xref: /openbmc/linux/net/tls/tls_main.c (revision cce8ccca)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 
43 #include <net/tls.h>
44 
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49 
50 enum {
51 	TLSV4,
52 	TLSV6,
53 	TLS_NUM_PROTS,
54 };
55 
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_SPINLOCK(device_spinlock);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
65 			 struct proto *base);
66 
67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
68 {
69 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
70 
71 	sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
72 }
73 
74 int wait_on_pending_writer(struct sock *sk, long *timeo)
75 {
76 	int rc = 0;
77 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
78 
79 	add_wait_queue(sk_sleep(sk), &wait);
80 	while (1) {
81 		if (!*timeo) {
82 			rc = -EAGAIN;
83 			break;
84 		}
85 
86 		if (signal_pending(current)) {
87 			rc = sock_intr_errno(*timeo);
88 			break;
89 		}
90 
91 		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
92 			break;
93 	}
94 	remove_wait_queue(sk_sleep(sk), &wait);
95 	return rc;
96 }
97 
98 int tls_push_sg(struct sock *sk,
99 		struct tls_context *ctx,
100 		struct scatterlist *sg,
101 		u16 first_offset,
102 		int flags)
103 {
104 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
105 	int ret = 0;
106 	struct page *p;
107 	size_t size;
108 	int offset = first_offset;
109 
110 	size = sg->length - offset;
111 	offset += sg->offset;
112 
113 	ctx->in_tcp_sendpages = true;
114 	while (1) {
115 		if (sg_is_last(sg))
116 			sendpage_flags = flags;
117 
118 		/* is sending application-limited? */
119 		tcp_rate_check_app_limited(sk);
120 		p = sg_page(sg);
121 retry:
122 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
123 
124 		if (ret != size) {
125 			if (ret > 0) {
126 				offset += ret;
127 				size -= ret;
128 				goto retry;
129 			}
130 
131 			offset -= sg->offset;
132 			ctx->partially_sent_offset = offset;
133 			ctx->partially_sent_record = (void *)sg;
134 			ctx->in_tcp_sendpages = false;
135 			return ret;
136 		}
137 
138 		put_page(p);
139 		sk_mem_uncharge(sk, sg->length);
140 		sg = sg_next(sg);
141 		if (!sg)
142 			break;
143 
144 		offset = sg->offset;
145 		size = sg->length;
146 	}
147 
148 	ctx->in_tcp_sendpages = false;
149 
150 	return 0;
151 }
152 
153 static int tls_handle_open_record(struct sock *sk, int flags)
154 {
155 	struct tls_context *ctx = tls_get_ctx(sk);
156 
157 	if (tls_is_pending_open_record(ctx))
158 		return ctx->push_pending_record(sk, flags);
159 
160 	return 0;
161 }
162 
163 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
164 		      unsigned char *record_type)
165 {
166 	struct cmsghdr *cmsg;
167 	int rc = -EINVAL;
168 
169 	for_each_cmsghdr(cmsg, msg) {
170 		if (!CMSG_OK(msg, cmsg))
171 			return -EINVAL;
172 		if (cmsg->cmsg_level != SOL_TLS)
173 			continue;
174 
175 		switch (cmsg->cmsg_type) {
176 		case TLS_SET_RECORD_TYPE:
177 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
178 				return -EINVAL;
179 
180 			if (msg->msg_flags & MSG_MORE)
181 				return -EINVAL;
182 
183 			rc = tls_handle_open_record(sk, msg->msg_flags);
184 			if (rc)
185 				return rc;
186 
187 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
188 			rc = 0;
189 			break;
190 		default:
191 			return -EINVAL;
192 		}
193 	}
194 
195 	return rc;
196 }
197 
198 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
199 			    int flags)
200 {
201 	struct scatterlist *sg;
202 	u16 offset;
203 
204 	sg = ctx->partially_sent_record;
205 	offset = ctx->partially_sent_offset;
206 
207 	ctx->partially_sent_record = NULL;
208 	return tls_push_sg(sk, ctx, sg, offset, flags);
209 }
210 
211 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
212 {
213 	struct scatterlist *sg;
214 
215 	sg = ctx->partially_sent_record;
216 	if (!sg)
217 		return false;
218 
219 	while (1) {
220 		put_page(sg_page(sg));
221 		sk_mem_uncharge(sk, sg->length);
222 
223 		if (sg_is_last(sg))
224 			break;
225 		sg++;
226 	}
227 	ctx->partially_sent_record = NULL;
228 	return true;
229 }
230 
231 static void tls_write_space(struct sock *sk)
232 {
233 	struct tls_context *ctx = tls_get_ctx(sk);
234 
235 	/* If in_tcp_sendpages call lower protocol write space handler
236 	 * to ensure we wake up any waiting operations there. For example
237 	 * if do_tcp_sendpages where to call sk_wait_event.
