xref: /openbmc/linux/net/tls/tls_main.c (revision e1e38ea1)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 
43 #include <net/tls.h>
44 
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49 
50 enum {
51 	TLSV4,
52 	TLSV6,
53 	TLS_NUM_PROTS,
54 };
55 
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static LIST_HEAD(device_list);
59 static DEFINE_MUTEX(device_mutex);
60 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
61 static struct proto_ops tls_sw_proto_ops;
62 
63 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
64 {
65 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
66 
67 	sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
68 }
69 
70 int wait_on_pending_writer(struct sock *sk, long *timeo)
71 {
72 	int rc = 0;
73 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
74 
75 	add_wait_queue(sk_sleep(sk), &wait);
76 	while (1) {
77 		if (!*timeo) {
78 			rc = -EAGAIN;
79 			break;
80 		}
81 
82 		if (signal_pending(current)) {
83 			rc = sock_intr_errno(*timeo);
84 			break;
85 		}
86 
87 		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
88 			break;
89 	}
90 	remove_wait_queue(sk_sleep(sk), &wait);
91 	return rc;
92 }
93 
94 int tls_push_sg(struct sock *sk,
95 		struct tls_context *ctx,
96 		struct scatterlist *sg,
97 		u16 first_offset,
98 		int flags)
99 {
100 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
101 	int ret = 0;
102 	struct page *p;
103 	size_t size;
104 	int offset = first_offset;
105 
106 	size = sg->length - offset;
107 	offset += sg->offset;
108 
109 	ctx->in_tcp_sendpages = true;
110 	while (1) {
111 		if (sg_is_last(sg))
112 			sendpage_flags = flags;
113 
114 		/* is sending application-limited? */
115 		tcp_rate_check_app_limited(sk);
116 		p = sg_page(sg);
117 retry:
118 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
119 
120 		if (ret != size) {
121 			if (ret > 0) {
122 				offset += ret;
123 				size -= ret;
124 				goto retry;
125 			}
126 
127 			offset -= sg->offset;
128 			ctx->partially_sent_offset = offset;
129 			ctx->partially_sent_record = (void *)sg;
130 			ctx->in_tcp_sendpages = false;
131 			return ret;
132 		}
133 
134 		put_page(p);
135 		sk_mem_uncharge(sk, sg->length);
136 		sg = sg_next(sg);
137 		if (!sg)
138 			break;
139 
140 		offset = sg->offset;
141 		size = sg->length;
142 	}
143 
144 	clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
145 	ctx->in_tcp_sendpages = false;
146 	ctx->sk_write_space(sk);
147 
148 	return 0;
149 }
150 
151 static int tls_handle_open_record(struct sock *sk, int flags)
152 {
153 	struct tls_context *ctx = tls_get_ctx(sk);
154 
155 	if (tls_is_pending_open_record(ctx))
156 		return ctx->push_pending_record(sk, flags);
157 
158 	return 0;
159 }
160 
161 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
162 		      unsigned char *record_type)
163 {
164 	struct cmsghdr *cmsg;
165 	int rc = -EINVAL;
166 
167 	for_each_cmsghdr(cmsg, msg) {
168 		if (!CMSG_OK(msg, cmsg))
169 			return -EINVAL;
170 		if (cmsg->cmsg_level != SOL_TLS)
171 			continue;
172 
173 		switch (cmsg->cmsg_type) {
174 		case TLS_SET_RECORD_TYPE:
175 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
176 				return -EINVAL;
177 
178 			if (msg->msg_flags & MSG_MORE)
179 				return -EINVAL;
180 
181 			rc = tls_handle_open_record(sk, msg->msg_flags);
182 			if (rc)
183 				return rc;
184 
185 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
186 			rc = 0;
187 			break;
188 		default:
189 			return -EINVAL;
190 		}
191 	}
192 
193 	return rc;
194 }
195 
196 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
