(sk, timeo,
115 				  !READ_ONCE(sk->sk_write_pending), &wait))
116 			break;
117 	}
118 	remove_wait_queue(sk_sleep(sk), &wait);
119 	return rc;
120 }
121 
122 int tls_push_sg(struct sock *sk,
123 		struct tls_context *ctx,
124 		struct scatterlist *sg,
125 		u16 first_offset,
126 		int flags)
127 {
128 	struct bio_vec bvec;
129 	struct msghdr msg = {
130 		.msg_flags = MSG_SENDPAGE_NOTLAST | MSG_SPLICE_PAGES | flags,
131 	};
132 	int ret = 0;
133 	struct page *p;
134 	size_t size;
135 	int offset = first_offset;
136 
137 	size = sg->length - offset;
138 	offset += sg->offset;
139 
140 	ctx->splicing_pages = true;
141 	while (1) {
142 		if (sg_is_last(sg))
143 			msg.msg_flags = flags;
144 
145 		/* is sending application-limited? */
146 		tcp_rate_check_app_limited(sk);
147 		p = sg_page(sg);
148 retry:
149 		bvec_set_page(&bvec, p, size, offset);
150 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
151 
152 		ret = tcp_sendmsg_locked(sk, &msg, size);
153 
154 		if (ret != size) {
155 			if (ret > 0) {
156 				offset += ret;
157 				size -= ret;
158 				goto retry;
159 			}
160 
161 			offset -= sg->offset;
162 			ctx->partially_sent_offset = offset;
163 			ctx->partially_sent_record = (void *)sg;
164 			ctx->splicing_pages = false;
165 			return ret;
166 		}
167 
168 		put_page(p);
169 		sk_mem_uncharge(sk, sg->length);
170 		sg = sg_next(sg);
171 		if (!sg)
172 			break;
173 
174 		offset = sg->offset;
175 		size = sg->length;
176 	}
177 
178 	ctx->splicing_pages = false;
179 
180 	return 0;
181 }
182 
183 static int tls_handle_open_record(struct sock *sk, int flags)
184 {
185 	struct tls_context *ctx = tls_get_ctx(sk);
186 
187 	if (tls_is_pending_open_record(ctx))
188 		return ctx->push_pending_record(sk, flags);
189 
190 	return 0;
191 }
192 
193 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
194 		     unsigned char *record_type)
195 {
196 	struct cmsghdr *cmsg;
197 	int rc = -EINVAL;
198 
199 	for_each_cmsghdr(cmsg, msg) {
200 		if (!CMSG_OK(msg, cmsg))
201 			return -EINVAL;
202 		if (cmsg->cmsg_level != SOL_TLS)
203 			continue;
204 
205 		switch (cmsg->cmsg_type) {
206 		case TLS_SET_RECORD_TYPE:
207 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
208 				return -EINVAL;
209 
210 			if (msg->msg_flags & MSG_MORE)
211 				return -EINVAL;
212 
213 			rc = tls_handle_open_record(sk, msg->msg_flags);
214 			if (rc)
215 				return rc;
216 
217 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
218 			rc = 0;
219 			break;
220 		default:
221 			return -EINVAL;
222 		}
223 	}
224 
225 	return rc;
226 }
227 
228 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
229 			    int flags)
230 {
231 	struct scatterlist *sg;
232 	u16 offset;
233 
234 	sg = ctx->partially_sent_record;
235 	offset = ctx->partially_sent_offset;
236 
237 	ctx->partially_sent_record = NULL;
238 	return tls_push_sg(sk, ctx, sg, offset, flags);
239 }
240 
241 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
242 {
243 	struct scatterlist *sg;
244 
245 	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
246 		put_page(sg_page(sg));
247 		sk_mem_uncharge(sk, sg->length);
248 	}
249 	ctx->partially_sent_record = NULL;
250 }
251 
252 static void tls_write_space(struct sock *sk)
253 {
254 	struct tls_context *ctx = tls_get_ctx(sk);
255 
256 	/* If splicing_pages call lower protocol write space handler
257 	 * to ensure we wake up any waiting operations there. For example
258 	 * if splicing pages where to call sk_wait_event.
