1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 #include <linux/inet_diag.h> 43 44 #include <net/tls.h> 45 46 MODULE_AUTHOR("Mellanox Technologies"); 47 MODULE_DESCRIPTION("Transport Layer Security Support"); 48 MODULE_LICENSE("Dual BSD/GPL"); 49 MODULE_ALIAS_TCP_ULP("tls"); 50 51 enum { 52 TLSV4, 53 TLSV6, 54 TLS_NUM_PROTS, 55 }; 56 57 static struct proto *saved_tcpv6_prot; 58 static DEFINE_MUTEX(tcpv6_prot_mutex); 59 static struct proto *saved_tcpv4_prot; 60 static DEFINE_MUTEX(tcpv4_prot_mutex); 61 static LIST_HEAD(device_list); 62 static DEFINE_SPINLOCK(device_spinlock); 63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 64 static struct proto_ops tls_sw_proto_ops; 65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 66 struct proto *base); 67 68 static void update_sk_prot(struct sock *sk, struct tls_context *ctx) 69 { 70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 71 72 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]; 73 } 74 75 int wait_on_pending_writer(struct sock *sk, long *timeo) 76 { 77 int rc = 0; 78 DEFINE_WAIT_FUNC(wait, woken_wake_function); 79 80 add_wait_queue(sk_sleep(sk), &wait); 81 while (1) { 82 if (!*timeo) { 83 rc = -EAGAIN; 84 break; 85 } 86 87 if (signal_pending(current)) { 88 rc = sock_intr_errno(*timeo); 89 break; 90 } 91 92 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 93 break; 94 } 95 remove_wait_queue(sk_sleep(sk), &wait); 96 return rc; 97 } 98 99 int tls_push_sg(struct sock *sk, 100 struct tls_context *ctx, 101 struct scatterlist *sg, 102 u16 first_offset, 103 int flags) 104 { 105 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 106 int ret = 0; 107 struct page *p; 108 size_t size; 109 int offset = first_offset; 110 111 size = sg->length - offset; 112 offset += sg->offset; 113 114 ctx->in_tcp_sendpages = true; 115 while (1) { 116 if (sg_is_last(sg)) 117 sendpage_flags = flags; 118 119 /* is sending application-limited? */ 120 tcp_rate_check_app_limited(sk); 121 p = sg_page(sg); 122 retry: 123 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 124 125 if (ret != size) { 126 if (ret > 0) { 127 offset += ret; 128 size -= ret; 129 goto retry; 130 } 131 132 offset -= sg->offset; 133 ctx->partially_sent_offset = offset; 134 ctx->partially_sent_record = (void *)sg; 135 ctx->in_tcp_sendpages = false; 136 return ret; 137 } 138 139 put_page(p); 140 sk_mem_uncharge(sk, sg->length); 141 sg = sg_next(sg); 142 if (!sg) 143 break; 144 145 offset = sg->offset; 146 size = sg->length; 147 } 148 149 ctx->in_tcp_sendpages = false; 150 151 return 0; 152 } 153 154 static int tls_handle_open_record(struct sock *sk, int flags) 155 { 156 struct tls_context *ctx = tls_get_ctx(sk); 157 158 if (tls_is_pending_open_record(ctx)) 159 return ctx->push_pending_record(sk, flags); 160 161 return 0; 162 } 163 164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 165 unsigned char *record_type) 166 { 167 struct cmsghdr *cmsg; 168 int rc = -EINVAL; 169 170 for_each_cmsghdr(cmsg, msg) { 171 if (!CMSG_OK(msg, cmsg)) 172 return -EINVAL; 173 if (cmsg->cmsg_level != SOL_TLS) 174 continue; 175 176 switch (cmsg->cmsg_type) { 177 case TLS_SET_RECORD_TYPE: 178 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 179 return -EINVAL; 180 181 if (msg->msg_flags & MSG_MORE) 182 return -EINVAL; 183 184 rc = tls_handle_open_record(sk, msg->msg_flags); 185 if (rc) 186 return rc; 187 188 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 189 rc = 0; 190 break; 191 default: 192 return -EINVAL; 193 } 194 } 195 196 return rc; 197 } 198 199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 200 int flags) 201 { 202 struct scatterlist *sg; 203 u16 offset; 204 205 sg = ctx->partially_sent_record; 206 offset = ctx->partially_sent_offset; 