xref: /openbmc/linux/net/tls/tls_main.c (revision dd0bed16)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 
43 #include <net/tls.h>
44 
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 
49 enum {
50 	TLSV4,
51 	TLSV6,
52 	TLS_NUM_PROTS,
53 };
54 
55 enum {
56 	TLS_BASE,
57 	TLS_SW_TX,
58 	TLS_SW_RX,
59 	TLS_SW_RXTX,
60 	TLS_HW_RECORD,
61 	TLS_NUM_CONFIG,
62 };
63 
64 static struct proto *saved_tcpv6_prot;
65 static DEFINE_MUTEX(tcpv6_prot_mutex);
66 static LIST_HEAD(device_list);
67 static DEFINE_MUTEX(device_mutex);
68 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG];
69 static struct proto_ops tls_sw_proto_ops;
70 
71 static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx)
72 {
73 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
74 
75 	sk->sk_prot = &tls_prots[ip_ver][ctx->conf];
76 }
77 
78 int wait_on_pending_writer(struct sock *sk, long *timeo)
79 {
80 	int rc = 0;
81 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
82 
83 	add_wait_queue(sk_sleep(sk), &wait);
84 	while (1) {
85 		if (!*timeo) {
86 			rc = -EAGAIN;
87 			break;
88 		}
89 
90 		if (signal_pending(current)) {
91 			rc = sock_intr_errno(*timeo);
92 			break;
93 		}
94 
95 		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
96 			break;
97 	}
98 	remove_wait_queue(sk_sleep(sk), &wait);
99 	return rc;
100 }
101 
102 int tls_push_sg(struct sock *sk,
103 		struct tls_context *ctx,
104 		struct scatterlist *sg,
105 		u16 first_offset,
106 		int flags)
107 {
108 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109 	int ret = 0;
110 	struct page *p;
111 	size_t size;
112 	int offset = first_offset;
113 
114 	size = sg->length - offset;
115 	offset += sg->offset;
116 
117 	while (1) {
118 		if (sg_is_last(sg))
119 			sendpage_flags = flags;
120 
121 		/* is sending application-limited? */
122 		tcp_rate_check_app_limited(sk);
123 		p = sg_page(sg);
124 retry:
125 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
126 
127 		if (ret != size) {
128 			if (ret > 0) {
129 				offset += ret;
130 				size -= ret;
131 				goto retry;
132 			}
133 
134 			offset -= sg->offset;
135 			ctx->partially_sent_offset = offset;
136 			ctx->partially_sent_record = (void *)sg;
137 			return ret;
138 		}
139 
140 		put_page(p);
141 		sk_mem_uncharge(sk, sg->length);
142 		sg = sg_next(sg);
143 		if (!sg)
144 			break;
145 
146 		offset = sg->offset;
147 		size = sg->length;
148 	}
149 
150 	clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
151 
152 	return 0;
153 }
154 
155 static int tls_handle_open_record(struct sock *sk, int flags)
156 {
157 	struct tls_context *ctx = tls_get_ctx(sk);
158 
159 	if (tls_is_pending_open_record(ctx))
160 		return ctx->push_pending_record(sk, flags);
161 
162 	return 0;
163 }
164 
165 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166 		      unsigned char *record_type)
167 {
168 	struct cmsghdr *cmsg;
169 	int rc = -EINVAL;
170 
171 	for_each_cmsghdr(cmsg, msg) {
172 		if (!CMSG_OK(msg, cmsg))
173 			return -EINVAL;
174 		if (cmsg->cmsg_level != SOL_TLS)
175 			continue;
176 
177 		switch (cmsg->cmsg_type) {
178 		case TLS_SET_RECORD_TYPE:
179 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
180 				return -EINVAL;
181 
182 			if (msg->msg_flags & MSG_MORE)
