1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 #include <linux/inet_diag.h> 43 44 #include <net/snmp.h> 45 #include <net/tls.h> 46 #include <net/tls_toe.h> 47 48 MODULE_AUTHOR("Mellanox Technologies"); 49 MODULE_DESCRIPTION("Transport Layer Security Support"); 50 MODULE_LICENSE("Dual BSD/GPL"); 51 MODULE_ALIAS_TCP_ULP("tls"); 52 53 enum { 54 TLSV4, 55 TLSV6, 56 TLS_NUM_PROTS, 57 }; 58 59 static const struct proto *saved_tcpv6_prot; 60 static DEFINE_MUTEX(tcpv6_prot_mutex); 61 static const struct proto *saved_tcpv4_prot; 62 static DEFINE_MUTEX(tcpv4_prot_mutex); 63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 64 static struct proto_ops tls_sw_proto_ops; 65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 66 const struct proto *base); 67 68 void update_sk_prot(struct sock *sk, struct tls_context *ctx) 69 { 70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 71 72 WRITE_ONCE(sk->sk_prot, 73 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); 74 } 75 76 int wait_on_pending_writer(struct sock *sk, long *timeo) 77 { 78 int rc = 0; 79 DEFINE_WAIT_FUNC(wait, woken_wake_function); 80 81 add_wait_queue(sk_sleep(sk), &wait); 82 while (1) { 83 if (!*timeo) { 84 rc = -EAGAIN; 85 break; 86 } 87 88 if (signal_pending(current)) { 89 rc = sock_intr_errno(*timeo); 90 break; 91 } 92 93 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 94 break; 95 } 96 remove_wait_queue(sk_sleep(sk), &wait); 97 return rc; 98 } 99 100 int tls_push_sg(struct sock *sk, 101 struct tls_context *ctx, 102 struct scatterlist *sg, 103 u16 first_offset, 104 int flags) 105 { 106 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 107 int ret = 0; 108 struct page *p; 109 size_t size; 110 int offset = first_offset; 111 112 size = sg->length - offset; 113 offset += sg->offset; 114 115 ctx->in_tcp_sendpages = true; 116 while (1) { 117 if (sg_is_last(sg)) 118 sendpage_flags = flags; 119 120 /* is sending application-limited? */ 121 tcp_rate_check_app_limited(sk); 122 p = sg_page(sg); 123 retry: 124 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 125 126 if (ret != size) { 127 if (ret > 0) { 128 offset += ret; 129 size -= ret; 130 goto retry; 131 } 132 133 offset -= sg->offset; 134 ctx->partially_sent_offset = offset; 135 ctx->partially_sent_record = (void *)sg; 136 ctx->in_tcp_sendpages = false; 137 return ret; 138 } 139 140 put_page(p); 141 sk_mem_uncharge(sk, sg->length); 142 sg = sg_next(sg); 143 if (!sg) 144 break; 145 146 offset = sg->offset; 147 size = sg->length; 148 } 149 150 ctx->in_tcp_sendpages = false; 151 152 return 0; 153 } 154 155 static int tls_handle_open_record(struct sock *sk, int flags) 156 { 157 struct tls_context *ctx = tls_get_ctx(sk); 158 159 if (tls_is_pending_open_record(ctx)) 160 return ctx->push_pending_record(sk, flags); 161 162 return 0; 163 } 164 165 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 166 unsigned char *record_type) 167 { 168 struct cmsghdr *cmsg; 169 int rc = -EINVAL; 170 171 for_each_cmsghdr(cmsg, msg) { 172 if (!CMSG_OK(msg, cmsg)) 173 return -EINVAL; 174 if (cmsg->cmsg_level != SOL_TLS) 175 continue; 176 177 switch (cmsg->cmsg_type) { 178 case TLS_SET_RECORD_TYPE: 179 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 180 return -EINVAL; 181 182 if (msg->msg_flags & MSG_MORE) 183 return -EINVAL; 184 185 rc = tls_handle_open_record(sk, msg->msg_flags); 186 if (rc) 187 return rc; 188 189 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 190 rc = 0; 191 break; 192 default: 193 return -EINVAL; 194 } 195 } 196 197 return rc; 198 } 199 200 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 201 int flags) 202 { 203 struct scatterlist *sg; 204 u16 offset; 205 