259 	 */
260 	if (ctx->splicing_pages) {
261 		ctx->sk_write_space(sk);
262 		return;
263 	}
264 
265 #ifdef CONFIG_TLS_DEVICE
266 	if (ctx->tx_conf == TLS_HW)
267 		tls_device_write_space(sk, ctx);
268 	else
269 #endif
270 		tls_sw_write_space(sk, ctx);
271 
272 	ctx->sk_write_space(sk);
273 }
274 
275 /**
276  * tls_ctx_free() - free TLS ULP context
277  * @sk:  socket to with @ctx is attached
278  * @ctx: TLS context structure
279  *
280  * Free TLS context. If @sk is %NULL caller guarantees that the socket
281  * to which @ctx was attached has no outstanding references.
282  */
283 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
284 {
285 	if (!ctx)
286 		return;
287 
288 	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
289 	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
290 	mutex_destroy(&ctx->tx_lock);
291 
292 	if (sk)
293 		kfree_rcu(ctx, rcu);
294 	else
295 		kfree(ctx);
296 }
297 
298 static void tls_sk_proto_cleanup(struct sock *sk,
299 				 struct tls_context *ctx, long timeo)
300 {
301 	if (unlikely(sk->sk_write_pending) &&
302 	    !wait_on_pending_writer(sk, &timeo))
303 		tls_handle_open_record(sk, 0);
304 
305 	/* We need these for tls_sw_fallback handling of other packets */
306 	if (ctx->tx_conf == TLS_SW) {
307 		kfree(ctx->tx.rec_seq);
308 		kfree(ctx->tx.iv);
309 		tls_sw_release_resources_tx(sk);
310 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
311 	} else if (ctx->tx_conf == TLS_HW) {
312 		tls_device_free_resources_tx(sk);
313 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
314 	}
315 
316 	if (ctx->rx_conf == TLS_SW) {
317 		tls_sw_release_resources_rx(sk);
318 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
319 	} else if (ctx->rx_conf == TLS_HW) {
320 		tls_device_offload_cleanup_rx(sk);
321 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
322 	}
323 }
324 
325 static void tls_sk_proto_close(struct sock *sk, long timeout)
326 {
327 	struct inet_connection_sock *icsk = inet_csk(sk);
328 	struct tls_context *ctx = tls_get_ctx(sk);
329 	long timeo = sock_sndtimeo(sk, 0);
330 	bool free_ctx;
331 
332 	if (ctx->tx_conf == TLS_SW)
333 		tls_sw_cancel_work_tx(ctx);
334 
335 	lock_sock(sk);
336 	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
337 
338 	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
339 		tls_sk_proto_cleanup(sk, ctx, timeo);
340 
341 	write_lock_bh(&sk->sk_callback_lock);
342 	if (free_ctx)
343 		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
344 	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
345 	if (sk->sk_write_space == tls_write_space)
346 		sk->sk_write_space = ctx->sk_write_space;
347 	write_unlock_bh(&sk->sk_callback_lock);
348 	release_sock(sk);
349 	if (ctx->tx_conf == TLS_SW)
350 		tls_sw_free_ctx_tx(ctx);
351 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
352 		tls_sw_strparser_done(ctx);
353 	if (ctx->rx_conf == TLS_SW)
354 		tls_sw_free_ctx_rx(ctx);
355 	ctx->sk_proto->close(sk, timeout);
356 
357 	if (free_ctx)
358 		tls_ctx_free(sk, ctx);
359 }
360 
361 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
362 				  int __user *optlen, int tx)
363 {
364 	int rc = 0;
365 	struct tls_context *ctx = tls_get_ctx(sk);
366 	struct tls_crypto_info *crypto_info;
367 	struct cipher_context *cctx;
368 	int len;
369 
370 	if (get_user(len, optlen))
371 		return -EFAULT;
372 
373 	if (!optval || (len < sizeof(*crypto_info))) {
374 		rc = -EINVAL;
375 		goto out;
376 	}
377 
378 	if (!ctx) {
379 		rc = -EBUSY;
380 		goto out;
381 	}
382 
383 	/* get user crypto info */
384 	if (tx) {
385 		crypto_info = &ctx->crypto_send.info;
386 		cctx = &ctx->tx;
387 	} else {
388 		crypto_info = &ctx->crypto_recv.info;
389 		cctx = &ctx->rx;
390 	}
391 
392 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
393 		rc = -EBUSY;
394 		goto out;
395 	}
396 
397 	if (len == sizeof(*crypto_info)) {
398 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
399 			rc = -EFAULT;
400 		goto out;
401 	}
402 
403 	switch (crypto_info->cipher_type) {
404 	case TLS_CIPHER_AES_GCM_128: {
405 		struct tls12_crypto_info_aes_gcm_128 *
