1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 #include <linux/inet_diag.h> 43 44 #include <net/snmp.h> 45 #include <net/tls.h> 46 #include <net/tls_toe.h> 47 48 MODULE_AUTHOR("Mellanox Technologies"); 49 MODULE_DESCRIPTION("Transport Layer Security Support"); 50 MODULE_LICENSE("Dual BSD/GPL"); 51 MODULE_ALIAS_TCP_ULP("tls"); 52 53 enum { 54 TLSV4, 55 TLSV6, 56 TLS_NUM_PROTS, 57 }; 58 59 static const struct proto *saved_tcpv6_prot; 60 static DEFINE_MUTEX(tcpv6_prot_mutex); 61 static const struct proto *saved_tcpv4_prot; 62 static DEFINE_MUTEX(tcpv4_prot_mutex); 63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 64 static struct proto_ops tls_sw_proto_ops; 65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 66 const struct proto *base); 67 68 void update_sk_prot(struct sock *sk, struct tls_context *ctx) 69 { 70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 71 72 WRITE_ONCE(sk->sk_prot, 73 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); 74 } 75 76 int wait_on_pending_writer(struct sock *sk, long *timeo) 77 { 78 int rc = 0; 79 DEFINE_WAIT_FUNC(wait, woken_wake_function); 80 81 add_wait_queue(sk_sleep(sk), &wait); 82 while (1) { 83 if (!*timeo) { 84 rc = -EAGAIN; 85 break; 86 } 87 88 if (signal_pending(current)) { 89 rc = sock_intr_errno(*timeo); 90 break; 91 } 92 93 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 94 break; 95 } 96 remove_wait_queue(sk_sleep(sk), &wait); 97 return rc; 98 } 99 100 int tls_push_sg(struct sock *sk, 101 struct tls_context *ctx, 102 struct scatterlist *sg, 103 u16 first_offset, 104 int flags) 105 { 106 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 107 int ret = 0; 108 struct page *p; 109 size_t size; 110 int offset = first_offset; 111 112 size = sg->length - offset; 113 offset += sg->offset; 114 115 ctx->in_tcp_sendpages = true; 116 while (1) { 117 if (sg_is_last(sg)) 118 sendpage_flags = flags; 119 120 /* is sending application-limited? */ 121 tcp_rate_check_app_limited(sk); 122 p = sg_page(sg); 123 retry: 124 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 125 126 if (ret != size) { 127 if (ret > 0) { 128 offset += ret; 129 size -= ret; 130 goto retry; 131 } 132 133 offset -= sg->offset; 134 ctx->partially_sent_offset = offset; 135 ctx->partially_sent_record = (void *)sg; 136 ctx->in_tcp_sendpages = false; 137 return ret; 138 } 139 140 put_page(p); 141 sk_mem_uncharge(sk, sg->length); 142 sg = sg_next(sg); 143 if (!sg) 144 break; 145 146 offset = sg->offset; 147 size = sg->length; 148 } 149 150 ctx->in_tcp_sendpages = false; 151 152 return 0; 153 } 154 155 static int tls_handle_open_record(struct sock *sk, int flags) 156 { 157 struct tls_context *ctx = tls_get_ctx(sk); 158 159 if (tls_is_pending_open_record(ctx)) 160 return ctx->push_pending_record(sk, flags); 161 162 return 0; 163 } 164 165 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 166 unsigned char *record_type) 167 { 168 struct cmsghdr *cmsg; 169 int rc = -EINVAL; 170 171 for_each_cmsghdr(cmsg, msg) { 172 if (!CMSG_OK(msg, cmsg)) 173 return -EINVAL; 174 if (cmsg->cmsg_level != SOL_TLS) 175 continue; 176 177 switch (cmsg->cmsg_type) { 178 case TLS_SET_RECORD_TYPE: 179 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 180 return -EINVAL; 181 182 if (msg->msg_flags & MSG_MORE) 183 return -EINVAL; 184 185 rc = tls_handle_open_record(sk, msg->msg_flags); 186 if (rc) 187 return rc; 188 189 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 190 rc = 0; 191 break; 192 default: 193 return -EINVAL; 194 } 195 } 196 197 return rc; 198 } 199 200 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 201 int flags) 202 { 203 struct scatterlist *sg; 204 u16 offset; 205 206 sg = ctx->partially_sent_record; 207 offset = ctx->partially_sent_offset; 208 209 ctx->partially_sent_record = NULL; 210 return tls_push_sg(sk, ctx, sg, offset, flags); 211 } 212 213 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 214 { 215 struct scatterlist *sg; 216 217 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { 218 put_page(sg_page(sg)); 219 sk_mem_uncharge(sk, sg->length); 220 } 221 ctx->partially_sent_record = NULL; 222 } 223 224 static void tls_write_space(struct sock *sk) 225 { 226 struct tls_context *ctx = tls_get_ctx(sk); 227 228 /* If in_tcp_sendpages call lower protocol write space handler 229 * to ensure we wake up any waiting operations there. For example 230 * if do_tcp_sendpages where to call sk_wait_event. 