197 				   int flags, long *timeo)
198 {
199 	struct scatterlist *sg;
200 	u16 offset;
201 
202 	if (!tls_is_partially_sent_record(ctx))
203 		return ctx->push_pending_record(sk, flags);
204 
205 	sg = ctx->partially_sent_record;
206 	offset = ctx->partially_sent_offset;
207 
208 	ctx->partially_sent_record = NULL;
209 	return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211 
212 static void tls_write_space(struct sock *sk)
213 {
214 	struct tls_context *ctx = tls_get_ctx(sk);
215 
216 	/* We are already sending pages, ignore notification */
217 	if (ctx->in_tcp_sendpages)
218 		return;
219 
220 	if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
221 		gfp_t sk_allocation = sk->sk_allocation;
222 		int rc;
223 		long timeo = 0;
224 
225 		sk->sk_allocation = GFP_ATOMIC;
226 		rc = tls_push_pending_closed_record(sk, ctx,
227 						    MSG_DONTWAIT |
228 						    MSG_NOSIGNAL,
229 						    &timeo);
230 		sk->sk_allocation = sk_allocation;
231 
232 		if (rc < 0)
233 			return;
234 	}
235 
236 	ctx->sk_write_space(sk);
237 }
238 
239 static void tls_sk_proto_close(struct sock *sk, long timeout)
240 {
241 	struct tls_context *ctx = tls_get_ctx(sk);
242 	long timeo = sock_sndtimeo(sk, 0);
243 	void (*sk_proto_close)(struct sock *sk, long timeout);
244 	bool free_ctx = false;
245 
246 	lock_sock(sk);
247 	sk_proto_close = ctx->sk_proto_close;
248 
249 	if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
250 	    (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
251 		free_ctx = true;
252 		goto skip_tx_cleanup;
253 	}
254 
255 	if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
256 		tls_handle_open_record(sk, 0);
257 
258 	if (ctx->partially_sent_record) {
259 		struct scatterlist *sg = ctx->partially_sent_record;
260 
261 		while (1) {
262 			put_page(sg_page(sg));
263 			sk_mem_uncharge(sk, sg->length);
264 
265 			if (sg_is_last(sg))
266 				break;
267 			sg++;
268 		}
269 	}
270 
271 	/* We need these for tls_sw_fallback handling of other packets */
272 	if (ctx->tx_conf == TLS_SW) {
273 		kfree(ctx->tx.rec_seq);
274 		kfree(ctx->tx.iv);
275 		tls_sw_free_resources_tx(sk);
276 	}
277 
278 	if (ctx->rx_conf == TLS_SW) {
279 		kfree(ctx->rx.rec_seq);
280 		kfree(ctx->rx.iv);
281 		tls_sw_free_resources_rx(sk);
282 	}
283 
284 #ifdef CONFIG_TLS_DEVICE
285 	if (ctx->rx_conf == TLS_HW)
286 		tls_device_offload_cleanup_rx(sk);
287 
288 	if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
289 #else
290 	{
291 #endif
292 		kfree(ctx);
293 		ctx = NULL;
294 	}
295 
296 skip_tx_cleanup:
297 	release_sock(sk);
298 	sk_proto_close(sk, timeout);
299 	/* free ctx for TLS_HW_RECORD, used by tcp_set_state
300 	 * for sk->sk_prot->unhash [tls_hw_unhash]
301 	 */
302 	if (free_ctx)
303 		kfree(ctx);
304 }
305 
306 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
307 				int __user *optlen)
308 {
309 	int rc = 0;
310 	struct tls_context *ctx = tls_get_ctx(sk);
311 	struct tls_crypto_info *crypto_info;
312 	int len;
313 
314 	if (get_user(len, optlen))
315 		return -EFAULT;
316 
317 	if (!optval || (len < sizeof(*crypto_info))) {
318 		rc = -EINVAL;
319 		goto out;
320 	}
321 
322 	if (!ctx) {
323 		rc = -EBUSY;
324 		goto out;
325 	}
326 
327 	/* get user crypto info */
328 	crypto_info = &ctx->crypto_send;
329 
330 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
331 		rc = -EBUSY;
332 		goto out;
333 	}
334 
335 	if (len == sizeof(*crypto_info)) {
336 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
337 			rc = -EFAULT;
338 		goto out;
339 	}
340 
341 	switch (crypto_info->cipher_type) {
