1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 #include <linux/inet_diag.h> 43 44 #include <net/snmp.h> 45 #include <net/tls.h> 46 #include <net/tls_toe.h> 47 48 MODULE_AUTHOR("Mellanox Technologies"); 49 MODULE_DESCRIPTION("Transport Layer Security Support"); 50 MODULE_LICENSE("Dual BSD/GPL"); 51 MODULE_ALIAS_TCP_ULP("tls"); 52 53 enum { 54 TLSV4, 55 TLSV6, 56 TLS_NUM_PROTS, 57 }; 58 59 static const struct proto *saved_tcpv6_prot; 60 static DEFINE_MUTEX(tcpv6_prot_mutex); 61 static const struct proto *saved_tcpv4_prot; 62 static DEFINE_MUTEX(tcpv4_prot_mutex); 63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 64 static struct proto_ops tls_sw_proto_ops; 65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 66 const struct proto *base); 67 68 void update_sk_prot(struct sock *sk, struct tls_context *ctx) 69 { 70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 71 72 WRITE_ONCE(sk->sk_prot, 73 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); 74 } 75 76 int wait_on_pending_writer(struct sock *sk, long *timeo) 77 { 78 int rc = 0; 79 DEFINE_WAIT_FUNC(wait, woken_wake_function); 80 81 add_wait_queue(sk_sleep(sk), &wait); 82 while (1) { 83 if (!*timeo) { 84 rc = -EAGAIN; 85 break; 86 } 87 88 if (signal_pending(current)) { 89 rc = sock_intr_errno(*timeo); 90 break; 91 } 92 93 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 94 break; 95 } 96 remove_wait_queue(sk_sleep(sk), &wait); 97 return rc; 98 } 99 100 int tls_push_sg(struct sock *sk, 101 struct tls_context *ctx, 102 struct scatterlist *sg, 103 u16 first_offset, 104 int flags) 105 { 106 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 107 int ret = 0; 108 struct page *p; 109 size_t size; 110 int offset = first_offset; 111 112 size = sg->length - offset; 113 offset += sg->offset; 114 115 ctx->in_tcp_sendpages = true; 116 while (1) { 117 if (sg_is_last(sg)) 118 sendpage_flags = flags; 119 120 /* is sending application-limited? */ 121 tcp_rate_check_app_limited(sk); 122 p = sg_page(sg); 123 retry: 124 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 125 126 if (ret != size) { 127 if (ret > 0) { 128 offset += ret; 129 size -= ret; 130 goto retry; 131 } 132 133 offset -= sg->offset; 134 ctx->partially_sent_offset = offset; 135 ctx->partially_sent_record = (void *)sg; 136 ctx->in_tcp_sendpages = false; 137 return ret; 138 } 139 140 put_page(p); 141 sk_mem_uncharge(sk, sg->length); 142 sg = sg_next(sg); 143 if (!sg) 144 break; 145 146 offset = sg->offset; 147 size = sg->length; 148 } 149 150 ctx->in_tcp_sendpages = false; 151 152 return 0; 153 } 154 155 static int tls_handle_open_record(struct sock *sk, int flags) 156 { 157 struct tls_context *ctx = tls_get_ctx(sk); 158 159 if (tls_is_pending_open_record(ctx)) 160 return ctx->push_pending_record(sk, flags); 161 162 return 0; 163 } 164 165 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 166 unsigned char *record_type) 167 { 168 struct cmsghdr *cmsg; 169 int rc = -EINVAL; 170 171 for_each_cmsghdr(cmsg, msg) { 172 if (!CMSG_OK(msg, cmsg)) 173 return -EINVAL; 174 if (cmsg->cmsg_level != SOL_TLS) 175 continue; 176 177 switch (cmsg->cmsg_type) { 178 case TLS_SET_RECORD_TYPE: 179 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 180 return -EINVAL; 181 182 if (msg->msg_flags & MSG_MORE) 183 return -EINVAL; 184 185 rc = tls_handle_open_record(sk, msg->msg_flags); 186 if (rc) 187 return rc; 188 189 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 190 rc = 0; 191 break; 192 default: 193 return -EINVAL; 194 } 195 } 196 197 return rc; 198 } 199 200 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 201 int flags) 202 { 203 struct scatterlist *sg; 204 u16 offset; 205 206 sg = ctx->partially_sent_record; 207 offset = ctx->partially_sent_offset; 208 209 ctx->partially_sent_record = NULL; 210 return tls_push_sg(sk, ctx, sg, offset, flags); 211 } 212 213 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 214 { 215 struct scatterlist *sg; 216 217 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { 218 put_page(sg_page(sg)); 219 sk_mem_uncharge(sk, sg->length); 220 } 221 ctx->partially_sent_record = NULL; 222 } 223 224 static void tls_write_space(struct sock *sk) 225 { 226 struct tls_context *ctx = tls_get_ctx(sk); 227 228 /* If in_tcp_sendpages call lower protocol write space handler 229 * to ensure we wake up any waiting operations there. For example 230 * if do_tcp_sendpages where to call sk_wait_event. 