231 */ 232 if (ctx->in_tcp_sendpages) { 233 ctx->sk_write_space(sk); 234 return; 235 } 236 237 #ifdef CONFIG_TLS_DEVICE 238 if (ctx->tx_conf == TLS_HW) 239 tls_device_write_space(sk, ctx); 240 else 241 #endif 242 tls_sw_write_space(sk, ctx); 243 244 ctx->sk_write_space(sk); 245 } 246 247 /** 248 * tls_ctx_free() - free TLS ULP context 249 * @sk: socket to with @ctx is attached 250 * @ctx: TLS context structure 251 * 252 * Free TLS context. If @sk is %NULL caller guarantees that the socket 253 * to which @ctx was attached has no outstanding references. 254 */ 255 void tls_ctx_free(struct sock *sk, struct tls_context *ctx) 256 { 257 if (!ctx) 258 return; 259 260 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 261 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 262 mutex_destroy(&ctx->tx_lock); 263 264 if (sk) 265 kfree_rcu(ctx, rcu); 266 else 267 kfree(ctx); 268 } 269 270 static void tls_sk_proto_cleanup(struct sock *sk, 271 struct tls_context *ctx, long timeo) 272 { 273 if (unlikely(sk->sk_write_pending) && 274 !wait_on_pending_writer(sk, &timeo)) 275 tls_handle_open_record(sk, 0); 276 277 /* We need these for tls_sw_fallback handling of other packets */ 278 if (ctx->tx_conf == TLS_SW) { 279 kfree(ctx->tx.rec_seq); 280 kfree(ctx->tx.iv); 281 tls_sw_release_resources_tx(sk); 282 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 283 } else if (ctx->tx_conf == TLS_HW) { 284 tls_device_free_resources_tx(sk); 285 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 286 } 287 288 if (ctx->rx_conf == TLS_SW) { 289 tls_sw_release_resources_rx(sk); 290 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 291 } else if (ctx->rx_conf == TLS_HW) { 292 tls_device_offload_cleanup_rx(sk); 293 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 294 } 295 } 296 297 static void tls_sk_proto_close(struct sock *sk, long timeout) 298 { 299 struct inet_connection_sock *icsk = inet_csk(sk); 300 struct tls_context *ctx = tls_get_ctx(sk); 301 long timeo = sock_sndtimeo(sk, 0); 302 bool free_ctx; 303 304 if (ctx->tx_conf == TLS_SW) 305 tls_sw_cancel_work_tx(ctx); 306 307 lock_sock(sk); 308 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 309 310 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 311 tls_sk_proto_cleanup(sk, ctx, timeo); 312 313 write_lock_bh(&sk->sk_callback_lock); 314 if (free_ctx) 315 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 316 WRITE_ONCE(sk->sk_prot, ctx->sk_proto); 317 if (sk->sk_write_space == tls_write_space) 318 sk->sk_write_space = ctx->sk_write_space; 319 write_unlock_bh(&sk->sk_callback_lock); 320 release_sock(sk); 321 if (ctx->tx_conf == TLS_SW) 322 tls_sw_free_ctx_tx(ctx); 323 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 324 tls_sw_strparser_done(ctx); 325 if (ctx->rx_conf == TLS_SW) 326 tls_sw_free_ctx_rx(ctx); 327 ctx->sk_proto->close(sk, timeout); 328 329 if (free_ctx) 330 tls_ctx_free(sk, ctx); 331 } 332 333 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, 334 int __user *optlen) 335 { 336 int rc = 0; 337 struct tls_context *ctx = tls_get_ctx(sk); 338 struct tls_crypto_info *crypto_info; 339 int len; 340 341 if (get_user(len, optlen)) 342 return -EFAULT; 343 344 if (!optval || (len < sizeof(*crypto_info))) { 345 rc = -EINVAL; 346 goto out; 347 } 348 349 if (!ctx) { 350 rc = -EBUSY; 351 goto out; 352 } 353 354 /* get user crypto info */ 355 crypto_info = &ctx->crypto_send.info; 356 357 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 358 rc = -EBUSY; 359 goto out; 360 } 361 362 if (len == sizeof(*crypto_info)) { 363 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 364 rc = -EFAULT; 365 goto out; 366 } 367 368 switch (crypto_info->cipher_type) { 369 case TLS_CIPHER_AES_GCM_128: { 370 struct tls12_crypto_info_aes_gcm_128 * 371 crypto_info_aes_gcm_128 = 372 container_of(crypto_info, 373 struct tls12_crypto_info_aes_gcm_128, 374 info); 375 376 if (len != sizeof(*crypto_info_aes_gcm_128)) { 377 rc = -EINVAL; 378 goto out; 379 } 380 lock_sock(sk); 381 memcpy(crypto_info_aes_gcm_128->iv, 382 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 383 TLS_CIPHER_AES_GCM_128_IV_SIZE); 384 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, 385 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 386 release_sock(sk); 