238 	 */
239 	if (ctx->in_tcp_sendpages) {
240 		ctx->sk_write_space(sk);
241 		return;
242 	}
243 
244 #ifdef CONFIG_TLS_DEVICE
245 	if (ctx->tx_conf == TLS_HW)
246 		tls_device_write_space(sk, ctx);
247 	else
248 #endif
249 		tls_sw_write_space(sk, ctx);
250 
251 	ctx->sk_write_space(sk);
252 }
253 
254 void tls_ctx_free(struct tls_context *ctx)
255 {
256 	if (!ctx)
257 		return;
258 
259 	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
260 	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
261 	kfree(ctx);
262 }
263 
264 static void tls_sk_proto_cleanup(struct sock *sk,
265 				 struct tls_context *ctx, long timeo)
266 {
267 	if (unlikely(sk->sk_write_pending) &&
268 	    !wait_on_pending_writer(sk, &timeo))
269 		tls_handle_open_record(sk, 0);
270 
271 	/* We need these for tls_sw_fallback handling of other packets */
272 	if (ctx->tx_conf == TLS_SW) {
273 		kfree(ctx->tx.rec_seq);
274 		kfree(ctx->tx.iv);
275 		tls_sw_release_resources_tx(sk);
276 #ifdef CONFIG_TLS_DEVICE
277 	} else if (ctx->tx_conf == TLS_HW) {
278 		tls_device_free_resources_tx(sk);
279 #endif
280 	}
281 
282 	if (ctx->rx_conf == TLS_SW)
283 		tls_sw_release_resources_rx(sk);
284 
285 #ifdef CONFIG_TLS_DEVICE
286 	if (ctx->rx_conf == TLS_HW)
287 		tls_device_offload_cleanup_rx(sk);
288 #endif
289 }
290 
291 static void tls_sk_proto_close(struct sock *sk, long timeout)
292 {
293 	struct inet_connection_sock *icsk = inet_csk(sk);
294 	struct tls_context *ctx = tls_get_ctx(sk);
295 	long timeo = sock_sndtimeo(sk, 0);
296 	bool free_ctx;
297 
298 	if (ctx->tx_conf == TLS_SW)
299 		tls_sw_cancel_work_tx(ctx);
300 
301 	lock_sock(sk);
302 	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
303 
304 	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
305 		tls_sk_proto_cleanup(sk, ctx, timeo);
306 
307 	write_lock_bh(&sk->sk_callback_lock);
308 	if (free_ctx)
309 		icsk->icsk_ulp_data = NULL;
310 	sk->sk_prot = ctx->sk_proto;
311 	write_unlock_bh(&sk->sk_callback_lock);
312 	release_sock(sk);
313 	if (ctx->tx_conf == TLS_SW)
314 		tls_sw_free_ctx_tx(ctx);
315 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
316 		tls_sw_strparser_done(ctx);
317 	if (ctx->rx_conf == TLS_SW)
318 		tls_sw_free_ctx_rx(ctx);
319 	ctx->sk_proto_close(sk, timeout);
320 
321 	if (free_ctx)
322 		tls_ctx_free(ctx);
323 }
324 
325 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
326 				int __user *optlen)
327 {
328 	int rc = 0;
329 	struct tls_context *ctx = tls_get_ctx(sk);
330 	struct tls_crypto_info *crypto_info;
331 	int len;
332 
333 	if (get_user(len, optlen))
334 		return -EFAULT;
335 
336 	if (!optval || (len < sizeof(*crypto_info))) {
337 		rc = -EINVAL;
338 		goto out;
339 	}
340 
341 	if (!ctx) {
342 		rc = -EBUSY;
343 		goto out;
344 	}
345 
346 	/* get user crypto info */
347 	crypto_info = &ctx->crypto_send.info;
348 
349 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
350 		rc = -EBUSY;
351 		goto out;
352 	}
353 
354 	if (len == sizeof(*crypto_info)) {
355 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
356 			rc = -EFAULT;
357 		goto out;
358 	}
359 
360 	switch (crypto_info->cipher_type) {
361 	case TLS_CIPHER_AES_GCM_128: {
362 		struct tls12_crypto_info_aes_gcm_128 *
363 		  crypto_info_aes_gcm_128 =
364 		  container_of(crypto_info,
365 			       struct tls12_crypto_info_aes_gcm_128,
366 			       info);
367 
368 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
369 			rc = -EINVAL;