207 208 ctx->partially_sent_record = NULL; 209 return tls_push_sg(sk, ctx, sg, offset, flags); 210 } 211 212 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 213 { 214 struct scatterlist *sg; 215 216 sg = ctx->partially_sent_record; 217 if (!sg) 218 return false; 219 220 while (1) { 221 put_page(sg_page(sg)); 222 sk_mem_uncharge(sk, sg->length); 223 224 if (sg_is_last(sg)) 225 break; 226 sg++; 227 } 228 ctx->partially_sent_record = NULL; 229 return true; 230 } 231 232 static void tls_write_space(struct sock *sk) 233 { 234 struct tls_context *ctx = tls_get_ctx(sk); 235 236 /* If in_tcp_sendpages call lower protocol write space handler 237 * to ensure we wake up any waiting operations there. For example 238 * if do_tcp_sendpages where to call sk_wait_event. 239 */ 240 if (ctx->in_tcp_sendpages) { 241 ctx->sk_write_space(sk); 242 return; 243 } 244 245 #ifdef CONFIG_TLS_DEVICE 246 if (ctx->tx_conf == TLS_HW) 247 tls_device_write_space(sk, ctx); 248 else 249 #endif 250 tls_sw_write_space(sk, ctx); 251 252 ctx->sk_write_space(sk); 253 } 254 255 /** 256 * tls_ctx_free() - free TLS ULP context 257 * @sk: socket to with @ctx is attached 258 * @ctx: TLS context structure 259 * 260 * Free TLS context. If @sk is %NULL caller guarantees that the socket 261 * to which @ctx was attached has no outstanding references. 262 */ 263 void tls_ctx_free(struct sock *sk, struct tls_context *ctx) 264 { 265 if (!ctx) 266 return; 267 268 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 269 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 270 271 if (sk) 272 kfree_rcu(ctx, rcu); 273 else 274 kfree(ctx); 275 } 276 277 static void tls_sk_proto_cleanup(struct sock *sk, 278 struct tls_context *ctx, long timeo) 279 { 280 if (unlikely(sk->sk_write_pending) && 281 !wait_on_pending_writer(sk, &timeo)) 282 tls_handle_open_record(sk, 0); 283 284 /* We need these for tls_sw_fallback handling of other packets */ 285 if (ctx->tx_conf == TLS_SW) { 286 kfree(ctx->tx.rec_seq); 287 kfree(ctx->tx.iv); 288 tls_sw_release_resources_tx(sk); 289 } else if (ctx->tx_conf == TLS_HW) { 290 tls_device_free_resources_tx(sk); 291 } 292 293 if (ctx->rx_conf == TLS_SW) 294 tls_sw_release_resources_rx(sk); 295 else if (ctx->rx_conf == TLS_HW) 296 tls_device_offload_cleanup_rx(sk); 297 } 298 299 static void tls_sk_proto_close(struct sock *sk, long timeout) 300 { 301 struct inet_connection_sock *icsk = inet_csk(sk); 302 struct tls_context *ctx = tls_get_ctx(sk); 303 long timeo = sock_sndtimeo(sk, 0); 304 bool free_ctx; 305 306 if (ctx->tx_conf == TLS_SW) 307 tls_sw_cancel_work_tx(ctx); 308 309 lock_sock(sk); 310 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 311 312 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 313 tls_sk_proto_cleanup(sk, ctx, timeo); 314 315 write_lock_bh(&sk->sk_callback_lock); 316 if (free_ctx) 317 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 318 sk->sk_prot = ctx->sk_proto; 319 if (sk->sk_write_space == tls_write_space) 320 sk->sk_write_space = ctx->sk_write_space; 321 write_unlock_bh(&sk->sk_callback_lock); 322 release_sock(sk); 323 if (ctx->tx_conf == TLS_SW) 324 tls_sw_free_ctx_tx(ctx); 325 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 326 tls_sw_strparser_done(ctx); 327 if (ctx->rx_conf == TLS_SW) 328 tls_sw_free_ctx_rx(ctx); 329 ctx->sk_proto->close(sk, timeout); 330 331 if (free_ctx) 332 tls_ctx_free(sk, ctx); 333 } 334 335 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, 336 int __user *optlen) 337 { 338 int rc = 0; 339 struct tls_context *ctx = tls_get_ctx(sk); 340 struct tls_crypto_info *crypto_info; 341 int len; 342 343 if (get_user(len, optlen)) 344 return -EFAULT; 345 346 if (!optval || (len < sizeof(*crypto_info))) { 347 rc = -EINVAL; 