206 sg = ctx->partially_sent_record; 207 offset = ctx->partially_sent_offset; 208 209 ctx->partially_sent_record = NULL; 210 return tls_push_sg(sk, ctx, sg, offset, flags); 211 } 212 213 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 214 { 215 struct scatterlist *sg; 216 217 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { 218 put_page(sg_page(sg)); 219 sk_mem_uncharge(sk, sg->length); 220 } 221 ctx->partially_sent_record = NULL; 222 } 223 224 static void tls_write_space(struct sock *sk) 225 { 226 struct tls_context *ctx = tls_get_ctx(sk); 227 228 /* If in_tcp_sendpages call lower protocol write space handler 229 * to ensure we wake up any waiting operations there. For example 230 * if do_tcp_sendpages where to call sk_wait_event. 231 */ 232 if (ctx->in_tcp_sendpages) { 233 ctx->sk_write_space(sk); 234 return; 235 } 236 237 #ifdef CONFIG_TLS_DEVICE 238 if (ctx->tx_conf == TLS_HW) 239 tls_device_write_space(sk, ctx); 240 else 241 #endif 242 tls_sw_write_space(sk, ctx); 243 244 ctx->sk_write_space(sk); 245 } 246 247 /** 248 * tls_ctx_free() - free TLS ULP context 249 * @sk: socket to with @ctx is attached 250 * @ctx: TLS context structure 251 * 252 * Free TLS context. If @sk is %NULL caller guarantees that the socket 253 * to which @ctx was attached has no outstanding references. 254 */ 255 void tls_ctx_free(struct sock *sk, struct tls_context *ctx) 256 { 257 if (!ctx) 258 return; 259 260 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 261 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 262 mutex_destroy(&ctx->tx_lock); 263 264 if (sk) 265 kfree_rcu(ctx, rcu); 266 else 267 kfree(ctx); 268 } 269 270 static void tls_sk_proto_cleanup(struct sock *sk, 271 struct tls_context *ctx, long timeo) 272 { 273 if (unlikely(sk->sk_write_pending) && 274 !wait_on_pending_writer(sk, &timeo)) 275 tls_handle_open_record(sk, 0); 276 277 /* We need these for tls_sw_fallback handling of other packets */ 278 if (ctx->tx_conf == TLS_SW) { 279 kfree(ctx->tx.rec_seq); 280 kfree(ctx->tx.iv); 281 tls_sw_release_resources_tx(sk); 282 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 283 } else if (ctx->tx_conf == TLS_HW) { 284 tls_device_free_resources_tx(sk); 285 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 286 } 287 288 if (ctx->rx_conf == TLS_SW) { 289 tls_sw_release_resources_rx(sk); 290 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 291 } else if (ctx->rx_conf == TLS_HW) { 292 tls_device_offload_cleanup_rx(sk); 293 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 294 } 295 } 296 297 static void tls_sk_proto_close(struct sock *sk, long timeout) 298 { 299 struct inet_connection_sock *icsk = inet_csk(sk); 300 struct tls_context *ctx = tls_get_ctx(sk); 301 long timeo = sock_sndtimeo(sk, 0); 302 bool free_ctx; 303 304 if (ctx->tx_conf == TLS_SW) 305 tls_sw_cancel_work_tx(ctx); 306 307 lock_sock(sk); 308 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 309 310 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 311 tls_sk_proto_cleanup(sk, ctx, timeo); 312 313 write_lock_bh(&sk->sk_callback_lock); 314 if (free_ctx) 315 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 316 WRITE_ONCE(sk->sk_prot, ctx->sk_proto); 317 if (sk->sk_write_space == tls_write_space) 318 sk->sk_write_space = ctx->sk_write_space; 319 write_unlock_bh(&sk->sk_callback_lock); 320 release_sock(sk); 321 if (ctx->tx_conf == TLS_SW) 322 tls_sw_free_ctx_tx(ctx); 323 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 324 tls_sw_strparser_done(ctx); 325 if (ctx->rx_conf == TLS_SW) 326 tls_sw_free_ctx_rx(ctx); 327 ctx->sk_proto->close(sk, timeout); 328 329 if (free_ctx) 330 tls_ctx_free(sk, ctx); 331 } 332 