370 			goto out;
371 		}
372 		lock_sock(sk);
373 		memcpy(crypto_info_aes_gcm_128->iv,
374 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
375 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
376 		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
377 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
378 		release_sock(sk);
379 		if (copy_to_user(optval,
380 				 crypto_info_aes_gcm_128,
381 				 sizeof(*crypto_info_aes_gcm_128)))
382 			rc = -EFAULT;
383 		break;
384 	}
385 	case TLS_CIPHER_AES_GCM_256: {
386 		struct tls12_crypto_info_aes_gcm_256 *
387 		  crypto_info_aes_gcm_256 =
388 		  container_of(crypto_info,
389 			       struct tls12_crypto_info_aes_gcm_256,
390 			       info);
391 
392 		if (len != sizeof(*crypto_info_aes_gcm_256)) {
393 			rc = -EINVAL;
394 			goto out;
395 		}
396 		lock_sock(sk);
397 		memcpy(crypto_info_aes_gcm_256->iv,
398 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
399 		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
400 		memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
401 		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
402 		release_sock(sk);
403 		if (copy_to_user(optval,
404 				 crypto_info_aes_gcm_256,
405 				 sizeof(*crypto_info_aes_gcm_256)))
406 			rc = -EFAULT;
407 		break;
408 	}
409 	default:
410 		rc = -EINVAL;
411 	}
412 
413 out:
414 	return rc;
415 }
416 
417 static int do_tls_getsockopt(struct sock *sk, int optname,
418 			     char __user *optval, int __user *optlen)
419 {
420 	int rc = 0;
421 
422 	switch (optname) {
423 	case TLS_TX:
424 		rc = do_tls_getsockopt_tx(sk, optval, optlen);
425 		break;
426 	default:
427 		rc = -ENOPROTOOPT;
428 		break;
429 	}
430 	return rc;
431 }
432 
433 static int tls_getsockopt(struct sock *sk, int level, int optname,
434 			  char __user *optval, int __user *optlen)
435 {
436 	struct tls_context *ctx = tls_get_ctx(sk);
437 
438 	if (level != SOL_TLS)
439 		return ctx->getsockopt(sk, level, optname, optval, optlen);
440 
441 	return do_tls_getsockopt(sk, optname, optval, optlen);
442 }
443 
444 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
445 				  unsigned int optlen, int tx)
446 {
447 	struct tls_crypto_info *crypto_info;
448 	struct tls_crypto_info *alt_crypto_info;
449 	struct tls_context *ctx = tls_get_ctx(sk);
450 	size_t optsize;
451 	int rc = 0;
452 	int conf;
453 
454 	if (!optval || (optlen < sizeof(*crypto_info))) {
455 		rc = -EINVAL;
456 		goto out;
457 	}
458 
459 	if (tx) {
460 		crypto_info = &ctx->crypto_send.info;
461 		alt_crypto_info = &ctx->crypto_recv.info;
462 	} else {
463 		crypto_info = &ctx->crypto_recv.info;
464 		alt_crypto_info = &ctx->crypto_send.info;
465 	}
466 
467 	/* Currently we don't support set crypto info more than one time */
468 	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
469 		rc = -EBUSY;
470 		goto out;
471 	}
472 
473 	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
474 	if (rc) {
475 		rc = -EFAULT;
476 		goto err_crypto_info;
477 	}
478 
479 	/* check version */
480 	if (crypto_info->version != TLS_1_2_VERSION &&
481 	    crypto_info->version != TLS_1_3_VERSION) {
482 		rc = -ENOTSUPP;
483 		goto err_crypto_info;
484 	}
485 
486 	/* Ensure that TLS version and ciphers are same in both directions */
487 	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
488 		if (alt_crypto_info->version != crypto_info->version ||
489 		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