348 goto out; 349 } 350 351 if (!ctx) { 352 rc = -EBUSY; 353 goto out; 354 } 355 356 /* get user crypto info */ 357 crypto_info = &ctx->crypto_send.info; 358 359 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 360 rc = -EBUSY; 361 goto out; 362 } 363 364 if (len == sizeof(*crypto_info)) { 365 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 366 rc = -EFAULT; 367 goto out; 368 } 369 370 switch (crypto_info->cipher_type) { 371 case TLS_CIPHER_AES_GCM_128: { 372 struct tls12_crypto_info_aes_gcm_128 * 373 crypto_info_aes_gcm_128 = 374 container_of(crypto_info, 375 struct tls12_crypto_info_aes_gcm_128, 376 info); 377 378 if (len != sizeof(*crypto_info_aes_gcm_128)) { 379 rc = -EINVAL; 380 goto out; 381 } 382 lock_sock(sk); 383 memcpy(crypto_info_aes_gcm_128->iv, 384 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 385 TLS_CIPHER_AES_GCM_128_IV_SIZE); 386 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, 387 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 388 release_sock(sk); 389 if (copy_to_user(optval, 390 crypto_info_aes_gcm_128, 391 sizeof(*crypto_info_aes_gcm_128))) 392 rc = -EFAULT; 393 break; 394 } 395 case TLS_CIPHER_AES_GCM_256: { 396 struct tls12_crypto_info_aes_gcm_256 * 397 crypto_info_aes_gcm_256 = 398 container_of(crypto_info, 399 struct tls12_crypto_info_aes_gcm_256, 400 info); 401 402 if (len != sizeof(*crypto_info_aes_gcm_256)) { 403 rc = -EINVAL; 404 goto out; 405 } 406 lock_sock(sk); 407 memcpy(crypto_info_aes_gcm_256->iv, 408 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 409 TLS_CIPHER_AES_GCM_256_IV_SIZE); 410 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq, 411 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 412 release_sock(sk); 413 if (copy_to_user(optval, 414 crypto_info_aes_gcm_256, 415 sizeof(*crypto_info_aes_gcm_256))) 416 rc = -EFAULT; 417 break; 418 } 419 default: 420 rc = -EINVAL; 421 } 422 423 out: 424 return rc; 425 } 426 427 static int do_tls_getsockopt(struct sock *sk, int optname, 428 char __user *optval, int __user *optlen) 429 { 430 int rc = 0; 431 432 switch (optname) { 433 case TLS_TX: 434 rc = do_tls_getsockopt_tx(sk, optval, optlen); 435 break; 436 default: 437 rc = -ENOPROTOOPT; 438 break; 439 } 440 return rc; 441 } 442 443 static int tls_getsockopt(struct sock *sk, int level, int optname, 444 char __user *optval, int __user *optlen) 445 { 446 struct tls_context *ctx = tls_get_ctx(sk); 447 448 if (level != SOL_TLS) 449 return ctx->sk_proto->getsockopt(sk, level, 450 optname, optval, optlen); 451 452 return do_tls_getsockopt(sk, optname, optval, optlen); 453 } 454 455 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval, 456 unsigned int optlen, int tx) 457 { 458 struct tls_crypto_info *crypto_info; 459 struct tls_crypto_info *alt_crypto_info; 460 struct tls_context *ctx = tls_get_ctx(sk); 461 size_t optsize; 462 int rc = 0; 463 int conf; 464 465 if (!optval || (optlen < sizeof(*crypto_info))) { 466 rc = -EINVAL; 467 goto out; 468 } 469 470 if (tx) { 471 crypto_info = &ctx->crypto_send.info; 472 alt_crypto_info = &ctx->crypto_recv.info; 473 } else { 474 crypto_info = &ctx->crypto_recv.info; 475 alt_crypto_info = &ctx->crypto_send.info; 476 } 477 478 /* Currently we don't support set crypto info more than one time */ 479 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 480 rc = -EBUSY; 481 goto out; 482 } 483 484 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); 485 if (rc) { 486 rc = -EFAULT; 487 goto err_crypto_info; 488 } 489 490 /* check version */ 491 if (crypto_info->version != TLS_1_2_VERSION && 492 crypto_info->version != TLS_1_3_VERSION) { 493 rc = -ENOTSUPP; 494 goto err_crypto_info; 495 } 496 497 /* Ensure that TLS version and ciphers are same in both