1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 43 #include <net/tls.h> 44 45 MODULE_AUTHOR("Mellanox Technologies"); 46 MODULE_DESCRIPTION("Transport Layer Security Support"); 47 MODULE_LICENSE("Dual BSD/GPL"); 48 MODULE_ALIAS_TCP_ULP("tls"); 49 50 enum { 51 TLSV4, 52 TLSV6, 53 TLS_NUM_PROTS, 54 }; 55 56 static struct proto *saved_tcpv6_prot; 57 static DEFINE_MUTEX(tcpv6_prot_mutex); 58 static struct proto *saved_tcpv4_prot; 59 static DEFINE_MUTEX(tcpv4_prot_mutex); 60 static LIST_HEAD(device_list); 61 static DEFINE_SPINLOCK(device_spinlock); 62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 63 static struct proto_ops tls_sw_proto_ops; 64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 65 struct proto *base); 66 67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx) 68 { 69 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 70 71 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]; 72 } 73 74 int wait_on_pending_writer(struct sock *sk, long *timeo) 75 { 76 int rc = 0; 77 DEFINE_WAIT_FUNC(wait, woken_wake_function); 78 79 add_wait_queue(sk_sleep(sk), &wait); 80 while (1) { 81 if (!*timeo) { 82 rc = -EAGAIN; 83 break; 84 } 85 86 if (signal_pending(current)) { 87 rc = sock_intr_errno(*timeo); 88 break; 89 } 90 91 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 92 break; 93 } 94 remove_wait_queue(sk_sleep(sk), &wait); 95 return rc; 96 } 97 98 int tls_push_sg(struct sock *sk, 99 struct tls_context *ctx, 100 struct scatterlist *sg, 101 u16 first_offset, 102 int flags) 103 { 104 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 105 int ret = 0; 106 struct page *p; 107 size_t size; 108 int offset = first_offset; 109 110 size = sg->length - offset; 111 offset += sg->offset; 112 113 ctx->in_tcp_sendpages = true; 114 while (1) { 115 if (sg_is_last(sg)) 116 sendpage_flags = flags; 117 118 /* is sending application-limited? */ 119 tcp_rate_check_app_limited(sk); 120 p = sg_page(sg); 121 retry: 122 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 123 124 if (ret != size) { 125 if (ret > 0) { 126 offset += ret; 127 size -= ret; 128 goto retry; 129 } 130 131 offset -= sg->offset; 132 ctx->partially_sent_offset = offset; 133 ctx->partially_sent_record = (void *)sg; 134 ctx->in_tcp_sendpages = false; 135 return ret; 136 } 137 138 put_page(p); 139 sk_mem_uncharge(sk, sg->length); 140 sg = sg_next(sg); 141 if (!sg) 142 break; 143 144 offset = sg->offset; 145 size = sg->length; 146 } 147 148 ctx->in_tcp_sendpages = false; 149 150 return 0; 151 } 152 153 static int tls_handle_open_record(struct sock *sk, int flags) 154 { 155 struct tls_context *ctx = tls_get_ctx(sk); 156 157 if (tls_is_pending_open_record(ctx)) 158 return ctx->push_pending_record(sk, flags); 159 160 return 0; 161 } 162 163 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 164 unsigned char *record_type) 165 { 166 struct cmsghdr *cmsg; 167 int rc = -EINVAL; 168 169 for_each_cmsghdr(cmsg, msg) { 170 if (!CMSG_OK(msg, cmsg)) 171 return -EINVAL; 172 if (cmsg->cmsg_level != SOL_TLS) 173 continue; 174 175 switch (cmsg->cmsg_type) { 176 case TLS_SET_RECORD_TYPE: 177 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 178 return -EINVAL; 179 180 if (msg->msg_flags & MSG_MORE) 181 return -EINVAL; 182 183 rc = tls_handle_open_record(sk, msg->msg_flags); 184 if (rc) 185 return rc; 186 187 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 188 rc = 0; 189 break; 190 default: 191 return -EINVAL; 192 } 193 } 194 195 