406 		  crypto_info_aes_gcm_128 =
407 		  container_of(crypto_info,
408 			       struct tls12_crypto_info_aes_gcm_128,
409 			       info);
410 
411 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
412 			rc = -EINVAL;
413 			goto out;
414 		}
415 		memcpy(crypto_info_aes_gcm_128->iv,
416 		       cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
417 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
418 		memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
419 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
420 		if (copy_to_user(optval,
421 				 crypto_info_aes_gcm_128,
422 				 sizeof(*crypto_info_aes_gcm_128)))
423 			rc = -EFAULT;
424 		break;
425 	}
426 	case TLS_CIPHER_AES_GCM_256: {
427 		struct tls12_crypto_info_aes_gcm_256 *
428 		  crypto_info_aes_gcm_256 =
429 		  container_of(crypto_info,
430 			       struct tls12_crypto_info_aes_gcm_256,
431 			       info);
432 
433 		if (len != sizeof(*crypto_info_aes_gcm_256)) {
434 			rc = -EINVAL;
435 			goto out;
436 		}
437 		memcpy(crypto_info_aes_gcm_256->iv,
438 		       cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
439 		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
440 		memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
441 		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
442 		if (copy_to_user(optval,
443 				 crypto_info_aes_gcm_256,
444 				 sizeof(*crypto_info_aes_gcm_256)))
445 			rc = -EFAULT;
446 		break;
447 	}
448 	case TLS_CIPHER_AES_CCM_128: {
449 		struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
450 			container_of(crypto_info,
451 				struct tls12_crypto_info_aes_ccm_128, info);
452 
453 		if (len != sizeof(*aes_ccm_128)) {
454 			rc = -EINVAL;
455 			goto out;
456 		}
457 		memcpy(aes_ccm_128->iv,
458 		       cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
459 		       TLS_CIPHER_AES_CCM_128_IV_SIZE);
460 		memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
461 		       TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
462 		if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
463 			rc = -EFAULT;
464 		break;
465 	}
466 	case TLS_CIPHER_CHACHA20_POLY1305: {
467 		struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
468 			container_of(crypto_info,
469 				struct tls12_crypto_info_chacha20_poly1305,
470 				info);
471 
472 		if (len != sizeof(*chacha20_poly1305)) {
473 			rc = -EINVAL;
474 			goto out;
475 		}
476 		memcpy(chacha20_poly1305->iv,
477 		       cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
478 		       TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
479 		memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
480 		       TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
481 		if (copy_to_user(optval, chacha20_poly1305,
482 				sizeof(*chacha20_poly1305)))
483 			rc = -EFAULT;
484 		break;
485 	}
486 	case TLS_CIPHER_SM4_GCM: {
487 		struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
488 			container_of(crypto_info,
489 				struct tls12_crypto_info_sm4_gcm, info);
490 
491 		if (len != sizeof(*sm4_gcm_info)) {
492 			rc = -EINVAL;
493 			goto out;
494 		}
495 		memcpy(sm4_gcm_info->iv,
496 		       cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
497 		       TLS_CIPHER_SM4_GCM_IV_SIZE);
498 		memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
499 		       TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
500 		if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
501 			rc = -EFAULT;
502 		break;
503 	}
504 	case TLS_CIPHER_SM4_CCM: {
505 		struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
506 			container_of(crypto_info,
507 				struct tls12_crypto_info_sm4_ccm, info);
508 
509 		if (len != sizeof(*sm4_ccm_info)) {
510 			rc = -EINVAL;
511 			goto out;
512 		}
513 		memcpy(sm4_ccm_info->iv,
514 		       cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
515 		       TLS_CIPHER_SM4_CCM_IV_SIZE);
516 		memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
517 		       TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
518 		if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
519 			rc = -EFAULT;