387 if (copy_to_user(optval, 388 crypto_info_aes_gcm_128, 389 sizeof(*crypto_info_aes_gcm_128))) 390 rc = -EFAULT; 391 break; 392 } 393 case TLS_CIPHER_AES_GCM_256: { 394 struct tls12_crypto_info_aes_gcm_256 * 395 crypto_info_aes_gcm_256 = 396 container_of(crypto_info, 397 struct tls12_crypto_info_aes_gcm_256, 398 info); 399 400 if (len != sizeof(*crypto_info_aes_gcm_256)) { 401 rc = -EINVAL; 402 goto out; 403 } 404 lock_sock(sk); 405 memcpy(crypto_info_aes_gcm_256->iv, 406 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 407 TLS_CIPHER_AES_GCM_256_IV_SIZE); 408 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq, 409 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 410 release_sock(sk); 411 if (copy_to_user(optval, 412 crypto_info_aes_gcm_256, 413 sizeof(*crypto_info_aes_gcm_256))) 414 rc = -EFAULT; 415 break; 416 } 417 default: 418 rc = -EINVAL; 419 } 420 421 out: 422 return rc; 423 } 424 425 static int do_tls_getsockopt(struct sock *sk, int optname, 426 char __user *optval, int __user *optlen) 427 { 428 int rc = 0; 429 430 switch (optname) { 431 case TLS_TX: 432 rc = do_tls_getsockopt_tx(sk, optval, optlen); 433 break; 434 default: 435 rc = -ENOPROTOOPT; 436 break; 437 } 438 return rc; 439 } 440 441 static int tls_getsockopt(struct sock *sk, int level, int optname, 442 char __user *optval, int __user *optlen) 443 { 444 struct tls_context *ctx = tls_get_ctx(sk); 445 446 if (level != SOL_TLS) 447 return ctx->sk_proto->getsockopt(sk, level, 448 optname, optval, optlen); 449 450 return do_tls_getsockopt(sk, optname, optval, optlen); 451 } 452 453 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, 454 unsigned int optlen, int tx) 455 { 456 struct tls_crypto_info *crypto_info; 457 struct tls_crypto_info *alt_crypto_info; 458 struct tls_context *ctx = tls_get_ctx(sk); 459 size_t optsize; 460 int rc = 0; 461 int conf; 462 463 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) { 464 rc = -EINVAL; 465 goto out; 466 } 467 468 if (tx) { 469 crypto_info = &ctx->crypto_send.info; 470 alt_crypto_info = &ctx->crypto_recv.info; 471 } else { 472 crypto_info = &ctx->crypto_recv.info; 473 alt_crypto_info = &ctx->crypto_send.info; 474 } 475 476 /* Currently we don't support set crypto info more than one time */ 477 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 478 rc = -EBUSY; 479 goto out; 480 } 481 482 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info)); 483 if (rc) { 484 rc = -EFAULT; 485 goto err_crypto_info; 486 } 487 488 /* check version */ 489 if (crypto_info->version != TLS_1_2_VERSION && 490 crypto_info->version != TLS_1_3_VERSION) { 491 rc = -EINVAL; 492 goto err_crypto_info; 493 } 494 495 /* Ensure that TLS version and ciphers are same in both directions */ 496 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 497 if (alt_crypto_info->version != crypto_info->version || 498 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 499 rc = -EINVAL; 500 goto err_crypto_info; 501 } 502 } 503 504 switch (crypto_info->cipher_type) { 505 case TLS_CIPHER_AES_GCM_128: 506 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 507 break; 508 case TLS_CIPHER_AES_GCM_256: { 509 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 510 break; 511 } 512 case TLS_CIPHER_AES_CCM_128: 513 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 514 break; 515 default: 516 rc = -EINVAL; 517 goto err_crypto_info; 518 } 519 520 if (optlen != optsize) { 521 rc = -EINVAL; 522 goto err_crypto_info; 523 } 524 525 rc = copy_from_sockptr_offset(crypto_info + 1, optval, 526 sizeof(*crypto_info), 527 optlen - sizeof(*crypto_info)); 528 if (rc) { 529 rc = -EFAULT; 530 goto err_crypto_info; 531 } 532 533 if (tx) { 534 rc = tls_set_device_offload(sk, ctx); 535 conf = TLS_HW; 536 if (!rc) { 537 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); 538 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 539 } else { 540 rc = tls_set_sw_offload(sk, ctx, 1); 541 if (rc) 542 goto err_crypto_info; 543 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); 544 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 545 conf = TLS_SW; 546 } 547 } else { 548 rc = tls_set_device_offload_rx(sk, ctx); 549 conf = TLS_HW; 550 if (!rc) { 551 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); 552 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 553 } else { 