return rc; 196 } 197 198 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 199 int flags) 200 { 201 struct scatterlist *sg; 202 u16 offset; 203 204 sg = ctx->partially_sent_record; 205 offset = ctx->partially_sent_offset; 206 207 ctx->partially_sent_record = NULL; 208 return tls_push_sg(sk, ctx, sg, offset, flags); 209 } 210 211 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 212 { 213 struct scatterlist *sg; 214 215 sg = ctx->partially_sent_record; 216 if (!sg) 217 return false; 218 219 while (1) { 220 put_page(sg_page(sg)); 221 sk_mem_uncharge(sk, sg->length); 222 223 if (sg_is_last(sg)) 224 break; 225 sg++; 226 } 227 ctx->partially_sent_record = NULL; 228 return true; 229 } 230 231 static void tls_write_space(struct sock *sk) 232 { 233 struct tls_context *ctx = tls_get_ctx(sk); 234 235 /* If in_tcp_sendpages call lower protocol write space handler 236 * to ensure we wake up any waiting operations there. For example 237 * if do_tcp_sendpages where to call sk_wait_event. 238 */ 239 if (ctx->in_tcp_sendpages) { 240 ctx->sk_write_space(sk); 241 return; 242 } 243 244 #ifdef CONFIG_TLS_DEVICE 245 if (ctx->tx_conf == TLS_HW) 246 tls_device_write_space(sk, ctx); 247 else 248 #endif 249 tls_sw_write_space(sk, ctx); 250 251 ctx->sk_write_space(sk); 252 } 253 254 void tls_ctx_free(struct tls_context *ctx) 255 { 256 if (!ctx) 257 return; 258 259 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 260 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 261 kfree(ctx); 262 } 263 264 static void tls_sk_proto_cleanup(struct sock *sk, 265 struct tls_context *ctx, long timeo) 266 { 267 if (unlikely(sk->sk_write_pending) && 268 !wait_on_pending_writer(sk, &timeo)) 269 tls_handle_open_record(sk, 0); 270 271 /* We need these for tls_sw_fallback handling of other packets */ 272 if (ctx->tx_conf == TLS_SW) { 273 kfree(ctx->tx.rec_seq); 274 kfree(ctx->tx.iv); 275 tls_sw_release_resources_tx(sk); 276 #ifdef CONFIG_TLS_DEVICE 277 } else if (ctx->tx_conf == TLS_HW) { 278 tls_device_free_resources_tx(sk); 279 #endif 280 } 281 282 if (ctx->rx_conf == TLS_SW) 283 tls_sw_release_resources_rx(sk); 284 285 #ifdef CONFIG_TLS_DEVICE 286 if (ctx->rx_conf == TLS_HW) 287 tls_device_offload_cleanup_rx(sk); 288 #endif 289 } 290 291 static void tls_sk_proto_close(struct sock *sk, long timeout) 292 { 293 struct inet_connection_sock *icsk = inet_csk(sk); 294 struct tls_context *ctx = tls_get_ctx(sk); 295 long timeo = sock_sndtimeo(sk, 0); 296 bool free_ctx; 297 298 if (ctx->tx_conf == TLS_SW) 299 tls_sw_cancel_work_tx(ctx); 300 301 lock_sock(sk); 302 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 303 304 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 305 tls_sk_proto_cleanup(sk, ctx, timeo); 306 307 write_lock_bh(&sk->sk_callback_lock); 308 if (free_ctx) 309 icsk->icsk_ulp_data = NULL; 310 sk->sk_prot = ctx->sk_proto; 311 write_unlock_bh(&sk->sk_callback_lock); 312 release_sock(sk); 313 if (ctx->tx_conf == TLS_SW) 314 tls_sw_free_ctx_tx(ctx); 315 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 316 tls_sw_strparser_done(ctx); 317 if (ctx->rx_conf == TLS_SW) 318 tls_sw_free_ctx_rx(ctx); 319 ctx->sk_proto_close(sk, timeout); 320 321 if (free_ctx) 322 tls_ctx_free(ctx); 323 } 324 325 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, 326 int __user *optlen) 327 { 328 int rc = 0; 329 struct tls_context *ctx = tls_get_ctx(sk); 330 struct tls_crypto_info *crypto_info; 331 int len; 332 333 if (get_user(len, optlen)) 