directions */ 498 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 499 if (alt_crypto_info->version != crypto_info->version || 500 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 501 rc = -EINVAL; 502 goto err_crypto_info; 503 } 504 } 505 506 switch (crypto_info->cipher_type) { 507 case TLS_CIPHER_AES_GCM_128: 508 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 509 break; 510 case TLS_CIPHER_AES_GCM_256: { 511 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 512 break; 513 } 514 case TLS_CIPHER_AES_CCM_128: 515 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 516 break; 517 default: 518 rc = -EINVAL; 519 goto err_crypto_info; 520 } 521 522 if (optlen != optsize) { 523 rc = -EINVAL; 524 goto err_crypto_info; 525 } 526 527 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), 528 optlen - sizeof(*crypto_info)); 529 if (rc) { 530 rc = -EFAULT; 531 goto err_crypto_info; 532 } 533 534 if (tx) { 535 rc = tls_set_device_offload(sk, ctx); 536 conf = TLS_HW; 537 if (rc) { 538 rc = tls_set_sw_offload(sk, ctx, 1); 539 if (rc) 540 goto err_crypto_info; 541 conf = TLS_SW; 542 } 543 } else { 544 rc = tls_set_device_offload_rx(sk, ctx); 545 conf = TLS_HW; 546 if (rc) { 547 rc = tls_set_sw_offload(sk, ctx, 0); 548 if (rc) 549 goto err_crypto_info; 550 conf = TLS_SW; 551 } 552 tls_sw_strparser_arm(sk, ctx); 553 } 554 555 if (tx) 556 ctx->tx_conf = conf; 557 else 558 ctx->rx_conf = conf; 559 update_sk_prot(sk, ctx); 560 if (tx) { 561 ctx->sk_write_space = sk->sk_write_space; 562 sk->sk_write_space = tls_write_space; 563 } else { 564 sk->sk_socket->ops = &tls_sw_proto_ops; 565 } 566 goto out; 567 568 err_crypto_info: 569 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 570 out: 571 return rc; 572 } 573 574 static int do_tls_setsockopt(struct sock *sk, int optname, 575 char __user *optval, unsigned int optlen) 576 { 577 int rc = 0; 578 579 switch (optname) { 580 case TLS_TX: 581 case TLS_RX: 582 lock_sock(sk); 583 rc = do_tls_setsockopt_conf(sk, optval, optlen, 584 optname == TLS_TX); 585 release_sock(sk); 586 break; 587 default: 588 rc = -ENOPROTOOPT; 589 break; 590 } 591 return rc; 592 } 593 594 static int tls_setsockopt(struct sock *sk, int level, int optname, 595 char __user *optval, unsigned int optlen) 596 { 597 struct tls_context *ctx = tls_get_ctx(sk); 598 599 if (level != SOL_TLS) 600 return ctx->sk_proto->setsockopt(sk, level, optname, optval, 601 optlen); 602 603 return do_tls_setsockopt(sk, optname, optval, optlen); 604 } 605 606 static struct tls_context *create_ctx(struct sock *sk) 607 { 608 struct inet_connection_sock *icsk = inet_csk(sk); 609 struct tls_context *ctx; 610 611 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 612 if (!ctx) 613 return NULL; 614 615 rcu_assign_pointer(icsk->icsk_ulp_data, ctx); 616 ctx->sk_proto = sk->sk_prot; 617 return ctx; 618 } 619 620 static void tls_build_proto(struct sock *sk) 621 { 622 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 623 624 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 625 if (ip_ver == TLSV6 && 626 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { 627 mutex_lock(&tcpv6_prot_mutex); 628 if (likely(sk->sk_prot != saved_tcpv6_prot)) { 629 build_protos(tls_prots[TLSV6], sk->sk_prot); 630 smp_store_release(&saved_tcpv6_prot, sk->sk_prot); 631 } 632 mutex_unlock(&tcpv6_prot_mutex); 633 } 634 635 if (ip_ver == TLSV4 && 636 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) { 637 mutex_lock(&tcpv4_prot_mutex); 638 if (likely(sk->sk_prot != saved_tcpv4_prot)) { 639 build_protos(tls_prots[TLSV4], sk->sk_prot); 640 smp_store_release(&saved_tcpv4_prot, sk->sk_prot); 641 } 642 mutex_unlock(&tcpv4_prot_mutex); 643 } 644 } 645 646 static void tls_hw_sk_destruct(struct