554 rc = tls_set_sw_offload(sk, ctx, 0); 555 if (rc) 556 goto err_crypto_info; 557 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); 558 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 559 conf = TLS_SW; 560 } 561 tls_sw_strparser_arm(sk, ctx); 562 } 563 564 if (tx) 565 ctx->tx_conf = conf; 566 else 567 ctx->rx_conf = conf; 568 update_sk_prot(sk, ctx); 569 if (tx) { 570 ctx->sk_write_space = sk->sk_write_space; 571 sk->sk_write_space = tls_write_space; 572 } else { 573 sk->sk_socket->ops = &tls_sw_proto_ops; 574 } 575 goto out; 576 577 err_crypto_info: 578 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 579 out: 580 return rc; 581 } 582 583 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, 584 unsigned int optlen) 585 { 586 int rc = 0; 587 588 switch (optname) { 589 case TLS_TX: 590 case TLS_RX: 591 lock_sock(sk); 592 rc = do_tls_setsockopt_conf(sk, optval, optlen, 593 optname == TLS_TX); 594 release_sock(sk); 595 break; 596 default: 597 rc = -ENOPROTOOPT; 598 break; 599 } 600 return rc; 601 } 602 603 static int tls_setsockopt(struct sock *sk, int level, int optname, 604 sockptr_t optval, unsigned int optlen) 605 { 606 struct tls_context *ctx = tls_get_ctx(sk); 607 608 if (level != SOL_TLS) 609 return ctx->sk_proto->setsockopt(sk, level, optname, optval, 610 optlen); 611 612 return do_tls_setsockopt(sk, optname, optval, optlen); 613 } 614 615 struct tls_context *tls_ctx_create(struct sock *sk) 616 { 617 struct inet_connection_sock *icsk = inet_csk(sk); 618 struct tls_context *ctx; 619 620 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 621 if (!ctx) 622 return NULL; 623 624 mutex_init(&ctx->tx_lock); 625 rcu_assign_pointer(icsk->icsk_ulp_data, ctx); 626 ctx->sk_proto = READ_ONCE(sk->sk_prot); 627 return ctx; 628 } 629 630 static void tls_build_proto(struct sock *sk) 631 { 632 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 633 struct proto *prot = READ_ONCE(sk->sk_prot); 634 635 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 636 if (ip_ver == TLSV6 && 637 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { 638 mutex_lock(&tcpv6_prot_mutex); 639 if (likely(prot != saved_tcpv6_prot)) { 640 build_protos(tls_prots[TLSV6], prot); 641 smp_store_release(&saved_tcpv6_prot, prot); 642 } 643 mutex_unlock(&tcpv6_prot_mutex); 644 } 645 646 if (ip_ver == TLSV4 && 647 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { 648 mutex_lock(&tcpv4_prot_mutex); 649 if (likely(prot != saved_tcpv4_prot)) { 650 build_protos(tls_prots[TLSV4], prot); 651 smp_store_release(&saved_tcpv4_prot, prot); 652 } 653 mutex_unlock(&tcpv4_prot_mutex); 654 } 655 } 656 657 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 658 const struct proto *base) 659 { 660 prot[TLS_BASE][TLS_BASE] = *base; 661 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 662 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 663 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 664 665 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 666 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 667 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 668 669 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 670 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 671 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read; 672 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 673 674 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 675 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 676 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read; 677 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 678 679 #ifdef CONFIG_TLS_DEVICE 680 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 681 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 682 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 683 684 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 685 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 686 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 687 688 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 689 690 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 691 692 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 693 #endif 694 #ifdef CONFIG_TLS_TOE 695 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 696 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; 697 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; 698 #endif 699 } 700 701 static int tls_init(struct sock *sk) 702 { 703 struct tls_context *ctx; 704 int rc = 0; 705 706 tls_build_proto(sk); 707 708 #ifdef CONFIG_TLS_TOE 709 if (tls_toe_bypass(sk)) 710 return 0; 711 #endif 712 713 /* The TLS ulp is currently supported only for TCP sockets 714 * in ESTABLISHED state. 