342 	case TLS_CIPHER_AES_GCM_128: {
343 		struct tls12_crypto_info_aes_gcm_128 *
344 		  crypto_info_aes_gcm_128 =
345 		  container_of(crypto_info,
346 			       struct tls12_crypto_info_aes_gcm_128,
347 			       info);
348 
349 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
350 			rc = -EINVAL;
351 			goto out;
352 		}
353 		lock_sock(sk);
354 		memcpy(crypto_info_aes_gcm_128->iv,
355 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
356 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
357 		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
358 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
359 		release_sock(sk);
360 		if (copy_to_user(optval,
361 				 crypto_info_aes_gcm_128,
362 				 sizeof(*crypto_info_aes_gcm_128)))
363 			rc = -EFAULT;
364 		break;
365 	}
366 	default:
367 		rc = -EINVAL;
368 	}
369 
370 out:
371 	return rc;
372 }
373 
374 static int do_tls_getsockopt(struct sock *sk, int optname,
375 			     char __user *optval, int __user *optlen)
376 {
377 	int rc = 0;
378 
379 	switch (optname) {
380 	case TLS_TX:
381 		rc = do_tls_getsockopt_tx(sk, optval, optlen);
382 		break;
383 	default:
384 		rc = -ENOPROTOOPT;
385 		break;
386 	}
387 	return rc;
388 }
389 
390 static int tls_getsockopt(struct sock *sk, int level, int optname,
391 			  char __user *optval, int __user *optlen)
392 {
393 	struct tls_context *ctx = tls_get_ctx(sk);
394 
395 	if (level != SOL_TLS)
396 		return ctx->getsockopt(sk, level, optname, optval, optlen);
397 
398 	return do_tls_getsockopt(sk, optname, optval, optlen);
399 }
400 
401 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
402 				  unsigned int optlen, int tx)
403 {
404 	struct tls_crypto_info *crypto_info;
405 	struct tls_context *ctx = tls_get_ctx(sk);
406 	int rc = 0;
407 	int conf;
408 
409 	if (!optval || (optlen < sizeof(*crypto_info))) {
410 		rc = -EINVAL;
411 		goto out;
412 	}
413 
414 	if (tx)
415 		crypto_info = &ctx->crypto_send;
416 	else
417 		crypto_info = &ctx->crypto_recv;
418 
419 	/* Currently we don't support set crypto info more than one time */
420 	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
421 		rc = -EBUSY;
422 		goto out;
423 	}
424 
425 	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
426 	if (rc) {
427 		rc = -EFAULT;
428 		goto err_crypto_info;
429 	}
430 
431 	/* check version */
432 	if (crypto_info->version != TLS_1_2_VERSION) {
433 		rc = -ENOTSUPP;
434 		goto err_crypto_info;
435 	}
436 
437 	switch (crypto_info->cipher_type) {
438 	case TLS_CIPHER_AES_GCM_128: {
439 		if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
440 			rc = -EINVAL;
441 			goto err_crypto_info;
442 		}
443 		rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
444 				    optlen - sizeof(*crypto_info));
445 		if (rc) {
446 			rc = -EFAULT;
447 			goto err_crypto_info;
448 		}
449 		break;
450 	}
451 	default:
452 		rc = -EINVAL;
453 		goto err_crypto_info;
454 	}
455 
456 	if (tx) {
457 #ifdef CONFIG_TLS_DEVICE
458 		rc = tls_set_device_offload(sk, ctx);
459 		conf = TLS_HW;
460 		if (rc) {
461 #else
462 		{
463 #endif
464 			rc = tls_set_sw_offload(sk, ctx, 1);
465 			conf = TLS_SW;
466 		}
467 	} else {
468 #ifdef CONFIG_TLS_DEVICE
469 		rc = tls_set_device_offload_rx(sk, ctx);
470 		conf = TLS_HW;
471 		if (rc) {
472 #else
473 		{
474 #endif
475 			rc = tls_set_sw_offload(sk, ctx, 0);
476 			conf = TLS_SW;
477 		}
478 	}
479 
480 	if (rc)
481 		goto err_crypto_info;
482 
483 	if (tx)
484 		ctx->tx_conf = conf;
485 	else
486 		ctx->rx_conf = conf;
487 	update_sk_prot(sk, ctx);
488 	if (tx) {