sock *sk) 647 { 648 struct tls_context *ctx = tls_get_ctx(sk); 649 struct inet_connection_sock *icsk = inet_csk(sk); 650 651 ctx->sk_destruct(sk); 652 /* Free ctx */ 653 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 654 tls_ctx_free(sk, ctx); 655 } 656 657 static int tls_hw_prot(struct sock *sk) 658 { 659 struct tls_context *ctx; 660 struct tls_device *dev; 661 int rc = 0; 662 663 spin_lock_bh(&device_spinlock); 664 list_for_each_entry(dev, &device_list, dev_list) { 665 if (dev->feature && dev->feature(dev)) { 666 ctx = create_ctx(sk); 667 if (!ctx) 668 goto out; 669 670 spin_unlock_bh(&device_spinlock); 671 tls_build_proto(sk); 672 ctx->sk_destruct = sk->sk_destruct; 673 sk->sk_destruct = tls_hw_sk_destruct; 674 ctx->rx_conf = TLS_HW_RECORD; 675 ctx->tx_conf = TLS_HW_RECORD; 676 update_sk_prot(sk, ctx); 677 spin_lock_bh(&device_spinlock); 678 rc = 1; 679 break; 680 } 681 } 682 out: 683 spin_unlock_bh(&device_spinlock); 684 return rc; 685 } 686 687 static void tls_hw_unhash(struct sock *sk) 688 { 689 struct tls_context *ctx = tls_get_ctx(sk); 690 struct tls_device *dev; 691 692 spin_lock_bh(&device_spinlock); 693 list_for_each_entry(dev, &device_list, dev_list) { 694 if (dev->unhash) { 695 kref_get(&dev->kref); 696 spin_unlock_bh(&device_spinlock); 697 dev->unhash(dev, sk); 698 kref_put(&dev->kref, dev->release); 699 spin_lock_bh(&device_spinlock); 700 } 701 } 702 spin_unlock_bh(&device_spinlock); 703 ctx->sk_proto->unhash(sk); 704 } 705 706 static int tls_hw_hash(struct sock *sk) 707 { 708 struct tls_context *ctx = tls_get_ctx(sk); 709 struct tls_device *dev; 710 int err; 711 712 err = ctx->sk_proto->hash(sk); 713 spin_lock_bh(&device_spinlock); 714 list_for_each_entry(dev, &device_list, dev_list) { 715 if (dev->hash) { 716 kref_get(&dev->kref); 717 spin_unlock_bh(&device_spinlock); 718 err |= dev->hash(dev, sk); 719 kref_put(&dev->kref, dev->release); 720 spin_lock_bh(&device_spinlock); 721 } 722 } 723 spin_unlock_bh(&device_spinlock); 724 725 if (err) 726 tls_hw_unhash(sk); 727 return err; 728 } 729 730 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 731 struct proto *base) 732 { 733 prot[TLS_BASE][TLS_BASE] = *base; 734 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 735 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 736 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 737 738 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 739 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 740 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 741 742 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 743 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 744 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read; 745 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 746 747 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 748 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 749 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read; 750 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 751 752 #ifdef CONFIG_TLS_DEVICE 753 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 754 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 755 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 756 757 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 758 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 759 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 760 761 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 762 763 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 764 765 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 766 #endif 767 768 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 769 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash; 770 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash; 771 } 772 773 static int tls_init(struct sock *sk) 774 { 775 struct tls_context *ctx; 776 int rc = 0; 777 778 if (tls_hw_prot(sk)) 779 return 0; 780 781 /* The TLS ulp is currently supported only for TCP sockets 782 * in ESTABLISHED state. 