334 return -EFAULT; 335 336 if (!optval || (len < sizeof(*crypto_info))) { 337 rc = -EINVAL; 338 goto out; 339 } 340 341 if (!ctx) { 342 rc = -EBUSY; 343 goto out; 344 } 345 346 /* get user crypto info */ 347 crypto_info = &ctx->crypto_send.info; 348 349 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 350 rc = -EBUSY; 351 goto out; 352 } 353 354 if (len == sizeof(*crypto_info)) { 355 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 356 rc = -EFAULT; 357 goto out; 358 } 359 360 switch (crypto_info->cipher_type) { 361 case TLS_CIPHER_AES_GCM_128: { 362 struct tls12_crypto_info_aes_gcm_128 * 363 crypto_info_aes_gcm_128 = 364 container_of(crypto_info, 365 struct tls12_crypto_info_aes_gcm_128, 366 info); 367 368 if (len != sizeof(*crypto_info_aes_gcm_128)) { 369 rc = -EINVAL; 370 goto out; 371 } 372 lock_sock(sk); 373 memcpy(crypto_info_aes_gcm_128->iv, 374 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 375 TLS_CIPHER_AES_GCM_128_IV_SIZE); 376 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, 377 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 378 release_sock(sk); 379 if (copy_to_user(optval, 380 crypto_info_aes_gcm_128, 381 sizeof(*crypto_info_aes_gcm_128))) 382 rc = -EFAULT; 383 break; 384 } 385 case TLS_CIPHER_AES_GCM_256: { 386 struct tls12_crypto_info_aes_gcm_256 * 387 crypto_info_aes_gcm_256 = 388 container_of(crypto_info, 389 struct tls12_crypto_info_aes_gcm_256, 390 info); 391 392 if (len != sizeof(*crypto_info_aes_gcm_256)) { 393 rc = -EINVAL; 394 goto out; 395 } 396 lock_sock(sk); 397 memcpy(crypto_info_aes_gcm_256->iv, 398 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 399 TLS_CIPHER_AES_GCM_256_IV_SIZE); 400 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq, 401 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 402 release_sock(sk); 403 if (copy_to_user(optval, 404 crypto_info_aes_gcm_256, 405 sizeof(*crypto_info_aes_gcm_256))) 406 rc = -EFAULT; 407 break; 408 } 409 default: 410 rc = -EINVAL; 411 } 412 413 out: 414 return rc; 415 } 416 417 static int do_tls_getsockopt(struct sock *sk, int optname, 418 char __user *optval, int __user *optlen) 419 { 420 int rc = 0; 421 422 switch (optname) { 423 case TLS_TX: 424 rc = do_tls_getsockopt_tx(sk, optval, optlen); 425 break; 426 default: 427 rc = -ENOPROTOOPT; 428 break; 429 } 430 return rc; 431 } 432 433 static int tls_getsockopt(struct sock *sk, int level, int optname, 434 char __user *optval, int __user *optlen) 435 { 436 struct tls_context *ctx = tls_get_ctx(sk); 437 438 if (level != SOL_TLS) 439 return ctx->getsockopt(sk, level, optname, optval, optlen); 440 441 return do_tls_getsockopt(sk, optname, optval, optlen); 442 } 443 444 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval, 445 unsigned int optlen, int tx) 446 { 447 struct tls_crypto_info *crypto_info; 448 struct tls_crypto_info *alt_crypto_info; 449 struct tls_context *ctx = tls_get_ctx(sk); 450 size_t optsize; 451 int rc = 0; 452 int conf; 453 454 if (!optval || (optlen < sizeof(*crypto_info))) { 455 rc = -EINVAL; 456 goto out; 457 } 458 459 if (tx) { 460 crypto_info = &ctx->crypto_send.info; 461 alt_crypto_info = &ctx->crypto_recv.info; 462 } else { 463 crypto_info = &ctx->crypto_recv.info; 464 alt_crypto_info = &ctx->crypto_send.info; 465 } 466 467 /* Currently we don't support set crypto info more than one time */ 468 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 469 rc = -EBUSY; 470 goto out; 471 } 472 473 