520 		break;
521 	}
522 	case TLS_CIPHER_ARIA_GCM_128: {
523 		struct tls12_crypto_info_aria_gcm_128 *
524 		  crypto_info_aria_gcm_128 =
525 		  container_of(crypto_info,
526 			       struct tls12_crypto_info_aria_gcm_128,
527 			       info);
528 
529 		if (len != sizeof(*crypto_info_aria_gcm_128)) {
530 			rc = -EINVAL;
531 			goto out;
532 		}
533 		memcpy(crypto_info_aria_gcm_128->iv,
534 		       cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE,
535 		       TLS_CIPHER_ARIA_GCM_128_IV_SIZE);
536 		memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq,
537 		       TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE);
538 		if (copy_to_user(optval,
539 				 crypto_info_aria_gcm_128,
540 				 sizeof(*crypto_info_aria_gcm_128)))
541 			rc = -EFAULT;
542 		break;
543 	}
544 	case TLS_CIPHER_ARIA_GCM_256: {
545 		struct tls12_crypto_info_aria_gcm_256 *
546 		  crypto_info_aria_gcm_256 =
547 		  container_of(crypto_info,
548 			       struct tls12_crypto_info_aria_gcm_256,
549 			       info);
550 
551 		if (len != sizeof(*crypto_info_aria_gcm_256)) {
552 			rc = -EINVAL;
553 			goto out;
554 		}
555 		memcpy(crypto_info_aria_gcm_256->iv,
556 		       cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE,
557 		       TLS_CIPHER_ARIA_GCM_256_IV_SIZE);
558 		memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq,
559 		       TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE);
560 		if (copy_to_user(optval,
561 				 crypto_info_aria_gcm_256,
562 				 sizeof(*crypto_info_aria_gcm_256)))
563 			rc = -EFAULT;
564 		break;
565 	}
566 	default:
567 		rc = -EINVAL;
568 	}
569 
570 out:
571 	return rc;
572 }
573 
574 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
575 				   int __user *optlen)
576 {
577 	struct tls_context *ctx = tls_get_ctx(sk);
578 	unsigned int value;
579 	int len;
580 
581 	if (get_user(len, optlen))
582 		return -EFAULT;
583 
584 	if (len != sizeof(value))
585 		return -EINVAL;
586 
587 	value = ctx->zerocopy_sendfile;
588 	if (copy_to_user(optval, &value, sizeof(value)))
589 		return -EFAULT;
590 
591 	return 0;
592 }
593 
594 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
595 				    int __user *optlen)
596 {
597 	struct tls_context *ctx = tls_get_ctx(sk);
598 	int value, len;
599 
600 	if (ctx->prot_info.version != TLS_1_3_VERSION)
601 		return -EINVAL;
602 
603 	if (get_user(len, optlen))
604 		return -EFAULT;
605 	if (len < sizeof(value))
606 		return -EINVAL;
607 
608 	value = -EINVAL;
609 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
610 		value = ctx->rx_no_pad;
611 	if (value < 0)
612 		return value;
613 
614 	if (put_user(sizeof(value), optlen))
615 		return -EFAULT;
616 	if (copy_to_user(optval, &value, sizeof(value)))
617 		return -EFAULT;
618 
619 	return 0;
620 }
621 
622 static int do_tls_getsockopt(struct sock *sk, int optname,
623 			     char __user *optval, int __user *optlen)
624 {
625 	int rc = 0;
626 
627 	lock_sock(sk);
628 
629 	switch (optname) {
630 	case TLS_TX:
631 	case TLS_RX:
632 		rc = do_tls_getsockopt_conf(sk, optval, optlen,
633 					    optname == TLS_TX);
634 		break;
635 	case TLS_TX_ZEROCOPY_RO:
636 		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
637 		break;
638 	case TLS_RX_EXPECT_NO_PAD:
639 		rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
640 		break;
641 	default:
642 		rc = -ENOPROTOOPT;
643 		break;
644 	}
645 
646 	release_sock(sk);
647 
648 	return rc;
649 }
650 
651 static int tls_getsockopt(struct sock *sk, int level, int optname,
652 			  char __user *optval, int __user *optlen)
653 {
654 	struct tls_context *ctx = tls_get_ctx(sk);
655 
656 	if (level != SOL_TLS)
657 		return ctx->sk_proto->getsockopt(sk, level,
658 						 optname, optval, optlen);
659 
660 	return do_tls_getsockopt(sk, optname, optval, optlen);
661 }
662 
663 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
664 				  unsigned int optlen, int tx)
665 {
666 	struct tls_crypto_info *crypto_info;
667 	struct tls_crypto_info *alt_crypto_info;
668 	struct tls_context *ctx = tls_get_ctx(sk);
669 	size_t optsize;
670 	int rc = 0;