489 		ctx->sk_write_space = sk->sk_write_space;
490 		sk->sk_write_space = tls_write_space;
491 	} else {
492 		sk->sk_socket->ops = &tls_sw_proto_ops;
493 	}
494 	goto out;
495 
496 err_crypto_info:
497 	memset(crypto_info, 0, sizeof(*crypto_info));
498 out:
499 	return rc;
500 }
501 
502 static int do_tls_setsockopt(struct sock *sk, int optname,
503 			     char __user *optval, unsigned int optlen)
504 {
505 	int rc = 0;
506 
507 	switch (optname) {
508 	case TLS_TX:
509 	case TLS_RX:
510 		lock_sock(sk);
511 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
512 					    optname == TLS_TX);
513 		release_sock(sk);
514 		break;
515 	default:
516 		rc = -ENOPROTOOPT;
517 		break;
518 	}
519 	return rc;
520 }
521 
522 static int tls_setsockopt(struct sock *sk, int level, int optname,
523 			  char __user *optval, unsigned int optlen)
524 {
525 	struct tls_context *ctx = tls_get_ctx(sk);
526 
527 	if (level != SOL_TLS)
528 		return ctx->setsockopt(sk, level, optname, optval, optlen);
529 
530 	return do_tls_setsockopt(sk, optname, optval, optlen);
531 }
532 
533 static struct tls_context *create_ctx(struct sock *sk)
534 {
535 	struct inet_connection_sock *icsk = inet_csk(sk);
536 	struct tls_context *ctx;
537 
538 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
539 	if (!ctx)
540 		return NULL;
541 
542 	icsk->icsk_ulp_data = ctx;
543 	return ctx;
544 }
545 
546 static int tls_hw_prot(struct sock *sk)
547 {
548 	struct tls_context *ctx;
549 	struct tls_device *dev;
550 	int rc = 0;
551 
552 	mutex_lock(&device_mutex);
553 	list_for_each_entry(dev, &device_list, dev_list) {
554 		if (dev->feature && dev->feature(dev)) {
555 			ctx = create_ctx(sk);
556 			if (!ctx)
557 				goto out;
558 
559 			ctx->hash = sk->sk_prot->hash;
560 			ctx->unhash = sk->sk_prot->unhash;
561 			ctx->sk_proto_close = sk->sk_prot->close;
562 			ctx->rx_conf = TLS_HW_RECORD;
563 			ctx->tx_conf = TLS_HW_RECORD;
564 			update_sk_prot(sk, ctx);
565 			rc = 1;
566 			break;
567 		}
568 	}
569 out:
570 	mutex_unlock(&device_mutex);
571 	return rc;
572 }
573 
574 static void tls_hw_unhash(struct sock *sk)
575 {
576 	struct tls_context *ctx = tls_get_ctx(sk);
577 	struct tls_device *dev;
578 
579 	mutex_lock(&device_mutex);
580 	list_for_each_entry(dev, &device_list, dev_list) {
581 		if (dev->unhash)
582 			dev->unhash(dev, sk);
583 	}
584 	mutex_unlock(&device_mutex);
585 	ctx->unhash(sk);
586 }
587 
588 static int tls_hw_hash(struct sock *sk)
589 {
590 	struct tls_context *ctx = tls_get_ctx(sk);
591 	struct tls_device *dev;
592 	int err;
593 
594 	err = ctx->hash(sk);
595 	mutex_lock(&device_mutex);
596 	list_for_each_entry(dev, &device_list, dev_list) {
597 		if (dev->hash)
598 			err |= dev->hash(dev, sk);
599 	}
600 	mutex_unlock(&device_mutex);
601 
602 	if (err)
603 		tls_hw_unhash(sk);
604 	return err;
605 }
606 
607 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
608 			 struct proto *base)
609 {
610 	prot[TLS_BASE][TLS_BASE] = *base;
611 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
612 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
613 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
614 
615 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
616 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
617 	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
618 
619 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
620 	prot[TLS_BASE][TLS_SW].recvmsg		= tls_sw_recvmsg;
621 	prot[TLS_BASE][TLS_SW].close		= tls_sk_proto_close;
622 
623 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
624 	prot[TLS_SW][TLS_SW].recvmsg	= tls_sw_recvmsg;