715 * Supporting sockets in LISTEN state will require us 716 * to modify the accept implementation to clone rather then 717 * share the ulp context. 718 */ 719 if (sk->sk_state != TCP_ESTABLISHED) 720 return -ENOTCONN; 721 722 /* allocate tls context */ 723 write_lock_bh(&sk->sk_callback_lock); 724 ctx = tls_ctx_create(sk); 725 if (!ctx) { 726 rc = -ENOMEM; 727 goto out; 728 } 729 730 ctx->tx_conf = TLS_BASE; 731 ctx->rx_conf = TLS_BASE; 732 update_sk_prot(sk, ctx); 733 out: 734 write_unlock_bh(&sk->sk_callback_lock); 735 return rc; 736 } 737 738 static void tls_update(struct sock *sk, struct proto *p, 739 void (*write_space)(struct sock *sk)) 740 { 741 struct tls_context *ctx; 742 743 ctx = tls_get_ctx(sk); 744 if (likely(ctx)) { 745 ctx->sk_write_space = write_space; 746 ctx->sk_proto = p; 747 } else { 748 /* Pairs with lockless read in sk_clone_lock(). */ 749 WRITE_ONCE(sk->sk_prot, p); 750 sk->sk_write_space = write_space; 751 } 752 } 753 754 static int tls_get_info(const struct sock *sk, struct sk_buff *skb) 755 { 756 u16 version, cipher_type; 757 struct tls_context *ctx; 758 struct nlattr *start; 759 int err; 760 761 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); 762 if (!start) 763 return -EMSGSIZE; 764 765 rcu_read_lock(); 766 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); 767 if (!ctx) { 768 err = 0; 769 goto nla_failure; 770 } 771 version = ctx->prot_info.version; 772 if (version) { 773 err = nla_put_u16(skb, TLS_INFO_VERSION, version); 774 if (err) 775 goto nla_failure; 776 } 777 cipher_type = ctx->prot_info.cipher_type; 778 if (cipher_type) { 779 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); 780 if (err) 781 goto nla_failure; 782 } 783 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); 784 if (err) 785 goto nla_failure; 786 787 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); 788 if (err) 789 goto nla_failure; 790 791 rcu_read_unlock(); 792 nla_nest_end(skb, start); 793 return 0; 794 795 nla_failure: 796 rcu_read_unlock(); 797 nla_nest_cancel(skb, start); 798 return err; 799 } 800 801 static size_t tls_get_info_size(const struct sock *sk) 802 { 803 size_t size = 0; 804 805 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ 806 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ 807 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ 808 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ 809 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 810 0; 811 812 return size; 813 } 814 815 static int __net_init tls_init_net(struct net *net) 816 { 817 int err; 818 819 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); 820 if (!net->mib.tls_statistics) 821 return -ENOMEM; 822 823 err = tls_proc_init(net); 824 if (err) 825 goto err_free_stats; 826 827 return 0; 828 err_free_stats: 829 free_percpu(net->mib.tls_statistics); 830 return err; 831 } 832 833 static void __net_exit tls_exit_net(struct net *net) 834 { 835 tls_proc_fini(net); 836 free_percpu(net->mib.tls_statistics); 837 } 838 839 static struct pernet_operations tls_proc_ops = { 840 .init = tls_init_net, 841 .exit = tls_exit_net, 842 }; 843 844 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 845 .name = "tls", 846 .owner = THIS_MODULE, 847 .init = tls_init, 848 .update = tls_update, 849 .get_info = tls_get_info, 850 .get_info_size = tls_get_info_size, 851 }; 852 853 static int __init tls_register(void) 854 { 855 int err; 856 857 err = register_pernet_subsys(&tls_proc_ops); 858 if (err) 859 return err; 860 861 tls_sw_proto_ops = inet_stream_ops; 862 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 863 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked, 864 865 tls_device_init(); 866 tcp_register_ulp(&tcp_tls_ulp_ops); 867 868 return 0; 869 } 870 871 static void __exit tls_unregister(void) 872 { 873 tcp_unregister_ulp(&tcp_tls_ulp_ops); 874 tls_device_cleanup(); 875 unregister_pernet_subsys(&tls_proc_ops); 876 } 877 878 module_init(tls_register); 879 module_exit(tls_unregister); 880