671 	int conf;
672 
673 	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
674 		return -EINVAL;
675 
676 	if (tx) {
677 		crypto_info = &ctx->crypto_send.info;
678 		alt_crypto_info = &ctx->crypto_recv.info;
679 	} else {
680 		crypto_info = &ctx->crypto_recv.info;
681 		alt_crypto_info = &ctx->crypto_send.info;
682 	}
683 
684 	/* Currently we don't support set crypto info more than one time */
685 	if (TLS_CRYPTO_INFO_READY(crypto_info))
686 		return -EBUSY;
687 
688 	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
689 	if (rc) {
690 		rc = -EFAULT;
691 		goto err_crypto_info;
692 	}
693 
694 	/* check version */
695 	if (crypto_info->version != TLS_1_2_VERSION &&
696 	    crypto_info->version != TLS_1_3_VERSION) {
697 		rc = -EINVAL;
698 		goto err_crypto_info;
699 	}
700 
701 	/* Ensure that TLS version and ciphers are same in both directions */
702 	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
703 		if (alt_crypto_info->version != crypto_info->version ||
704 		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
705 			rc = -EINVAL;
706 			goto err_crypto_info;
707 		}
708 	}
709 
710 	switch (crypto_info->cipher_type) {
711 	case TLS_CIPHER_AES_GCM_128:
712 		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
713 		break;
714 	case TLS_CIPHER_AES_GCM_256: {
715 		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
716 		break;
717 	}
718 	case TLS_CIPHER_AES_CCM_128:
719 		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
720 		break;
721 	case TLS_CIPHER_CHACHA20_POLY1305:
722 		optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
723 		break;
724 	case TLS_CIPHER_SM4_GCM:
725 		optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
726 		break;
727 	case TLS_CIPHER_SM4_CCM:
728 		optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
729 		break;
730 	case TLS_CIPHER_ARIA_GCM_128:
731 		if (crypto_info->version != TLS_1_2_VERSION) {
732 			rc = -EINVAL;
733 			goto err_crypto_info;
734 		}
735 		optsize = sizeof(struct tls12_crypto_info_aria_gcm_128);
736 		break;
737 	case TLS_CIPHER_ARIA_GCM_256:
738 		if (crypto_info->version != TLS_1_2_VERSION) {
739 			rc = -EINVAL;
740 			goto err_crypto_info;
741 		}
742 		optsize = sizeof(struct tls12_crypto_info_aria_gcm_256);
743 		break;
744 	default:
745 		rc = -EINVAL;
746 		goto err_crypto_info;
747 	}
748 
749 	if (optlen != optsize) {
750 		rc = -EINVAL;
751 		goto err_crypto_info;
752 	}
753 
754 	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
755 				      sizeof(*crypto_info),
756 				      optlen - sizeof(*crypto_info));
757 	if (rc) {
758 		rc = -EFAULT;
759 		goto err_crypto_info;
760 	}
761 
762 	if (tx) {
763 		rc = tls_set_device_offload(sk, ctx);
764 		conf = TLS_HW;
765 		if (!rc) {
766 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
767 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
768 		} else {
769 			rc = tls_set_sw_offload(sk, ctx, 1);
770 			if (rc)
771 				goto err_crypto_info;
772 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
773 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
774 			conf = TLS_SW;
775 		}
776 	} else {
777 		rc = tls_set_device_offload_rx(sk, ctx);
778 		conf = TLS_HW;
779 		if (!rc) {
780 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
781 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
782 		} else {
783 			rc = tls_set_sw_offload(sk, ctx, 0);
784 			if (rc)
785 				goto err_crypto_info;
786 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
787 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
788 			conf = TLS_SW;
789 		}
790 		tls_sw_strparser_arm(sk, ctx);
791 	}
792 
793 	if (tx)
794 		ctx->tx_conf = conf;
795 	else
796 		ctx->rx_conf = conf;
797 	update_sk_prot(sk, ctx);
798 	if (tx) {
799 		ctx->sk_write_space = sk->sk_write_space;
800 		sk->sk_write_space = tls_write_space;
801 	} else {
802 		struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
803 
804 		tls_strp_check_rcv(&rx_ctx->strp);
805 	}
806 	return 0;
807 
808 err_crypto_info:
809 	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
810 	return rc;
811 }
812 