333 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval, 334 int __user *optlen, int tx) 335 { 336 int rc = 0; 337 struct tls_context *ctx = tls_get_ctx(sk); 338 struct tls_crypto_info *crypto_info; 339 struct cipher_context *cctx; 340 int len; 341 342 if (get_user(len, optlen)) 343 return -EFAULT; 344 345 if (!optval || (len < sizeof(*crypto_info))) { 346 rc = -EINVAL; 347 goto out; 348 } 349 350 if (!ctx) { 351 rc = -EBUSY; 352 goto out; 353 } 354 355 /* get user crypto info */ 356 if (tx) { 357 crypto_info = &ctx->crypto_send.info; 358 cctx = &ctx->tx; 359 } else { 360 crypto_info = &ctx->crypto_recv.info; 361 cctx = &ctx->rx; 362 } 363 364 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 365 rc = -EBUSY; 366 goto out; 367 } 368 369 if (len == sizeof(*crypto_info)) { 370 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 371 rc = -EFAULT; 372 goto out; 373 } 374 375 switch (crypto_info->cipher_type) { 376 case TLS_CIPHER_AES_GCM_128: { 377 struct tls12_crypto_info_aes_gcm_128 * 378 crypto_info_aes_gcm_128 = 379 container_of(crypto_info, 380 struct tls12_crypto_info_aes_gcm_128, 381 info); 382 383 if (len != sizeof(*crypto_info_aes_gcm_128)) { 384 rc = -EINVAL; 385 goto out; 386 } 387 lock_sock(sk); 388 memcpy(crypto_info_aes_gcm_128->iv, 389 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 390 TLS_CIPHER_AES_GCM_128_IV_SIZE); 391 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq, 392 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 393 release_sock(sk); 394 if (copy_to_user(optval, 395 crypto_info_aes_gcm_128, 396 sizeof(*crypto_info_aes_gcm_128))) 397 rc = -EFAULT; 398 break; 399 } 400 case TLS_CIPHER_AES_GCM_256: { 401 struct tls12_crypto_info_aes_gcm_256 * 402 crypto_info_aes_gcm_256 = 403 container_of(crypto_info, 404 struct tls12_crypto_info_aes_gcm_256, 405 info); 406 407 if (len != sizeof(*crypto_info_aes_gcm_256)) { 408 rc = -EINVAL; 409 goto out; 410 } 411 lock_sock(sk); 412 memcpy(crypto_info_aes_gcm_256->iv, 413 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 414 TLS_CIPHER_AES_GCM_256_IV_SIZE); 415 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq, 416 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 417 release_sock(sk); 418 if (copy_to_user(optval, 419 crypto_info_aes_gcm_256, 420 sizeof(*crypto_info_aes_gcm_256))) 421 rc = -EFAULT; 422 break; 423 } 424 default: 425 rc = -EINVAL; 426 } 427 428 out: 429 return rc; 430 } 431 432 static int do_tls_getsockopt(struct sock *sk, int optname, 433 char __user *optval, int __user *optlen) 434 { 435 int rc = 0; 436 437 switch (optname) { 438 case TLS_TX: 439 case TLS_RX: 440 rc = do_tls_getsockopt_conf(sk, optval, optlen, 441 optname == TLS_TX); 442 break; 443 default: 444 rc = -ENOPROTOOPT; 445 break; 446 } 447 return rc; 448 } 449 450 static int tls_getsockopt(struct sock *sk, int level, int optname, 451 char __user *optval, int __user *optlen) 452 { 453 struct tls_context *ctx = tls_get_ctx(sk); 454 455 if (level != SOL_TLS) 456 return ctx->sk_proto->getsockopt(sk, level, 457 optname, optval, optlen); 458 459 return do_tls_getsockopt(sk, optname, optval, optlen); 460 } 461 462 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, 463 unsigned int optlen, int tx) 464 { 465 struct tls_crypto_info *crypto_info; 466 struct tls_crypto_info *alt_crypto_info; 467 struct tls_context *ctx = tls_get_ctx(sk); 468 size_t optsize; 469 int rc = 0; 470 int conf; 471 472 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) { 473 rc = -EINVAL; 474 goto out; 475 } 476 477 if (tx) { 478 crypto_info = &ctx->crypto_send.info; 479 alt_crypto_info = &ctx->crypto_recv.info; 480 } else { 481 crypto_info = &ctx->crypto_recv.info; 