490 			rc = -EINVAL;
491 			goto err_crypto_info;
492 		}
493 	}
494 
495 	switch (crypto_info->cipher_type) {
496 	case TLS_CIPHER_AES_GCM_128:
497 		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
498 		break;
499 	case TLS_CIPHER_AES_GCM_256: {
500 		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
501 		break;
502 	}
503 	case TLS_CIPHER_AES_CCM_128:
504 		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
505 		break;
506 	default:
507 		rc = -EINVAL;
508 		goto err_crypto_info;
509 	}
510 
511 	if (optlen != optsize) {
512 		rc = -EINVAL;
513 		goto err_crypto_info;
514 	}
515 
516 	rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
517 			    optlen - sizeof(*crypto_info));
518 	if (rc) {
519 		rc = -EFAULT;
520 		goto err_crypto_info;
521 	}
522 
523 	if (tx) {
524 #ifdef CONFIG_TLS_DEVICE
525 		rc = tls_set_device_offload(sk, ctx);
526 		conf = TLS_HW;
527 		if (rc) {
528 #else
529 		{
530 #endif
531 			rc = tls_set_sw_offload(sk, ctx, 1);
532 			if (rc)
533 				goto err_crypto_info;
534 			conf = TLS_SW;
535 		}
536 	} else {
537 #ifdef CONFIG_TLS_DEVICE
538 		rc = tls_set_device_offload_rx(sk, ctx);
539 		conf = TLS_HW;
540 		if (rc) {
541 #else
542 		{
543 #endif
544 			rc = tls_set_sw_offload(sk, ctx, 0);
545 			if (rc)
546 				goto err_crypto_info;
547 			conf = TLS_SW;
548 		}
549 		tls_sw_strparser_arm(sk, ctx);
550 	}
551 
552 	if (tx)
553 		ctx->tx_conf = conf;
554 	else
555 		ctx->rx_conf = conf;
556 	update_sk_prot(sk, ctx);
557 	if (tx) {
558 		ctx->sk_write_space = sk->sk_write_space;
559 		sk->sk_write_space = tls_write_space;
560 	} else {
561 		sk->sk_socket->ops = &tls_sw_proto_ops;
562 	}
563 	goto out;
564 
565 err_crypto_info:
566 	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
567 out:
568 	return rc;
569 }
570 
571 static int do_tls_setsockopt(struct sock *sk, int optname,
572 			     char __user *optval, unsigned int optlen)
573 {
574 	int rc = 0;
575 
576 	switch (optname) {
577 	case TLS_TX:
578 	case TLS_RX:
579 		lock_sock(sk);
580 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
581 					    optname == TLS_TX);
582 		release_sock(sk);
583 		break;
584 	default:
585 		rc = -ENOPROTOOPT;
586 		break;
587 	}
588 	return rc;
589 }
590 
591 static int tls_setsockopt(struct sock *sk, int level, int optname,
592 			  char __user *optval, unsigned int optlen)
593 {
594 	struct tls_context *ctx = tls_get_ctx(sk);
595 
596 	if (level != SOL_TLS)
597 		return ctx->setsockopt(sk, level, optname, optval, optlen);
598 
599 	return do_tls_setsockopt(sk, optname, optval, optlen);
600 }
601 
602 static struct tls_context *create_ctx(struct sock *sk)
603 {
604 	struct inet_connection_sock *icsk = inet_csk(sk);
605 	struct tls_context *ctx;
606 
607 	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
608 	if (!ctx)
609 		return NULL;
610 
611 	icsk->icsk_ulp_data = ctx;
612 	ctx->setsockopt = sk->sk_prot->setsockopt;
613 	ctx->getsockopt = sk->sk_prot->getsockopt;
614 	ctx->sk_proto_close = sk->sk_prot->close;
615 	ctx->unhash = sk->sk_prot->unhash;
616 	return ctx;
617 }
618 
619 static void tls_build_proto(struct sock *sk)
620 {
621 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
622 
623 	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
624 	if (ip_ver == TLSV6 &&
625 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
626 		mutex_lock(&tcpv6_prot_mutex);
627 		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