813 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
814 				   unsigned int optlen)
815 {
816 	struct tls_context *ctx = tls_get_ctx(sk);
817 	unsigned int value;
818 
819 	if (sockptr_is_null(optval) || optlen != sizeof(value))
820 		return -EINVAL;
821 
822 	if (copy_from_sockptr(&value, optval, sizeof(value)))
823 		return -EFAULT;
824 
825 	if (value > 1)
826 		return -EINVAL;
827 
828 	ctx->zerocopy_sendfile = value;
829 
830 	return 0;
831 }
832 
833 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
834 				    unsigned int optlen)
835 {
836 	struct tls_context *ctx = tls_get_ctx(sk);
837 	u32 val;
838 	int rc;
839 
840 	if (ctx->prot_info.version != TLS_1_3_VERSION ||
841 	    sockptr_is_null(optval) || optlen < sizeof(val))
842 		return -EINVAL;
843 
844 	rc = copy_from_sockptr(&val, optval, sizeof(val));
845 	if (rc)
846 		return -EFAULT;
847 	if (val > 1)
848 		return -EINVAL;
849 	rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
850 	if (rc < 1)
851 		return rc == 0 ? -EINVAL : rc;
852 
853 	lock_sock(sk);
854 	rc = -EINVAL;
855 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
856 		ctx->rx_no_pad = val;
857 		tls_update_rx_zc_capable(ctx);
858 		rc = 0;
859 	}
860 	release_sock(sk);
861 
862 	return rc;
863 }
864 
865 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
866 			     unsigned int optlen)
867 {
868 	int rc = 0;
869 
870 	switch (optname) {
871 	case TLS_TX:
872 	case TLS_RX:
873 		lock_sock(sk);
874 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
875 					    optname == TLS_TX);
876 		release_sock(sk);
877 		break;
878 	case TLS_TX_ZEROCOPY_RO:
879 		lock_sock(sk);
880 		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
881 		release_sock(sk);
882 		break;
883 	case TLS_RX_EXPECT_NO_PAD:
884 		rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
885 		break;
886 	default:
887 		rc = -ENOPROTOOPT;
888 		break;
889 	}
890 	return rc;
891 }
892 
893 static int tls_setsockopt(struct sock *sk, int level, int optname,
894 			  sockptr_t optval, unsigned int optlen)
895 {
896 	struct tls_context *ctx = tls_get_ctx(sk);
897 
898 	if (level != SOL_TLS)
899 		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
900 						 optlen);
901 
902 	return do_tls_setsockopt(sk, optname, optval, optlen);
903 }
904 
905 struct tls_context *tls_ctx_create(struct sock *sk)
906 {
907 	struct inet_connection_sock *icsk = inet_csk(sk);
908 	struct tls_context *ctx;
909 
910 	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
911 	if (!ctx)
912 		return NULL;
913 
914 	mutex_init(&ctx->tx_lock);
915 	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
916 	ctx->sk_proto = READ_ONCE(sk->sk_prot);
917 	ctx->sk = sk;
918 	return ctx;
919 }
920 
921 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
922 			    const struct proto_ops *base)
923 {
924 	ops[TLS_BASE][TLS_BASE] = *base;
925 
926 	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
927 	ops[TLS_SW  ][TLS_BASE].sendpage_locked	= tls_sw_sendpage_locked;
928 
929 	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
930 	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
931 
932 	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
933 	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
934 
935 #ifdef CONFIG_TLS_DEVICE
936 	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
937 	ops[TLS_HW  ][TLS_BASE].sendpage_locked	= NULL;
938 
939 	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
940 	ops[TLS_HW  ][TLS_SW  ].sendpage_locked	= NULL;
941 
942 	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
943 
944 	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
945 
946 	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
947 	ops[TLS_HW  ][TLS_HW  ].sendpage_locked	= NULL;
948 #endif
949 #ifdef CONFIG_TLS_TOE
950 	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
951 #endif
952 }
953 
954 static void tls_build_proto(struct sock *sk)
955 {
956 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
957 	struct proto *prot = READ_ONCE(sk->sk_prot);
958 
959 	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
960 	if (ip_ver == TLSV6 &&