482 alt_crypto_info = &ctx->crypto_send.info; 483 } 484 485 /* Currently we don't support set crypto info more than one time */ 486 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 487 rc = -EBUSY; 488 goto out; 489 } 490 491 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info)); 492 if (rc) { 493 rc = -EFAULT; 494 goto err_crypto_info; 495 } 496 497 /* check version */ 498 if (crypto_info->version != TLS_1_2_VERSION && 499 crypto_info->version != TLS_1_3_VERSION) { 500 rc = -EINVAL; 501 goto err_crypto_info; 502 } 503 504 /* Ensure that TLS version and ciphers are same in both directions */ 505 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 506 if (alt_crypto_info->version != crypto_info->version || 507 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 508 rc = -EINVAL; 509 goto err_crypto_info; 510 } 511 } 512 513 switch (crypto_info->cipher_type) { 514 case TLS_CIPHER_AES_GCM_128: 515 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 516 break; 517 case TLS_CIPHER_AES_GCM_256: { 518 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 519 break; 520 } 521 case TLS_CIPHER_AES_CCM_128: 522 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 523 break; 524 case TLS_CIPHER_CHACHA20_POLY1305: 525 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305); 526 break; 527 default: 528 rc = -EINVAL; 529 goto err_crypto_info; 530 } 531 532 if (optlen != optsize) { 533 rc = -EINVAL; 534 goto err_crypto_info; 535 } 536 537 rc = copy_from_sockptr_offset(crypto_info + 1, optval, 538 sizeof(*crypto_info), 539 optlen - sizeof(*crypto_info)); 540 if (rc) { 541 rc = -EFAULT; 542 goto err_crypto_info; 543 } 544 545 if (tx) { 546 rc = tls_set_device_offload(sk, ctx); 547 conf = TLS_HW; 548 if (!rc) { 549 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); 550 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 551 } else { 552 rc = tls_set_sw_offload(sk, ctx, 1); 553 if (rc) 554 goto err_crypto_info; 555 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); 556 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 557 conf = TLS_SW; 558 } 559 } else { 560 rc = tls_set_device_offload_rx(sk, ctx); 561 conf = TLS_HW; 562 if (!rc) { 563 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); 564 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 565 } else { 566 rc = tls_set_sw_offload(sk, ctx, 0); 567 if (rc) 568 goto err_crypto_info; 569 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); 570 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 571 conf = TLS_SW; 572 } 573 tls_sw_strparser_arm(sk, ctx); 574 } 575 576 if (tx) 577 ctx->tx_conf = conf; 578 else 579 ctx->rx_conf = conf; 580 update_sk_prot(sk, ctx); 581 if (tx) { 582 ctx->sk_write_space = sk->sk_write_space; 583 sk->sk_write_space = tls_write_space; 584 } else { 585 sk->sk_socket->ops = &tls_sw_proto_ops; 586 } 587 goto out; 588 589 err_crypto_info: 590 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 591 out: 592 return rc; 593 } 594 595 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, 596 unsigned int optlen) 597 { 598 int rc = 0; 599 600 switch (optname) { 601 case TLS_TX: 602 case TLS_RX: 603 lock_sock(sk); 604 rc = do_tls_setsockopt_conf(sk, optval, optlen, 605 optname == TLS_TX); 606 release_sock(sk); 607 break; 608 default: 609 rc = -ENOPROTOOPT; 610 break; 611 } 612 return rc; 613 } 614 615 static int tls_setsockopt(struct sock *sk, int level, int optname, 616 sockptr_t optval, unsigned int optlen) 617 { 618 struct tls_context *ctx = tls_get_ctx(sk); 619 620 if (level != SOL_TLS) 621 return ctx->sk_proto->setsockopt(sk, level, optname, optval, 622 optlen); 623 624 return