628 			build_protos(tls_prots[TLSV6], sk->sk_prot);
629 			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
630 		}
631 		mutex_unlock(&tcpv6_prot_mutex);
632 	}
633 
634 	if (ip_ver == TLSV4 &&
635 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
636 		mutex_lock(&tcpv4_prot_mutex);
637 		if (likely(sk->sk_prot != saved_tcpv4_prot)) {
638 			build_protos(tls_prots[TLSV4], sk->sk_prot);
639 			smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
640 		}
641 		mutex_unlock(&tcpv4_prot_mutex);
642 	}
643 }
644 
645 static void tls_hw_sk_destruct(struct sock *sk)
646 {
647 	struct tls_context *ctx = tls_get_ctx(sk);
648 	struct inet_connection_sock *icsk = inet_csk(sk);
649 
650 	ctx->sk_destruct(sk);
651 	/* Free ctx */
652 	tls_ctx_free(ctx);
653 	icsk->icsk_ulp_data = NULL;
654 }
655 
656 static int tls_hw_prot(struct sock *sk)
657 {
658 	struct tls_context *ctx;
659 	struct tls_device *dev;
660 	int rc = 0;
661 
662 	spin_lock_bh(&device_spinlock);
663 	list_for_each_entry(dev, &device_list, dev_list) {
664 		if (dev->feature && dev->feature(dev)) {
665 			ctx = create_ctx(sk);
666 			if (!ctx)
667 				goto out;
668 
669 			spin_unlock_bh(&device_spinlock);
670 			tls_build_proto(sk);
671 			ctx->hash = sk->sk_prot->hash;
672 			ctx->unhash = sk->sk_prot->unhash;
673 			ctx->sk_proto_close = sk->sk_prot->close;
674 			ctx->sk_destruct = sk->sk_destruct;
675 			sk->sk_destruct = tls_hw_sk_destruct;
676 			ctx->rx_conf = TLS_HW_RECORD;
677 			ctx->tx_conf = TLS_HW_RECORD;
678 			update_sk_prot(sk, ctx);
679 			spin_lock_bh(&device_spinlock);
680 			rc = 1;
681 			break;
682 		}
683 	}
684 out:
685 	spin_unlock_bh(&device_spinlock);
686 	return rc;
687 }
688 
689 static void tls_hw_unhash(struct sock *sk)
690 {
691 	struct tls_context *ctx = tls_get_ctx(sk);
692 	struct tls_device *dev;
693 
694 	spin_lock_bh(&device_spinlock);
695 	list_for_each_entry(dev, &device_list, dev_list) {
696 		if (dev->unhash) {
697 			kref_get(&dev->kref);
698 			spin_unlock_bh(&device_spinlock);
699 			dev->unhash(dev, sk);
700 			kref_put(&dev->kref, dev->release);
701 			spin_lock_bh(&device_spinlock);
702 		}
703 	}
704 	spin_unlock_bh(&device_spinlock);
705 	ctx->unhash(sk);
706 }
707 
708 static int tls_hw_hash(struct sock *sk)
709 {
710 	struct tls_context *ctx = tls_get_ctx(sk);
711 	struct tls_device *dev;
712 	int err;
713 
714 	err = ctx->hash(sk);
715 	spin_lock_bh(&device_spinlock);
716 	list_for_each_entry(dev, &device_list, dev_list) {
717 		if (dev->hash) {
718 			kref_get(&dev->kref);
719 			spin_unlock_bh(&device_spinlock);
720 			err |= dev->hash(dev, sk);
721 			kref_put(&dev->kref, dev->release);
722 			spin_lock_bh(&device_spinlock);
723 		}
724 	}
725 	spin_unlock_bh(&device_spinlock);
726 
727 	if (err)
728 		tls_hw_unhash(sk);
729 	return err;
730 }
731 
732 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
733 			 struct proto *base)
734 {
735 	prot[TLS_BASE][TLS_BASE] = *base;
736 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
737 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
738 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
739 
740 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
741 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
742 	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
743 
744 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
745 	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
746 	prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