961 	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
962 		mutex_lock(&tcpv6_prot_mutex);
963 		if (likely(prot != saved_tcpv6_prot)) {
964 			build_protos(tls_prots[TLSV6], prot);
965 			build_proto_ops(tls_proto_ops[TLSV6],
966 					sk->sk_socket->ops);
967 			smp_store_release(&saved_tcpv6_prot, prot);
968 		}
969 		mutex_unlock(&tcpv6_prot_mutex);
970 	}
971 
972 	if (ip_ver == TLSV4 &&
973 	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
974 		mutex_lock(&tcpv4_prot_mutex);
975 		if (likely(prot != saved_tcpv4_prot)) {
976 			build_protos(tls_prots[TLSV4], prot);
977 			build_proto_ops(tls_proto_ops[TLSV4],
978 					sk->sk_socket->ops);
979 			smp_store_release(&saved_tcpv4_prot, prot);
980 		}
981 		mutex_unlock(&tcpv4_prot_mutex);
982 	}
983 }
984 
985 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
986 			 const struct proto *base)
987 {
988 	prot[TLS_BASE][TLS_BASE] = *base;
989 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
990 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
991 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
992 
993 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
994 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
995 	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
996 
997 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
998 	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
999 	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
1000 	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
1001 
1002 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
1003 	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
1004 	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
1005 	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
1006 
1007 #ifdef CONFIG_TLS_DEVICE
1008 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1009 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
1010 	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
1011 
1012 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
1013 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
1014 	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
1015 
1016 	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
1017 
1018 	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
1019 
1020 	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
1021 #endif
1022 #ifdef CONFIG_TLS_TOE
1023 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
1024 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
1025 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
1026 #endif
1027 }
1028 
1029 static int tls_init(struct sock *sk)
1030 {
1031 	struct tls_context *ctx;
1032 	int rc = 0;
1033 
1034 	tls_build_proto(sk);
1035 
1036 #ifdef CONFIG_TLS_TOE
1037 	if (tls_toe_bypass(sk))
1038 		return 0;
1039 #endif
1040 
1041 	/* The TLS ulp is currently supported only for TCP sockets
1042 	 * in ESTABLISHED state.
1043 	 * Supporting sockets in LISTEN state will require us
1044 	 * to modify the accept implementation to clone rather then
1045 	 * share the ulp context.
1046 	 */
1047 	if (sk->sk_state != TCP_ESTABLISHED)
1048 		return -ENOTCONN;
1049 
1050 	/* allocate tls context */
1051 	write_lock_bh(&sk->sk_callback_lock);
1052 	ctx = tls_ctx_create(sk);
1053 	if (!ctx) {
1054 		rc = -ENOMEM;
1055 		goto out;
1056 	}
1057 
1058 	ctx->tx_conf = TLS_BASE;
1059 	ctx->rx_conf = TLS_BASE;
1060 	update_sk_prot(sk, ctx);
1061 out:
1062 	write_unlock_bh(&sk->sk_callback_lock);
1063 	return rc;
1064 }
1065 
1066 static void tls_update(struct sock *sk, struct proto *p,
1067 		       void (*write_space)(struct sock *sk))
1068 {
1069 	struct tls_context *ctx;
1070 
1071 	WARN_ON_ONCE(sk->sk_prot == p);
1072 
1073 	ctx = tls_get_ctx(sk);
1074 	if (likely(ctx)) {
1075 		ctx->sk_write_space = write_space;
1076 		ctx->sk_proto = p;
1077 	} else {
1078 		/* Pairs with lockless read in sk_clone_lock(). */
1079 		WRITE_ONCE(sk->sk_prot, p);
1080 		sk->sk_write_space = write_space;
1081 	}
1082 }
1083 
1084 static u16 tls_user_config(struct tls_context *ctx, bool tx)
1085 {