do_tls_setsockopt(sk, optname, optval, optlen); 625 } 626 627 struct tls_context *tls_ctx_create(struct sock *sk) 628 { 629 struct inet_connection_sock *icsk = inet_csk(sk); 630 struct tls_context *ctx; 631 632 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 633 if (!ctx) 634 return NULL; 635 636 mutex_init(&ctx->tx_lock); 637 rcu_assign_pointer(icsk->icsk_ulp_data, ctx); 638 ctx->sk_proto = READ_ONCE(sk->sk_prot); 639 return ctx; 640 } 641 642 static void tls_build_proto(struct sock *sk) 643 { 644 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 645 struct proto *prot = READ_ONCE(sk->sk_prot); 646 647 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 648 if (ip_ver == TLSV6 && 649 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { 650 mutex_lock(&tcpv6_prot_mutex); 651 if (likely(prot != saved_tcpv6_prot)) { 652 build_protos(tls_prots[TLSV6], prot); 653 smp_store_release(&saved_tcpv6_prot, prot); 654 } 655 mutex_unlock(&tcpv6_prot_mutex); 656 } 657 658 if (ip_ver == TLSV4 && 659 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { 660 mutex_lock(&tcpv4_prot_mutex); 661 if (likely(prot != saved_tcpv4_prot)) { 662 build_protos(tls_prots[TLSV4], prot); 663 smp_store_release(&saved_tcpv4_prot, prot); 664 } 665 mutex_unlock(&tcpv4_prot_mutex); 666 } 667 } 668 669 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 670 const struct proto *base) 671 { 672 prot[TLS_BASE][TLS_BASE] = *base; 673 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 674 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 675 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 676 677 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 678 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 679 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 680 681 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 682 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 683 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read; 684 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 685 686 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 687 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 688 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read; 689 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 690 691 #ifdef CONFIG_TLS_DEVICE 692 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 693 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 694 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 695 696 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 697 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 698 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 699 700 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 701 702 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 703 704 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 705 #endif 706 #ifdef CONFIG_TLS_TOE 707 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 708 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; 709 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; 710 #endif 711 } 712 713 static int tls_init(struct sock *sk) 714 { 715 struct tls_context *ctx; 716 int rc = 0; 717 718 tls_build_proto(sk); 719 720 #ifdef CONFIG_TLS_TOE 721 if (tls_toe_bypass(sk)) 722 return 0; 723 #endif 724 725 /* The TLS ulp is currently supported only for TCP sockets 726 * in ESTABLISHED state. 727 * Supporting sockets in LISTEN state will require us 728 * to modify the accept implementation to clone rather then 729 * share the ulp context. 