625 	prot[TLS_SW][TLS_SW].close	= tls_sk_proto_close;
626 
627 #ifdef CONFIG_TLS_DEVICE
628 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
629 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
630 	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
631 
632 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
633 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
634 	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
635 
636 	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
637 
638 	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
639 
640 	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
641 #endif
642 
643 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
644 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_hw_hash;
645 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_hw_unhash;
646 	prot[TLS_HW_RECORD][TLS_HW_RECORD].close	= tls_sk_proto_close;
647 }
648 
649 static int tls_init(struct sock *sk)
650 {
651 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
652 	struct tls_context *ctx;
653 	int rc = 0;
654 
655 	if (tls_hw_prot(sk))
656 		goto out;
657 
658 	/* The TLS ulp is currently supported only for TCP sockets
659 	 * in ESTABLISHED state.
660 	 * Supporting sockets in LISTEN state will require us
661 	 * to modify the accept implementation to clone rather then
662 	 * share the ulp context.
663 	 */
664 	if (sk->sk_state != TCP_ESTABLISHED)
665 		return -ENOTSUPP;
666 
667 	/* allocate tls context */
668 	ctx = create_ctx(sk);
669 	if (!ctx) {
670 		rc = -ENOMEM;
671 		goto out;
672 	}
673 	ctx->setsockopt = sk->sk_prot->setsockopt;
674 	ctx->getsockopt = sk->sk_prot->getsockopt;
675 	ctx->sk_proto_close = sk->sk_prot->close;
676 
677 	/* Build IPv6 TLS whenever the address of tcpv6	_prot changes */
678 	if (ip_ver == TLSV6 &&
679 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
680 		mutex_lock(&tcpv6_prot_mutex);
681 		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
682 			build_protos(tls_prots[TLSV6], sk->sk_prot);
683 			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
684 		}
685 		mutex_unlock(&tcpv6_prot_mutex);
686 	}
687 
688 	ctx->tx_conf = TLS_BASE;
689 	ctx->rx_conf = TLS_BASE;
690 	update_sk_prot(sk, ctx);
691 out:
692 	return rc;
693 }
694 
695 void tls_register_device(struct tls_device *device)
696 {
697 	mutex_lock(&device_mutex);
698 	list_add_tail(&device->dev_list, &device_list);
699 	mutex_unlock(&device_mutex);
700 }
701 EXPORT_SYMBOL(tls_register_device);
702 
703 void tls_unregister_device(struct tls_device *device)
704 {
705 	mutex_lock(&device_mutex);
706 	list_del(&device->dev_list);
707 	mutex_unlock(&device_mutex);
708 }
709 EXPORT_SYMBOL(tls_unregister_device);
710 
711 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
712 	.name			= "tls",
713 	.uid			= TCP_ULP_TLS,
714 	.user_visible		= true,
715 	.owner			= THIS_MODULE,
716 	.init			= tls_init,
717 };
718 
719 static int __init tls_register(void)
720 {
721 	build_protos(tls_prots[TLSV4], &tcp_prot);
722 
723 	tls_sw_proto_ops = inet_stream_ops;
724 	tls_sw_proto_ops.poll = tls_sw_poll;
725 	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
726 
727 #ifdef CONFIG_TLS_DEVICE
728 	tls_device_init();
729 #endif
730 	tcp_register_ulp(&tcp_tls_ulp_ops);
731 
732 	return 0;
733 }
734 
735 static void __exit tls_unregister(void)
736 {
737 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
738 #ifdef CONFIG_TLS_DEVICE
739 	tls_device_cleanup();
740 #endif
741 }
742 
743 module_init(tls_register);
744 module_exit(tls_unregister);
745