183 				return -EINVAL;
184 
185 			rc = tls_handle_open_record(sk, msg->msg_flags);
186 			if (rc)
187 				return rc;
188 
189 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
190 			rc = 0;
191 			break;
192 		default:
193 			return -EINVAL;
194 		}
195 	}
196 
197 	return rc;
198 }
199 
200 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
201 				   int flags, long *timeo)
202 {
203 	struct scatterlist *sg;
204 	u16 offset;
205 
206 	if (!tls_is_partially_sent_record(ctx))
207 		return ctx->push_pending_record(sk, flags);
208 
209 	sg = ctx->partially_sent_record;
210 	offset = ctx->partially_sent_offset;
211 
212 	ctx->partially_sent_record = NULL;
213 	return tls_push_sg(sk, ctx, sg, offset, flags);
214 }
215 
216 static void tls_write_space(struct sock *sk)
217 {
218 	struct tls_context *ctx = tls_get_ctx(sk);
219 
220 	if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
221 		gfp_t sk_allocation = sk->sk_allocation;
222 		int rc;
223 		long timeo = 0;
224 
225 		sk->sk_allocation = GFP_ATOMIC;
226 		rc = tls_push_pending_closed_record(sk, ctx,
227 						    MSG_DONTWAIT |
228 						    MSG_NOSIGNAL,
229 						    &timeo);
230 		sk->sk_allocation = sk_allocation;
231 
232 		if (rc < 0)
233 			return;
234 	}
235 
236 	ctx->sk_write_space(sk);
237 }
238 
239 static void tls_sk_proto_close(struct sock *sk, long timeout)
240 {
241 	struct tls_context *ctx = tls_get_ctx(sk);
242 	long timeo = sock_sndtimeo(sk, 0);
243 	void (*sk_proto_close)(struct sock *sk, long timeout);
244 
245 	lock_sock(sk);
246 	sk_proto_close = ctx->sk_proto_close;
247 
248 	if (ctx->conf == TLS_HW_RECORD)
249 		goto skip_tx_cleanup;
250 
251 	if (ctx->conf == TLS_BASE) {
252 		kfree(ctx);
253 		ctx = NULL;
254 		goto skip_tx_cleanup;
255 	}
256 
257 	if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
258 		tls_handle_open_record(sk, 0);
259 
260 	if (ctx->partially_sent_record) {
261 		struct scatterlist *sg = ctx->partially_sent_record;
262 
263 		while (1) {
264 			put_page(sg_page(sg));
265 			sk_mem_uncharge(sk, sg->length);
266 
267 			if (sg_is_last(sg))
268 				break;
269 			sg++;
270 		}
271 	}
272 
273 	kfree(ctx->tx.rec_seq);
274 	kfree(ctx->tx.iv);
275 	kfree(ctx->rx.rec_seq);
276 	kfree(ctx->rx.iv);
277 
278 	if (ctx->conf == TLS_SW_TX ||
279 	    ctx->conf == TLS_SW_RX ||
280 	    ctx->conf == TLS_SW_RXTX) {
281 		tls_sw_free_resources(sk);
282 	}
283 
284 skip_tx_cleanup:
285 	release_sock(sk);
286 	sk_proto_close(sk, timeout);
287 	/* free ctx for TLS_HW_RECORD, used by tcp_set_state
288 	 * for sk->sk_prot->unhash [tls_hw_unhash]
289 	 */
290 	if (ctx && ctx->conf == TLS_HW_RECORD)
291 		kfree(ctx);
292 }
293 
294 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
295 				int __user *optlen)
296 {
297 	int rc = 0;
298 	struct tls_context *ctx = tls_get_ctx(sk);
299 	struct tls_crypto_info *crypto_info;
300 	int len;
301 
302 	if (get_user(len, optlen))
303 		return -EFAULT;
304 
305 	if (!optval || (len < sizeof(*crypto_info))) {
306 		rc = -EINVAL;
307 		goto out;
308 	}
309 
310 	if (!ctx) {
311 		rc = -EBUSY;
312 		goto out;
313 	}
314 
315 	/* get user crypto info */
316 	crypto_info = &ctx->crypto_send;
317 
318 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
319 		rc = -EBUSY;
320 		goto out;