1086 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1087 
1088 	switch (config) {
1089 	case TLS_BASE:
1090 		return TLS_CONF_BASE;
1091 	case TLS_SW:
1092 		return TLS_CONF_SW;
1093 	case TLS_HW:
1094 		return TLS_CONF_HW;
1095 	case TLS_HW_RECORD:
1096 		return TLS_CONF_HW_RECORD;
1097 	}
1098 	return 0;
1099 }
1100 
1101 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1102 {
1103 	u16 version, cipher_type;
1104 	struct tls_context *ctx;
1105 	struct nlattr *start;
1106 	int err;
1107 
1108 	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1109 	if (!start)
1110 		return -EMSGSIZE;
1111 
1112 	rcu_read_lock();
1113 	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1114 	if (!ctx) {
1115 		err = 0;
1116 		goto nla_failure;
1117 	}
1118 	version = ctx->prot_info.version;
1119 	if (version) {
1120 		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1121 		if (err)
1122 			goto nla_failure;
1123 	}
1124 	cipher_type = ctx->prot_info.cipher_type;
1125 	if (cipher_type) {
1126 		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1127 		if (err)
1128 			goto nla_failure;
1129 	}
1130 	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1131 	if (err)
1132 		goto nla_failure;
1133 
1134 	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1135 	if (err)
1136 		goto nla_failure;
1137 
1138 	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1139 		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1140 		if (err)
1141 			goto nla_failure;
1142 	}
1143 	if (ctx->rx_no_pad) {
1144 		err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1145 		if (err)
1146 			goto nla_failure;
1147 	}
1148 
1149 	rcu_read_unlock();
1150 	nla_nest_end(skb, start);
1151 	return 0;
1152 
1153 nla_failure:
1154 	rcu_read_unlock();
1155 	nla_nest_cancel(skb, start);
1156 	return err;
1157 }
1158 
1159 static size_t tls_get_info_size(const struct sock *sk)
1160 {
1161 	size_t size = 0;
1162 
1163 	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
1164 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
1165 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
1166 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
1167 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
1168 		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1169 		nla_total_size(0) +		/* TLS_INFO_RX_NO_PAD */
1170 		0;
1171 
1172 	return size;
1173 }
1174 
1175 static int __net_init tls_init_net(struct net *net)
1176 {
1177 	int err;
1178 
1179 	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1180 	if (!net->mib.tls_statistics)
1181 		return -ENOMEM;
1182 
1183 	err = tls_proc_init(net);
1184 	if (err)
1185 		goto err_free_stats;
1186 
1187 	return 0;
1188 err_free_stats:
1189 	free_percpu(net->mib.tls_statistics);
1190 	return err;
1191 }
1192 
1193 static void __net_exit tls_exit_net(struct net *net)
1194 {
1195 	tls_proc_fini(net);
1196 	free_percpu(net->mib.tls_statistics);
1197 }
1198 
1199 static struct pernet_operations tls_proc_ops = {
1200 	.init = tls_init_net,
1201 	.exit = tls_exit_net,
1202 };
1203 
1204 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1205 	.name			= "tls",
1206 	.owner			= THIS_MODULE,
1207 	.init			= tls_init,
1208 	.update			= tls_update,
1209 	.get_info		= tls_get_info,
1210 	.get_info_size		= tls_get_info_size,
1211 };
1212 
1213 static int __init tls_register(void)
1214 {
1215 	int err;
1216 
1217 	err = register_pernet_subsys(&tls_proc_ops);
1218 	if (err)
1219 		return err;
1220 
1221 	err = tls_strp_dev_init();
1222 	if (err)
1223 		goto err_pernet;
1224 
1225 	err = tls_device_init();
1226 	if (err)
1227 		goto err_strp;
1228 
1229 	tcp_register_ulp(&tcp_tls_ulp_ops);
1230 
1231 	return 0;
1232 err_strp:
1233 	tls_strp_dev_exit();
1234 err_pernet:
1235 	unregister_pernet_subsys(&tls_proc_ops);
1236 	return err;
1237 }
1238 
1239 static void __exit tls_unregister(void)
1240 {
1241 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1242 	tls_strp_dev_exit();
1243 	tls_device_cleanup();
1244 	unregister_pernet_subsys(&tls_proc_ops);
1245 }
1246 
1247 module_init(tls_register);
1248 module_exit(tls_unregister);
1249