231 */ 232 if (ctx->in_tcp_sendpages) { 233 ctx->sk_write_space(sk); 234 return; 235 } 236 237 #ifdef CONFIG_TLS_DEVICE 238 if (ctx->tx_conf == TLS_HW) 239 tls_device_write_space(sk, ctx); 240 else 241 #endif 242 tls_sw_write_space(sk, ctx); 243 244 ctx->sk_write_space(sk); 245 } 246 247 /** 248 * tls_ctx_free() - free TLS ULP context 249 * @sk: socket to with @ctx is attached 250 * @ctx: TLS context structure 251 * 252 * Free TLS context. If @sk is %NULL caller guarantees that the socket 253 * to which @ctx was attached has no outstanding references. 254 */ 255 void tls_ctx_free(struct sock *sk, struct tls_context *ctx) 256 { 257 if (!ctx) 258 return; 259 260 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 261 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 262 mutex_destroy(&ctx->tx_lock); 263 264 if (sk) 265 kfree_rcu(ctx, rcu); 266 else 267 kfree(ctx); 268 } 269 270 static void tls_sk_proto_cleanup(struct sock *sk, 271 struct tls_context *ctx, long timeo) 272 { 273 if (unlikely(sk->sk_write_pending) && 274 !wait_on_pending_writer(sk, &timeo)) 275 tls_handle_open_record(sk, 0); 276 277 /* We need these for tls_sw_fallback handling of other packets */ 278 if (ctx->tx_conf == TLS_SW) { 279 kfree(ctx->tx.rec_seq); 280 kfree(ctx->tx.iv); 281 tls_sw_release_resources_tx(sk); 282 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 283 } else if (ctx->tx_conf == TLS_HW) { 284 tls_device_free_resources_tx(sk); 285 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 286 } 287 288 if (ctx->rx_conf == TLS_SW) { 289 tls_sw_release_resources_rx(sk); 290 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 291 } else if (ctx->rx_conf == TLS_HW) { 292 tls_device_offload_cleanup_rx(sk); 293 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 294 } 295 } 296 297 static void tls_sk_proto_close(struct sock *sk, long timeout) 298 { 299 struct inet_connection_sock *icsk = inet_csk(sk); 300 struct tls_context *ctx = tls_get_ctx(sk); 301 long timeo = sock_sndtimeo(sk, 0); 302 bool free_ctx; 303 304 if (ctx->tx_conf == TLS_SW) 305 tls_sw_cancel_work_tx(ctx); 306 307 lock_sock(sk); 308 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 309 310 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 311 tls_sk_proto_cleanup(sk, ctx, timeo); 312 313 write_lock_bh(&sk->sk_callback_lock); 314 if (free_ctx) 315 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 316 WRITE_ONCE(sk->sk_prot, ctx->sk_proto); 317 if (sk->sk_write_space == tls_write_space) 318 sk->sk_write_space = ctx->sk_write_space; 319 write_unlock_bh(&sk->sk_callback_lock); 320 release_sock(sk); 321 if (ctx->tx_conf == TLS_SW) 322 tls_sw_free_ctx_tx(ctx); 323 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 324 tls_sw_strparser_done(ctx); 325 if (ctx->rx_conf == TLS_SW) 326 tls_sw_free_ctx_rx(ctx); 327 ctx->sk_proto->close(sk, timeout); 328 329 if (free_ctx) 330 tls_ctx_free(sk, ctx); 331 } 332 333 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval, 334 int __user *optlen, int tx) 335 { 336 int rc = 0; 337 struct tls_context *ctx = tls_get_ctx(sk); 338 struct tls_crypto_info *crypto_info; 339 struct cipher_context *cctx; 340 int len; 341 342 if (get_user(len, optlen)) 343 return -EFAULT; 344 345 if (!optval || (len < sizeof(*crypto_info))) { 346 rc = -EINVAL; 347 goto out; 348 } 349 350 if (!ctx) { 351 rc = -EBUSY; 352 goto out; 353 } 354 355 /* get user crypto info */ 356 if (tx) { 357 crypto_info = &ctx->crypto_send.info; 358 cctx = &ctx->tx; 359 } else { 360 crypto_info = &ctx->crypto_recv.info; 361 cctx = &ctx->rx; 362 } 363 364 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 365 rc = -EBUSY; 366 goto out; 367 } 368 369 if (len == sizeof(*crypto_info)) { 370 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 371 rc = -EFAULT; 372 goto out; 373 } 374 375 switch (crypto_info->cipher_type) { 376 case