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); 474 if (rc) { 475 rc = -EFAULT; 476 goto err_crypto_info; 477 } 478 479 /* check version */ 480 if (crypto_info->version != TLS_1_2_VERSION && 481 crypto_info->version != TLS_1_3_VERSION) { 482 rc = -ENOTSUPP; 483 goto err_crypto_info; 484 } 485 486 /* Ensure that TLS version and ciphers are same in both directions */ 487 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 488 if (alt_crypto_info->version != crypto_info->version || 489 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 490 rc = -EINVAL; 491 goto err_crypto_info; 492 } 493 } 494 495 switch (crypto_info->cipher_type) { 496 case TLS_CIPHER_AES_GCM_128: 497 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 498 break; 499 case TLS_CIPHER_AES_GCM_256: { 500 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 501 break; 502 } 503 case TLS_CIPHER_AES_CCM_128: 504 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 505 break; 506 default: 507 rc = -EINVAL; 508 goto err_crypto_info; 509 } 510 511 if (optlen != optsize) { 512 rc = -EINVAL; 513 goto err_crypto_info; 514 } 515 516 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), 517 optlen - sizeof(*crypto_info)); 518 if (rc) { 519 rc = -EFAULT; 520 goto err_crypto_info; 521 } 522 523 if (tx) { 524 #ifdef CONFIG_TLS_DEVICE 525 rc = tls_set_device_offload(sk, ctx); 526 conf = TLS_HW; 527 if (rc) { 528 #else 529 { 530 #endif 531 rc = tls_set_sw_offload(sk, ctx, 1); 532 if (rc) 533 goto err_crypto_info; 534 conf = TLS_SW; 535 } 536 } else { 537 #ifdef CONFIG_TLS_DEVICE 538 rc = tls_set_device_offload_rx(sk, ctx); 539 conf = TLS_HW; 540 if (rc) { 541 #else 542 { 543 #endif 544 rc = tls_set_sw_offload(sk, ctx, 0); 545 if (rc) 546 goto err_crypto_info; 547 conf = TLS_SW; 548 } 549 tls_sw_strparser_arm(sk, ctx); 550 } 551 552 if (tx) 553 ctx->tx_conf = conf; 554 else 555 ctx->rx_conf = conf; 556 update_sk_prot(sk, ctx); 557 if (tx) { 558 ctx->sk_write_space = sk->sk_write_space; 559 sk->sk_write_space = tls_write_space; 560 } else { 561 sk->sk_socket->ops = &tls_sw_proto_ops; 562 } 563 goto out; 564 565 err_crypto_info: 566 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 567 out: 568 return rc; 569 } 570 571 static int do_tls_setsockopt(struct sock *sk, int optname, 572 char __user *optval, unsigned int optlen) 573 { 574 int rc = 0; 575 576 switch (optname) { 577 case TLS_TX: 578 case TLS_RX: 579 lock_sock(sk); 580 rc = do_tls_setsockopt_conf(sk, optval, optlen, 581 optname == TLS_TX); 582 release_sock(sk); 583 break; 584 default: 585 rc = -ENOPROTOOPT; 586 break; 587 } 588 return rc; 589 } 590 591 static int tls_setsockopt(struct sock *sk, int level, int optname, 592 char __user *optval, unsigned int optlen) 593 { 594 struct tls_context *ctx = tls_get_ctx(sk); 595 596 if (level != SOL_TLS) 597 return ctx->setsockopt(sk, level, optname, optval, optlen); 598 599 return do_tls_setsockopt(sk, optname, optval, optlen); 600 } 601 602 static struct tls_context *create_ctx(struct sock *sk) 603 { 604 struct inet_connection_sock *icsk = inet_csk(sk); 605 struct tls_context *ctx; 606 607 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 608 if (!ctx) 609 return NULL; 610 611 icsk->icsk_ulp_data = ctx; 612 ctx->setsockopt = sk->sk_prot->setsockopt; 613 ctx->getsockopt = sk->sk_prot->getsockopt; 614 ctx->sk_proto_close = sk->sk_prot->close; 615 ctx->unhash = sk->sk_prot->unhash; 616 return ctx; 617 } 618 619 static void tls_build_proto(struct sock *sk) 620 { 621 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 622 623 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 624 if (ip_ver == TLSV6 && 625 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { 626 mutex_lock(&tcpv6_prot_mutex); 627 if (likely(sk->sk_prot != saved_tcpv6_prot)) { 628 build_protos(tls_prots[TLSV6], sk->sk_prot); 629 smp_store_release(&saved_tcpv6_prot, sk->sk_prot); 630 } 631 mutex_unlock(&tcpv6_prot_mutex); 632 } 633 634 if (ip_ver == TLSV4 && 635 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) { 636 mutex_lock(&tcpv4_prot_mutex); 637 if (likely(sk->sk_prot != saved_tcpv4_prot)) { 638 build_protos(tls_prots[TLSV4], sk->sk_prot); 639 smp_store_release(&saved_tcpv4_prot, sk->sk_prot); 640 } 641 mutex_unlock(&tcpv4_prot_mutex); 642 } 643 } 644 645 static void tls_hw_sk_destruct(struct sock *sk) 646 { 647 struct tls_context *ctx = tls_get_ctx(sk); 648 struct inet_connection_sock *icsk = inet_csk(sk); 649 650 ctx->sk_destruct(sk); 651 /* Free ctx */ 652 tls_ctx_free(ctx); 653 icsk->icsk_ulp_data = NULL; 654 } 655 656 static int tls_hw_prot(struct sock *sk) 657 { 658 struct tls_context *ctx; 659 struct tls_device *dev; 660 int rc = 0; 661 662 spin_lock_bh(&device_spinlock); 663 list_for_each_entry(dev, &device_list, dev_list) { 664 if (dev->feature && dev->feature(dev)) { 665 ctx = create_ctx(sk); 666 if (!ctx) 667 goto out; 668 669 spin_unlock_bh(&device_spinlock); 670 tls_build_proto(sk); 671 ctx->hash = sk->sk_prot->hash; 672 ctx->unhash = sk->sk_prot->unhash; 673 ctx->sk_proto_close = sk->sk_prot->close; 674 ctx->sk_destruct = sk->sk_destruct; 675 sk->sk_destruct = tls_hw_sk_destruct; 676 ctx->rx_conf = TLS_HW_RECORD; 677 ctx->tx_conf = TLS_HW_RECORD; 678 update_sk_prot(sk, ctx); 679 spin_lock_bh(&device_spinlock); 680 rc = 1; 681 break; 682 } 683 } 684 out: 685 spin_unlock_bh(&device_spinlock); 686 return rc; 687 } 688 689 static void tls_hw_unhash(struct sock *sk) 690 { 691 struct tls_context *ctx = tls_get_ctx(sk); 692 struct tls_device *dev; 693 694 spin_lock_bh(&device_spinlock); 695 list_for_each_entry(dev, &device_list, dev_list) { 696 if (dev->unhash) { 697 kref_get(&dev->kref); 698 spin_unlock_bh(&device_spinlock); 699 dev->unhash(dev, sk); 700 kref_put(&dev->kref, dev->release); 701 spin_lock_bh(&device_spinlock); 702 } 703 } 704 spin_unlock_bh(&device_spinlock); 705 ctx->unhash(sk); 706 } 707 708 static int tls_hw_hash(struct sock *sk) 709 { 710 struct tls_context *ctx = tls_get_ctx(sk); 711 struct tls_device *dev; 712 int err; 713 714 err = ctx->hash(sk); 715 spin_lock_bh(&device_spinlock); 716 list_for_each_entry(dev, &device_list, dev_list) { 717 if (dev->hash) { 718 kref_get(&dev->kref); 719 spin_unlock_bh(&device_spinlock); 720 err |= dev->hash(dev, sk); 721 kref_put(&dev->kref, dev->release); 722 spin_lock_bh(&device_spinlock); 723 } 724 } 725 spin_unlock_bh(&device_spinlock); 726 727 if (err) 728 tls_hw_unhash(sk); 729 return err; 730 } 731 732 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 733 struct proto *base) 734 { 735 prot[TLS_BASE][TLS_BASE] = *base; 736 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 737 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 738 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 739 740 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 741 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 742 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 743 744 