747 	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
748 
749 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
750 	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
751 	prot[TLS_SW][TLS_SW].stream_memory_read	= tls_sw_stream_read;
752 	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
753 
754 #ifdef CONFIG_TLS_DEVICE
755 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
756 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
757 	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
758 
759 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
760 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
761 	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
762 
763 	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
764 
765 	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
766 
767 	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
768 #endif
769 
770 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
771 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_hw_hash;
772 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_hw_unhash;
773 }
774 
775 static int tls_init(struct sock *sk)
776 {
777 	struct tls_context *ctx;
778 	int rc = 0;
779 
780 	if (tls_hw_prot(sk))
781 		return 0;
782 
783 	/* The TLS ulp is currently supported only for TCP sockets
784 	 * in ESTABLISHED state.
785 	 * Supporting sockets in LISTEN state will require us
786 	 * to modify the accept implementation to clone rather then
787 	 * share the ulp context.
788 	 */
789 	if (sk->sk_state != TCP_ESTABLISHED)
790 		return -ENOTSUPP;
791 
792 	tls_build_proto(sk);
793 
794 	/* allocate tls context */
795 	write_lock_bh(&sk->sk_callback_lock);
796 	ctx = create_ctx(sk);
797 	if (!ctx) {
798 		rc = -ENOMEM;
799 		goto out;
800 	}
801 
802 	ctx->tx_conf = TLS_BASE;
803 	ctx->rx_conf = TLS_BASE;
804 	ctx->sk_proto = sk->sk_prot;
805 	update_sk_prot(sk, ctx);
806 out:
807 	write_unlock_bh(&sk->sk_callback_lock);
808 	return rc;
809 }
810 
811 static void tls_update(struct sock *sk, struct proto *p)
812 {
813 	struct tls_context *ctx;
814 
815 	ctx = tls_get_ctx(sk);
816 	if (likely(ctx)) {
817 		ctx->sk_proto_close = p->close;
818 		ctx->sk_proto = p;
819 	} else {
820 		sk->sk_prot = p;
821 	}
822 }
823 
824 void tls_register_device(struct tls_device *device)
825 {
826 	spin_lock_bh(&device_spinlock);
827 	list_add_tail(&device->dev_list, &device_list);
828 	spin_unlock_bh(&device_spinlock);
829 }
830 EXPORT_SYMBOL(tls_register_device);
831 
832 void tls_unregister_device(struct tls_device *device)
833 {
834 	spin_lock_bh(&device_spinlock);
835 	list_del(&device->dev_list);
836 	spin_unlock_bh(&device_spinlock);
837 }
838 EXPORT_SYMBOL(tls_unregister_device);
839 
840 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
841 	.name			= "tls",
842 	.owner			= THIS_MODULE,
843 	.init			= tls_init,
844 	.update			= tls_update,
845 };
846 
847 static int __init tls_register(void)
848 {
849 	tls_sw_proto_ops = inet_stream_ops;
850 	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
851 
852 #ifdef CONFIG_TLS_DEVICE
853 	tls_device_init();
854 #endif
855 	tcp_register_ulp(&tcp_tls_ulp_ops);
856 
857 	return 0;
858 }
859 
860 static void __exit tls_unregister(void)
861 {
862 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
863 #ifdef CONFIG_TLS_DEVICE
864 	tls_device_cleanup();
865 #endif
866 }
867 
868 module_init(tls_register);
869 module_exit(tls_unregister);
870