321 	}
322 
323 	if (len == sizeof(*crypto_info)) {
324 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
325 			rc = -EFAULT;
326 		goto out;
327 	}
328 
329 	switch (crypto_info->cipher_type) {
330 	case TLS_CIPHER_AES_GCM_128: {
331 		struct tls12_crypto_info_aes_gcm_128 *
332 		  crypto_info_aes_gcm_128 =
333 		  container_of(crypto_info,
334 			       struct tls12_crypto_info_aes_gcm_128,
335 			       info);
336 
337 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
338 			rc = -EINVAL;
339 			goto out;
340 		}
341 		lock_sock(sk);
342 		memcpy(crypto_info_aes_gcm_128->iv,
343 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
344 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
345 		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
346 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
347 		release_sock(sk);
348 		if (copy_to_user(optval,
349 				 crypto_info_aes_gcm_128,
350 				 sizeof(*crypto_info_aes_gcm_128)))
351 			rc = -EFAULT;
352 		break;
353 	}
354 	default:
355 		rc = -EINVAL;
356 	}
357 
358 out:
359 	return rc;
360 }
361 
362 static int do_tls_getsockopt(struct sock *sk, int optname,
363 			     char __user *optval, int __user *optlen)
364 {
365 	int rc = 0;
366 
367 	switch (optname) {
368 	case TLS_TX:
369 		rc = do_tls_getsockopt_tx(sk, optval, optlen);
370 		break;
371 	default:
372 		rc = -ENOPROTOOPT;
373 		break;
374 	}
375 	return rc;
376 }
377 
378 static int tls_getsockopt(struct sock *sk, int level, int optname,
379 			  char __user *optval, int __user *optlen)
380 {
381 	struct tls_context *ctx = tls_get_ctx(sk);
382 
383 	if (level != SOL_TLS)
384 		return ctx->getsockopt(sk, level, optname, optval, optlen);
385 
386 	return do_tls_getsockopt(sk, optname, optval, optlen);
387 }
388 
389 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
390 				  unsigned int optlen, int tx)
391 {
392 	struct tls_crypto_info *crypto_info;
393 	struct tls_context *ctx = tls_get_ctx(sk);
394 	int rc = 0;
395 	int conf;
396 
397 	if (!optval || (optlen < sizeof(*crypto_info))) {
398 		rc = -EINVAL;
399 		goto out;
400 	}
401 
402 	if (tx)
403 		crypto_info = &ctx->crypto_send;
404 	else
405 		crypto_info = &ctx->crypto_recv;
406 
407 	/* Currently we don't support set crypto info more than one time */
408 	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
409 		rc = -EBUSY;
410 		goto out;
411 	}
412 
413 	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
414 	if (rc) {
415 		rc = -EFAULT;
416 		goto err_crypto_info;
417 	}
418 
419 	/* check version */
420 	if (crypto_info->version != TLS_1_2_VERSION) {
421 		rc = -ENOTSUPP;
422 		goto err_crypto_info;
423 	}
424 
425 	switch (crypto_info->cipher_type) {
426 	case TLS_CIPHER_AES_GCM_128: {
427 		if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
428 			rc = -EINVAL;
429 			goto err_crypto_info;
430 		}
431 		rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
432 				    optlen - sizeof(*crypto_info));
433 		if (rc) {
434 			rc = -EFAULT;
435 			goto err_crypto_info;
436 		}
437 		break;
438 	}
439 	default:
440 		rc = -EINVAL;
441 		goto err_crypto_info;
442 	}
443 
444 	/* currently SW is default, we will have ethtool in future */
445 	if (tx) {
446 		rc = tls_set_sw_offload(sk, ctx, 1);