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 745 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 746 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read; 747 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 748 749 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 750 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 751 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read; 752 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 753 754 #ifdef CONFIG_TLS_DEVICE 755 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 756 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 757 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 758 759 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 760 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 761 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 762 763 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 764 765 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 766 767 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 768 #endif 769 770 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 771 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash; 772 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash; 773 } 774 775 static int tls_init(struct sock *sk) 776 { 777 struct tls_context *ctx; 778 int rc = 0; 779 780 if (tls_hw_prot(sk)) 781 return 0; 782 783 /* The TLS ulp is currently supported only for TCP sockets 784 * in ESTABLISHED state. 785 * Supporting sockets in LISTEN state will require us 786 * to modify the accept implementation to clone rather then 787 * share the ulp context. 788 */ 789 if (sk->sk_state != TCP_ESTABLISHED) 790 return -ENOTSUPP; 791 792 tls_build_proto(sk); 793 794 /* allocate tls context */ 795 write_lock_bh(&sk->sk_callback_lock); 796 ctx = create_ctx(sk); 797 if (!ctx) { 798 rc = -ENOMEM; 799 goto out; 800 } 801 802 ctx->tx_conf = TLS_BASE; 803 ctx->rx_conf = TLS_BASE; 804 ctx->sk_proto = sk->sk_prot; 805 update_sk_prot(sk, ctx); 806 out: 807 write_unlock_bh(&sk->sk_callback_lock); 808 return rc; 809 } 810 811 static void tls_update(struct sock *sk, struct proto *p) 812 { 813 struct tls_context *ctx; 814 815 ctx = tls_get_ctx(sk); 816 if (likely(ctx)) { 817 ctx->sk_proto_close = p->close; 818 ctx->sk_proto = p; 819 } else { 820 sk->sk_prot = p; 821 } 822 } 823 824 void tls_register_device(struct tls_device *device) 825 { 826 spin_lock_bh(&device_spinlock); 827 list_add_tail(&device->dev_list, &device_list); 828 spin_unlock_bh(&device_spinlock); 829 } 830 EXPORT_SYMBOL(tls_register_device); 831 832 void tls_unregister_device(struct tls_device *device) 833 { 834 spin_lock_bh(&device_spinlock); 835 list_del(&device->dev_list); 836 spin_unlock_bh(&device_spinlock); 837 } 838 EXPORT_SYMBOL(tls_unregister_device); 839 840 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 841 .name = "tls", 842 .owner = THIS_MODULE, 843 .init = tls_init, 844 .update = tls_update, 845 }; 846 847 static int __init tls_register(void) 848 { 849 tls_sw_proto_ops = inet_stream_ops; 850 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 851 852 #ifdef CONFIG_TLS_DEVICE 853 tls_device_init(); 854 #endif 855 tcp_register_ulp(&tcp_tls_ulp_ops); 856 857 return 0; 858 } 859 860 static void __exit tls_unregister(void) 861 { 862 tcp_unregister_ulp(&tcp_tls_ulp_ops); 863 #ifdef CONFIG_TLS_DEVICE 864 tls_device_cleanup(); 865 #endif 866 } 867 868 module_init(tls_register); 869 module_exit(tls_unregister); 870