TLS_CIPHER_AES_GCM_128: { 377 struct tls12_crypto_info_aes_gcm_128 * 378 crypto_info_aes_gcm_128 = 379 container_of(crypto_info, 380 struct tls12_crypto_info_aes_gcm_128, 381 info); 382 383 if (len != sizeof(*crypto_info_aes_gcm_128)) { 384 rc = -EINVAL; 385 goto out; 386 } 387 lock_sock(sk); 388 memcpy(crypto_info_aes_gcm_128->iv, 389 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 390 TLS_CIPHER_AES_GCM_128_IV_SIZE); 391 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq, 392 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 393 release_sock(sk); 394 if (copy_to_user(optval, 395 crypto_info_aes_gcm_128, 396 sizeof(*crypto_info_aes_gcm_128))) 397 rc = -EFAULT; 398 break; 399 } 400 case TLS_CIPHER_AES_GCM_256: { 401 struct tls12_crypto_info_aes_gcm_256 * 402 crypto_info_aes_gcm_256 = 403 container_of(crypto_info, 404 struct tls12_crypto_info_aes_gcm_256, 405 info); 406 407 if (len != sizeof(*crypto_info_aes_gcm_256)) { 408 rc = -EINVAL; 409 goto out; 410 } 411 lock_sock(sk); 412 memcpy(crypto_info_aes_gcm_256->iv, 413 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 414 TLS_CIPHER_AES_GCM_256_IV_SIZE); 415 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq, 416 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 417 release_sock(sk); 418 if (copy_to_user(optval, 419 crypto_info_aes_gcm_256, 420 sizeof(*crypto_info_aes_gcm_256))) 421 rc = -EFAULT; 422 break; 423 } 424 case TLS_CIPHER_AES_CCM_128: { 425 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 = 426 container_of(crypto_info, 427 struct tls12_crypto_info_aes_ccm_128, info); 428 429 if (len != sizeof(*aes_ccm_128)) { 430 rc = -EINVAL; 431 goto out; 432 } 433 lock_sock(sk); 434 memcpy(aes_ccm_128->iv, 435 cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE, 436 TLS_CIPHER_AES_CCM_128_IV_SIZE); 437 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq, 438 TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE); 439 release_sock(sk); 440 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128))) 441 rc = -EFAULT; 442 break; 443 } 444 case TLS_CIPHER_CHACHA20_POLY1305: { 445 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 = 446 container_of(crypto_info, 447 struct tls12_crypto_info_chacha20_poly1305, 448 info); 449 450 if (len != sizeof(*chacha20_poly1305)) { 451 rc = -EINVAL; 452 goto out; 453 } 454 lock_sock(sk); 455 memcpy(chacha20_poly1305->iv, 456 cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE, 457 TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE); 458 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq, 459 TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE); 460 release_sock(sk); 461 if (copy_to_user(optval, chacha20_poly1305, 462 sizeof(*chacha20_poly1305))) 463 rc = -EFAULT; 464 break; 465 } 466 case TLS_CIPHER_SM4_GCM: { 467 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info = 468 container_of(crypto_info, 469 struct tls12_crypto_info_sm4_gcm, info); 470 471 if (len != sizeof(*sm4_gcm_info)) { 472 rc = -EINVAL; 473 goto out; 474 } 475 lock_sock(sk); 476 memcpy(sm4_gcm_info->iv, 477 cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE, 478 TLS_CIPHER_SM4_GCM_IV_SIZE); 479 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq, 480 TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE); 481 release_sock(sk); 482 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info))) 483 rc = -EFAULT; 484 break; 485 } 486 case TLS_CIPHER_SM4_CCM: { 487 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info = 488 container_of(crypto_info, 489 struct tls12_crypto_info_sm4_ccm, info); 490 491 if (len != sizeof(*sm4_ccm_info)) { 492 rc = -EINVAL; 493 goto out; 494 } 495 lock_sock(sk); 496 memcpy(sm4_ccm_info->iv, 497 cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE, 498 TLS_CIPHER_SM4_CCM_IV_SIZE); 499 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq, 500 TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE); 501 release_sock(sk); 502 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info))) 503 rc = -EFAULT; 504 break; 505 } 506 default: 507 rc = -EINVAL; 508 } 509 510 out: 511 return rc; 512 } 513 514 static int