447 		if (ctx->conf == TLS_SW_RX)
448 			conf = TLS_SW_RXTX;
449 		else
450 			conf = TLS_SW_TX;
451 	} else {
452 		rc = tls_set_sw_offload(sk, ctx, 0);
453 		if (ctx->conf == TLS_SW_TX)
454 			conf = TLS_SW_RXTX;
455 		else
456 			conf = TLS_SW_RX;
457 	}
458 
459 	if (rc)
460 		goto err_crypto_info;
461 
462 	ctx->conf = conf;
463 	update_sk_prot(sk, ctx);
464 	if (tx) {
465 		ctx->sk_write_space = sk->sk_write_space;
466 		sk->sk_write_space = tls_write_space;
467 	} else {
468 		sk->sk_socket->ops = &tls_sw_proto_ops;
469 	}
470 	goto out;
471 
472 err_crypto_info:
473 	memset(crypto_info, 0, sizeof(*crypto_info));
474 out:
475 	return rc;
476 }
477 
478 static int do_tls_setsockopt(struct sock *sk, int optname,
479 			     char __user *optval, unsigned int optlen)
480 {
481 	int rc = 0;
482 
483 	switch (optname) {
484 	case TLS_TX:
485 	case TLS_RX:
486 		lock_sock(sk);
487 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
488 					    optname == TLS_TX);
489 		release_sock(sk);
490 		break;
491 	default:
492 		rc = -ENOPROTOOPT;
493 		break;
494 	}
495 	return rc;
496 }
497 
498 static int tls_setsockopt(struct sock *sk, int level, int optname,
499 			  char __user *optval, unsigned int optlen)
500 {
501 	struct tls_context *ctx = tls_get_ctx(sk);
502 
503 	if (level != SOL_TLS)
504 		return ctx->setsockopt(sk, level, optname, optval, optlen);
505 
506 	return do_tls_setsockopt(sk, optname, optval, optlen);
507 }
508 
509 static struct tls_context *create_ctx(struct sock *sk)
510 {
511 	struct inet_connection_sock *icsk = inet_csk(sk);
512 	struct tls_context *ctx;
513 
514 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
515 	if (!ctx)
516 		return NULL;
517 
518 	icsk->icsk_ulp_data = ctx;
519 	return ctx;
520 }
521 
522 static int tls_hw_prot(struct sock *sk)
523 {
524 	struct tls_context *ctx;
525 	struct tls_device *dev;
526 	int rc = 0;
527 
528 	mutex_lock(&device_mutex);
529 	list_for_each_entry(dev, &device_list, dev_list) {
530 		if (dev->feature && dev->feature(dev)) {
531 			ctx = create_ctx(sk);
532 			if (!ctx)
533 				goto out;
534 
535 			ctx->hash = sk->sk_prot->hash;
536 			ctx->unhash = sk->sk_prot->unhash;
537 			ctx->sk_proto_close = sk->sk_prot->close;
538 			ctx->conf = TLS_HW_RECORD;
539 			update_sk_prot(sk, ctx);
540 			rc = 1;
541 			break;
542 		}
543 	}
544 out:
545 	mutex_unlock(&device_mutex);
546 	return rc;
547 }
548 
549 static void tls_hw_unhash(struct sock *sk)
550 {
551 	struct tls_context *ctx = tls_get_ctx(sk);
552 	struct tls_device *dev;
553 
554 	mutex_lock(&device_mutex);
555 	list_for_each_entry(dev, &device_list, dev_list) {
556 		if (dev->unhash)
557 			dev->unhash(dev, sk);
558 	}
559 	mutex_unlock(&device_mutex);
560 	ctx->unhash(sk);
561 }
562 
563 static int tls_hw_hash(struct sock *sk)
564 {
565 	struct tls_context *ctx = tls_get_ctx(sk);
566 	struct tls_device *dev;
567 	int err;
568 
569 	err = ctx->hash(sk);
570 	mutex_lock(&device_mutex);
571 	list_for_each_entry(dev, &device_list, dev_list) {
572 		if (dev->hash)
573 			err |= dev->hash(dev, sk);
574 	}
575 	mutex_unlock(&device_mutex);
576 
577 	if (err)
578 		tls_hw_unhash(sk);
579 	return err;
580 }
581 
582 static void build_protos(struct proto *prot, struct proto *base)
583 {