783 * Supporting sockets in LISTEN state will require us 784 * to modify the accept implementation to clone rather then 785 * share the ulp context. 786 */ 787 if (sk->sk_state != TCP_ESTABLISHED) 788 return -ENOTSUPP; 789 790 tls_build_proto(sk); 791 792 /* allocate tls context */ 793 write_lock_bh(&sk->sk_callback_lock); 794 ctx = create_ctx(sk); 795 if (!ctx) { 796 rc = -ENOMEM; 797 goto out; 798 } 799 800 ctx->tx_conf = TLS_BASE; 801 ctx->rx_conf = TLS_BASE; 802 update_sk_prot(sk, ctx); 803 out: 804 write_unlock_bh(&sk->sk_callback_lock); 805 return rc; 806 } 807 808 static void tls_update(struct sock *sk, struct proto *p) 809 { 810 struct tls_context *ctx; 811 812 ctx = tls_get_ctx(sk); 813 if (likely(ctx)) 814 ctx->sk_proto = p; 815 else 816 sk->sk_prot = p; 817 } 818 819 static int tls_get_info(const struct sock *sk, struct sk_buff *skb) 820 { 821 u16 version, cipher_type; 822 struct tls_context *ctx; 823 struct nlattr *start; 824 int err; 825 826 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); 827 if (!start) 828 return -EMSGSIZE; 829 830 rcu_read_lock(); 831 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); 832 if (!ctx) { 833 err = 0; 834 goto nla_failure; 835 } 836 version = ctx->prot_info.version; 837 if (version) { 838 err = nla_put_u16(skb, TLS_INFO_VERSION, version); 839 if (err) 840 goto nla_failure; 841 } 842 cipher_type = ctx->prot_info.cipher_type; 843 if (cipher_type) { 844 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); 845 if (err) 846 goto nla_failure; 847 } 848 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); 849 if (err) 850 goto nla_failure; 851 852 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); 853 if (err) 854 goto nla_failure; 855 856 rcu_read_unlock(); 857 nla_nest_end(skb, start); 858 return 0; 859 860 nla_failure: 861 rcu_read_unlock(); 862 nla_nest_cancel(skb, start); 863 return err; 864 } 865 866 static size_t tls_get_info_size(const struct sock *sk) 867 { 868 size_t size = 0; 869 870 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ 871 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ 872 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ 873 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ 874 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 875 0; 876 877 return size; 878 } 879 880 void tls_register_device(struct tls_device *device) 881 { 882 spin_lock_bh(&device_spinlock); 883 list_add_tail(&device->dev_list, &device_list); 884 spin_unlock_bh(&device_spinlock); 885 } 886 EXPORT_SYMBOL(tls_register_device); 887 888 void tls_unregister_device(struct tls_device *device) 889 { 890 spin_lock_bh(&device_spinlock); 891 list_del(&device->dev_list); 892 spin_unlock_bh(&device_spinlock); 893 } 894 EXPORT_SYMBOL(tls_unregister_device); 895 896 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 897 .name = "tls", 898 .owner = THIS_MODULE, 899 .init = tls_init, 900 .update = tls_update, 901 .get_info = tls_get_info, 902 .get_info_size = tls_get_info_size, 903 }; 904 905 static int __init tls_register(void) 906 { 907 tls_sw_proto_ops = inet_stream_ops; 908 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 909 910 tls_device_init(); 911 tcp_register_ulp(&tcp_tls_ulp_ops); 912 913 return 0; 914 } 915 916 static void __exit tls_unregister(void) 917 { 918 tcp_unregister_ulp(&tcp_tls_ulp_ops); 919 tls_device_cleanup(); 920 } 921 922 module_init(tls_register); 923 module_exit(tls_unregister); 924