do_tls_getsockopt(struct sock *sk, int optname, 515 char __user *optval, int __user *optlen) 516 { 517 int rc = 0; 518 519 switch (optname) { 520 case TLS_TX: 521 case TLS_RX: 522 rc = do_tls_getsockopt_conf(sk, optval, optlen, 523 optname == TLS_TX); 524 break; 525 default: 526 rc = -ENOPROTOOPT; 527 break; 528 } 529 return rc; 530 } 531 532 static int tls_getsockopt(struct sock *sk, int level, int optname, 533 char __user *optval, int __user *optlen) 534 { 535 struct tls_context *ctx = tls_get_ctx(sk); 536 537 if (level != SOL_TLS) 538 return ctx->sk_proto->getsockopt(sk, level, 539 optname, optval, optlen); 540 541 return do_tls_getsockopt(sk, optname, optval, optlen); 542 } 543 544 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, 545 unsigned int optlen, int tx) 546 { 547 struct tls_crypto_info *crypto_info; 548 struct tls_crypto_info *alt_crypto_info; 549 struct tls_context *ctx = tls_get_ctx(sk); 550 size_t optsize; 551 int rc = 0; 552 int conf; 553 554 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) { 555 rc = -EINVAL; 556 goto out; 557 } 558 559 if (tx) { 560 crypto_info = &ctx->crypto_send.info; 561 alt_crypto_info = &ctx->crypto_recv.info; 562 } else { 563 crypto_info = &ctx->crypto_recv.info; 564 alt_crypto_info = &ctx->crypto_send.info; 565 } 566 567 /* Currently we don't support set crypto info more than one time */ 568 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 569 rc = -EBUSY; 570 goto out; 571 } 572 573 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info)); 574 if (rc) { 575 rc = -EFAULT; 576 goto err_crypto_info; 577 } 578 579 /* check version */ 580 if (crypto_info->version != TLS_1_2_VERSION && 581 crypto_info->version != TLS_1_3_VERSION) { 582 rc = -EINVAL; 583 goto err_crypto_info; 584 } 585 586 /* Ensure that TLS version and ciphers are same in both directions */ 587 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 588 if (alt_crypto_info->version != crypto_info->version || 589 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 590 rc = -EINVAL; 591 goto err_crypto_info; 592 } 593 } 594 595 switch (crypto_info->cipher_type) { 596 case TLS_CIPHER_AES_GCM_128: 597 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 598 break; 599 case TLS_CIPHER_AES_GCM_256: { 600 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 601 break; 602 } 603 case TLS_CIPHER_AES_CCM_128: 604 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 605 break; 606 case TLS_CIPHER_CHACHA20_POLY1305: 607 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305); 608 break; 609 case TLS_CIPHER_SM4_GCM: 610 optsize = sizeof(struct tls12_crypto_info_sm4_gcm); 611 break; 612 case TLS_CIPHER_SM4_CCM: 613 optsize = sizeof(struct tls12_crypto_info_sm4_ccm); 614 break; 615 default: 616 rc = -EINVAL; 617 goto err_crypto_info; 618 } 619 620 if (optlen != optsize) { 621 rc = -EINVAL; 622 goto err_crypto_info; 623 } 624 625 rc = copy_from_sockptr_offset(crypto_info + 1, optval, 626 sizeof(*crypto_info), 627 optlen - sizeof(*crypto_info)); 628 if (rc) { 629 rc = -EFAULT; 630 goto err_crypto_info; 631 } 632 633 if (tx) { 634 rc = tls_set_device_offload(sk, ctx); 635 conf = TLS_HW; 636 if (!rc) { 637 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); 638 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 639 } else { 640 rc = tls_set_sw_offload(sk, ctx, 1); 641 if (rc) 642 goto err_crypto_info; 643 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); 644 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 645 conf = TLS_SW; 646 } 647 } else { 648 rc = tls_set_device_offload_rx(sk, ctx); 649 conf = TLS_HW; 650 if (!rc) { 651 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); 652 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 653 } else { 654 rc = tls_set_sw_offload(sk, ctx, 0); 655 if (rc) 656 goto err_crypto_info; 657 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); 658 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 659 conf = TLS_SW; 660 } 661 tls_sw_strparser_arm(sk, ctx); 662 } 663 664 if (tx) 665 ctx->tx_conf = conf; 666 else 667 ctx->rx_conf = conf; 668 update_sk_prot(sk, ctx); 669 if (tx) { 670 ctx->sk_write_space = sk->sk_write_space; 671 sk->sk_write_space = tls_write_space; 672 } else { 673 sk->sk_socket->ops = &tls_sw_proto_ops; 674 } 675 goto out; 676 677 err_crypto_info: 678 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 679 out: 680 return rc; 681 } 682 683 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, 684 unsigned int optlen) 685 { 686 int rc = 0; 687 688 switch (optname) { 689 case TLS_TX: 690 case TLS_RX: 691 lock_sock(sk); 692 rc = do_tls_setsockopt_conf(sk, optval, optlen, 693 optname == TLS_TX); 694 release_sock(sk); 695 break; 696 default: 697 rc = -ENOPROTOOPT; 698 break; 699 } 700 return rc; 701 } 702 703 static int tls_setsockopt(struct sock *sk, int level, int optname, 704 sockptr_t optval, unsigned int optlen) 705 { 706 struct tls_context *ctx = tls_get_ctx(sk); 707 708 if (level != SOL_TLS) 709 return ctx->sk_proto->setsockopt(sk, level, optname, optval, 710 optlen); 711 712 return do_tls_setsockopt(sk, optname, optval, optlen); 713 } 714 715 struct tls_context *tls_ctx_create(struct sock *sk) 716 { 717 struct inet_connection_sock *icsk = inet_csk(sk); 718 struct tls_context *ctx; 719 720 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 721 if (!ctx) 722 return NULL; 723 724 mutex_init(&ctx->tx_lock); 725 rcu_assign_pointer(icsk->icsk_ulp_data, ctx); 726 ctx->sk_proto = READ_ONCE(sk->sk_prot); 727 ctx->sk = sk; 728 return ctx; 729 } 730 731 static void tls_build_proto(struct sock *sk) 732 { 733 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 734 struct proto *prot = READ_ONCE(sk->sk_prot); 735 736 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 737 if (ip_ver == TLSV6 && 738 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { 739 mutex_lock(&tcpv6_prot_mutex); 740 if (likely(prot != saved_tcpv6_prot)) { 741 build_protos(tls_prots[TLSV6], prot); 742 smp_store_release(&saved_tcpv6_prot, prot); 743 } 744 mutex_unlock(&tcpv6_prot_mutex); 745 } 746 747 if (ip_ver == TLSV4 && 748 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { 749 mutex_lock(&tcpv4_prot_mutex); 750 if (likely(prot != saved_tcpv4_prot)) { 751 build_protos(tls_prots[TLSV4], prot); 752 smp_store_release(&saved_tcpv4_prot, prot); 753 } 754 mutex_unlock(&tcpv4_prot_mutex); 755 } 756 } 757 758 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 759 const struct proto *base) 760 { 761 prot[TLS_BASE][TLS_BASE] = *base; 762 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 763 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 764 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 765 766 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 767 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 768 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 769 770 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 771 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 772 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; 773 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 774 775 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 776 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 777 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; 778 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 779 780 #ifdef CONFIG_TLS_DEVICE 781 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 782 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 783 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 784 785 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 786 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 787 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 788 789 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 790 791 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 792 793 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 794 #endif 795 #ifdef CONFIG_TLS_TOE 796 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 797 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; 798 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; 799 #endif 800 } 801 802 static int tls_init(struct sock *sk) 803 { 804 struct tls_context *ctx; 805 int rc = 0; 806 807 tls_build_proto(sk); 808 809 #ifdef CONFIG_TLS_TOE 810 if (tls_toe_bypass(sk)) 811 return 0; 812 #endif 813 814 /* The TLS ulp is currently supported only for TCP sockets 815 * in ESTABLISHED state. 