730 */ 731 if (sk->sk_state != TCP_ESTABLISHED) 732 return -ENOTCONN; 733 734 /* allocate tls context */ 735 write_lock_bh(&sk->sk_callback_lock); 736 ctx = tls_ctx_create(sk); 737 if (!ctx) { 738 rc = -ENOMEM; 739 goto out; 740 } 741 742 ctx->tx_conf = TLS_BASE; 743 ctx->rx_conf = TLS_BASE; 744 update_sk_prot(sk, ctx); 745 out: 746 write_unlock_bh(&sk->sk_callback_lock); 747 return rc; 748 } 749 750 static void tls_update(struct sock *sk, struct proto *p, 751 void (*write_space)(struct sock *sk)) 752 { 753 struct tls_context *ctx; 754 755 ctx = tls_get_ctx(sk); 756 if (likely(ctx)) { 757 ctx->sk_write_space = write_space; 758 ctx->sk_proto = p; 759 } else { 760 /* Pairs with lockless read in sk_clone_lock(). */ 761 WRITE_ONCE(sk->sk_prot, p); 762 sk->sk_write_space = write_space; 763 } 764 } 765 766 static int tls_get_info(const struct sock *sk, struct sk_buff *skb) 767 { 768 u16 version, cipher_type; 769 struct tls_context *ctx; 770 struct nlattr *start; 771 int err; 772 773 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); 774 if (!start) 775 return -EMSGSIZE; 776 777 rcu_read_lock(); 778 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); 779 if (!ctx) { 780 err = 0; 781 goto nla_failure; 782 } 783 version = ctx->prot_info.version; 784 if (version) { 785 err = nla_put_u16(skb, TLS_INFO_VERSION, version); 786 if (err) 787 goto nla_failure; 788 } 789 cipher_type = ctx->prot_info.cipher_type; 790 if (cipher_type) { 791 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); 792 if (err) 793 goto nla_failure; 794 } 795 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); 796 if (err) 797 goto nla_failure; 798 799 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); 800 if (err) 801 goto nla_failure; 802 803 rcu_read_unlock(); 804 nla_nest_end(skb, start); 805 return 0; 806 807 nla_failure: 808 rcu_read_unlock(); 809 nla_nest_cancel(skb, start); 810 return err; 811 } 812 813 static size_t tls_get_info_size(const struct sock *sk) 814 { 815 size_t size = 0; 816 817 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ 818 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ 819 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ 820 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ 821 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 822 0; 823 824 return size; 825 } 826 827 static int __net_init tls_init_net(struct net *net) 828 { 829 int err; 830 831 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); 832 if (!net->mib.tls_statistics) 833 return -ENOMEM; 834 835 err = tls_proc_init(net); 836 if (err) 837 goto err_free_stats; 838 839 return 0; 840 err_free_stats: 841 free_percpu(net->mib.tls_statistics); 842 return err; 843 } 844 845 static void __net_exit tls_exit_net(struct net *net) 846 { 847 tls_proc_fini(net); 848 free_percpu(net->mib.tls_statistics); 849 } 850 851 static struct pernet_operations tls_proc_ops = { 852 .init = tls_init_net, 853 .exit = tls_exit_net, 854 }; 855 856 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 857 .name = "tls", 858 .owner = THIS_MODULE, 859 .init = tls_init, 860 .update = tls_update, 861 .get_info = tls_get_info, 862 .get_info_size = tls_get_info_size, 863 }; 864 865 static int __init tls_register(void) 866 { 867 int err; 868 869 err = register_pernet_subsys(&tls_proc_ops); 870 if (err) 871 return err; 872 873 tls_sw_proto_ops = inet_stream_ops; 874 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 875 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked; 876 877 tls_device_init(); 878 tcp_register_ulp(&tcp_tls_ulp_ops); 879 880 return 0; 881 } 882 883 static void __exit tls_unregister(void) 884 { 885 tcp_unregister_ulp(&tcp_tls_ulp_ops); 886 tls_device_cleanup(); 887 unregister_pernet_subsys(&tls_proc_ops); 888 } 889 890 module_init(tls_register); 891 module_exit(tls_unregister); 892