584 	prot[TLS_BASE] = *base;
585 	prot[TLS_BASE].setsockopt	= tls_setsockopt;
586 	prot[TLS_BASE].getsockopt	= tls_getsockopt;
587 	prot[TLS_BASE].close		= tls_sk_proto_close;
588 
589 	prot[TLS_SW_TX] = prot[TLS_BASE];
590 	prot[TLS_SW_TX].sendmsg		= tls_sw_sendmsg;
591 	prot[TLS_SW_TX].sendpage	= tls_sw_sendpage;
592 
593 	prot[TLS_SW_RX] = prot[TLS_BASE];
594 	prot[TLS_SW_RX].recvmsg		= tls_sw_recvmsg;
595 	prot[TLS_SW_RX].close		= tls_sk_proto_close;
596 
597 	prot[TLS_SW_RXTX] = prot[TLS_SW_TX];
598 	prot[TLS_SW_RXTX].recvmsg	= tls_sw_recvmsg;
599 	prot[TLS_SW_RXTX].close		= tls_sk_proto_close;
600 
601 	prot[TLS_HW_RECORD] = *base;
602 	prot[TLS_HW_RECORD].hash	= tls_hw_hash;
603 	prot[TLS_HW_RECORD].unhash	= tls_hw_unhash;
604 	prot[TLS_HW_RECORD].close	= tls_sk_proto_close;
605 }
606 
607 static int tls_init(struct sock *sk)
608 {
609 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
610 	struct tls_context *ctx;
611 	int rc = 0;
612 
613 	if (tls_hw_prot(sk))
614 		goto out;
615 
616 	/* The TLS ulp is currently supported only for TCP sockets
617 	 * in ESTABLISHED state.
618 	 * Supporting sockets in LISTEN state will require us
619 	 * to modify the accept implementation to clone rather then
620 	 * share the ulp context.
621 	 */
622 	if (sk->sk_state != TCP_ESTABLISHED)
623 		return -ENOTSUPP;
624 
625 	/* allocate tls context */
626 	ctx = create_ctx(sk);
627 	if (!ctx) {
628 		rc = -ENOMEM;
629 		goto out;
630 	}
631 	ctx->setsockopt = sk->sk_prot->setsockopt;
632 	ctx->getsockopt = sk->sk_prot->getsockopt;
633 	ctx->sk_proto_close = sk->sk_prot->close;
634 
635 	/* Build IPv6 TLS whenever the address of tcpv6_prot changes */
636 	if (ip_ver == TLSV6 &&
637 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
638 		mutex_lock(&tcpv6_prot_mutex);
639 		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
640 			build_protos(tls_prots[TLSV6], sk->sk_prot);
641 			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
642 		}
643 		mutex_unlock(&tcpv6_prot_mutex);
644 	}
645 
646 	ctx->conf = TLS_BASE;
647 	update_sk_prot(sk, ctx);
648 out:
649 	return rc;
650 }
651 
652 void tls_register_device(struct tls_device *device)
653 {
654 	mutex_lock(&device_mutex);
655 	list_add_tail(&device->dev_list, &device_list);
656 	mutex_unlock(&device_mutex);
657 }
658 EXPORT_SYMBOL(tls_register_device);
659 
660 void tls_unregister_device(struct tls_device *device)
661 {
662 	mutex_lock(&device_mutex);
663 	list_del(&device->dev_list);
664 	mutex_unlock(&device_mutex);
665 }
666 EXPORT_SYMBOL(tls_unregister_device);
667 
668 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
669 	.name			= "tls",
670 	.uid			= TCP_ULP_TLS,
671 	.user_visible		= true,
672 	.owner			= THIS_MODULE,
673 	.init			= tls_init,
674 };
675 
676 static int __init tls_register(void)
677 {
678 	build_protos(tls_prots[TLSV4], &tcp_prot);
679 
680 	tls_sw_proto_ops = inet_stream_ops;
681 	tls_sw_proto_ops.poll = tls_sw_poll;
682 	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
683 
684 	tcp_register_ulp(&tcp_tls_ulp_ops);
685 
686 	return 0;
687 }
688 
689 static void __exit tls_unregister(void)
690 {
691 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
692 }
693 
694 module_init(tls_register);
695 module_exit(tls_unregister);
696