816 * Supporting sockets in LISTEN state will require us 817 * to modify the accept implementation to clone rather then 818 * share the ulp context. 819 */ 820 if (sk->sk_state != TCP_ESTABLISHED) 821 return -ENOTCONN; 822 823 /* allocate tls context */ 824 write_lock_bh(&sk->sk_callback_lock); 825 ctx = tls_ctx_create(sk); 826 if (!ctx) { 827 rc = -ENOMEM; 828 goto out; 829 } 830 831 ctx->tx_conf = TLS_BASE; 832 ctx->rx_conf = TLS_BASE; 833 update_sk_prot(sk, ctx); 834 out: 835 write_unlock_bh(&sk->sk_callback_lock); 836 return rc; 837 } 838 839 static void tls_update(struct sock *sk, struct proto *p, 840 void (*write_space)(struct sock *sk)) 841 { 842 struct tls_context *ctx; 843 844 ctx = tls_get_ctx(sk); 845 if (likely(ctx)) { 846 ctx->sk_write_space = write_space; 847 ctx->sk_proto = p; 848 } else { 849 /* Pairs with lockless read in sk_clone_lock(). */ 850 WRITE_ONCE(sk->sk_prot, p); 851 sk->sk_write_space = write_space; 852 } 853 } 854 855 static int tls_get_info(const struct sock *sk, struct sk_buff *skb) 856 { 857 u16 version, cipher_type; 858 struct tls_context *ctx; 859 struct nlattr *start; 860 int err; 861 862 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); 863 if (!start) 864 return -EMSGSIZE; 865 866 rcu_read_lock(); 867 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); 868 if (!ctx) { 869 err = 0; 870 goto nla_failure; 871 } 872 version = ctx->prot_info.version; 873 if (version) { 874 err = nla_put_u16(skb, TLS_INFO_VERSION, version); 875 if (err) 876 goto nla_failure; 877 } 878 cipher_type = ctx->prot_info.cipher_type; 879 if (cipher_type) { 880 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); 881 if (err) 882 goto nla_failure; 883 } 884 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); 885 if (err) 886 goto nla_failure; 887 888 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); 889 if (err) 890 goto nla_failure; 891 892 rcu_read_unlock(); 893 nla_nest_end(skb, start); 894 return 0; 895 896 nla_failure: 897 rcu_read_unlock(); 898 nla_nest_cancel(skb, start); 899 return err; 900 } 901 902 static size_t tls_get_info_size(const struct sock *sk) 903 { 904 size_t size = 0; 905 906 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ 907 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ 908 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ 909 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ 910 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 911 0; 912 913 return size; 914 } 915 916 static int __net_init tls_init_net(struct net *net) 917 { 918 int err; 919 920 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); 921 if (!net->mib.tls_statistics) 922 return -ENOMEM; 923 924 err = tls_proc_init(net); 925 if (err) 926 goto err_free_stats; 927 928 return 0; 929 err_free_stats: 930 free_percpu(net->mib.tls_statistics); 931 return err; 932 } 933 934 static void __net_exit tls_exit_net(struct net *net) 935 { 936 tls_proc_fini(net); 937 free_percpu(net->mib.tls_statistics); 938 } 939 940 static struct pernet_operations tls_proc_ops = { 941 .init = tls_init_net, 942 .exit = tls_exit_net, 943 }; 944 945 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 946 .name = "tls", 947 .owner = THIS_MODULE, 948 .init = tls_init, 949 .update = tls_update, 950 .get_info = tls_get_info, 951 .get_info_size = tls_get_info_size, 952 }; 953 954 static int __init tls_register(void) 955 { 956 int err; 957 958 err = register_pernet_subsys(&tls_proc_ops); 959 if (err) 960 return err; 961 962 tls_sw_proto_ops = inet_stream_ops; 963 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 964 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked; 965 966 tls_device_init(); 967 tcp_register_ulp(&tcp_tls_ulp_ops); 968 969 return 0; 970 } 971 972 static void __exit tls_unregister(void) 973 { 974 tcp_unregister_ulp(&tcp_tls_ulp_ops); 975 tls_device_cleanup(); 976 unregister_pernet_subsys(&tls_proc_ops); 977 } 978 979 module_init(tls_register); 980 module_exit(tls_unregister); 981