xref: /openbmc/linux/net/tls/tls_main.c (revision c212d2c7)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 
43 #include <net/tls.h>
44 
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 
49 enum {
50 	TLSV4,
51 	TLSV6,
52 	TLS_NUM_PROTS,
53 };
54 
55 enum {
56 	TLS_BASE,
57 	TLS_SW_TX,
58 	TLS_SW_RX,
59 	TLS_SW_RXTX,
60 	TLS_HW_RECORD,
61 	TLS_NUM_CONFIG,
62 };
63 
64 static struct proto *saved_tcpv6_prot;
65 static DEFINE_MUTEX(tcpv6_prot_mutex);
66 static LIST_HEAD(device_list);
67 static DEFINE_MUTEX(device_mutex);
68 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG];
69 static struct proto_ops tls_sw_proto_ops;
70 
71 static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx)
72 {
73 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
74 
75 	sk->sk_prot = &tls_prots[ip_ver][ctx->conf];
76 }
77 
78 int wait_on_pending_writer(struct sock *sk, long *timeo)
79 {
80 	int rc = 0;
81 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
82 
83 	add_wait_queue(sk_sleep(sk), &wait);
84 	while (1) {
85 		if (!*timeo) {
86 			rc = -EAGAIN;
87 			break;
88 		}
89 
90 		if (signal_pending(current)) {
91 			rc = sock_intr_errno(*timeo);
92 			break;
93 		}
94 
95 		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
96 			break;
97 	}
98 	remove_wait_queue(sk_sleep(sk), &wait);
99 	return rc;
100 }
101 
102 int tls_push_sg(struct sock *sk,
103 		struct tls_context *ctx,
104 		struct scatterlist *sg,
105 		u16 first_offset,
106 		int flags)
107 {
108 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109 	int ret = 0;
110 	struct page *p;
111 	size_t size;
112 	int offset = first_offset;
113 
114 	size = sg->length - offset;
115 	offset += sg->offset;
116 
117 	ctx->in_tcp_sendpages = true;
118 	while (1) {
119 		if (sg_is_last(sg))
120 			sendpage_flags = flags;
121 
122 		/* is sending application-limited? */
123 		tcp_rate_check_app_limited(sk);
124 		p = sg_page(sg);
125 retry:
126 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
127 
128 		if (ret != size) {
129 			if (ret > 0) {
130 				offset += ret;
131 				size -= ret;
132 				goto retry;
133 			}
134 
135 			offset -= sg->offset;
136 			ctx->partially_sent_offset = offset;
137 			ctx->partially_sent_record = (void *)sg;
138 			return ret;
139 		}
140 
141 		put_page(p);
142 		sk_mem_uncharge(sk, sg->length);
143 		sg = sg_next(sg);
144 		if (!sg)
145 			break;
146 
147 		offset = sg->offset;
148 		size = sg->length;
149 	}
150 
151 	clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
152 	ctx->in_tcp_sendpages = false;
153 	ctx->sk_write_space(sk);
154 
155 	return 0;
156 }
157 
158 static int tls_handle_open_record(struct sock *sk, int flags)
159 {
160 	struct tls_context *ctx = tls_get_ctx(sk);
161 
162 	if (tls_is_pending_open_record(ctx))
163 		return ctx->push_pending_record(sk, flags);
164 
165 	return 0;
166 }
167 
168 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
169 		      unsigned char *record_type)
170 {
171 	struct cmsghdr *cmsg;
172 	int rc = -EINVAL;
173 
174 	for_each_cmsghdr(cmsg, msg) {
175 		if (!CMSG_OK(msg, cmsg))
176 			return -EINVAL;
177 		if (cmsg->cmsg_level != SOL_TLS)
178 			continue;
179 
180 		switch (cmsg->cmsg_type) {
181 		case TLS_SET_RECORD_TYPE:
182 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
183 				return -EINVAL;
184 
185 			if (msg->msg_flags & MSG_MORE)
186 				return -EINVAL;
187 
188 			rc = tls_handle_open_record(sk, msg->msg_flags);
189 			if (rc)
190 				return rc;
191 
192 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
193 			rc = 0;
194 			break;
195 		default:
196 			return -EINVAL;
197 		}
198 	}
199 
200 	return rc;
201 }
202 
203 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
204 				   int flags, long *timeo)
205 {
206 	struct scatterlist *sg;
207 	u16 offset;
208 
209 	if (!tls_is_partially_sent_record(ctx))
210 		return ctx->push_pending_record(sk, flags);
211 
212 	sg = ctx->partially_sent_record;
213 	offset = ctx->partially_sent_offset;
214 
215 	ctx->partially_sent_record = NULL;
216 	return tls_push_sg(sk, ctx, sg, offset, flags);
217 }
218 
219 static void tls_write_space(struct sock *sk)
220 {
221 	struct tls_context *ctx = tls_get_ctx(sk);
222 
223 	/* We are already sending pages, ignore notification */
224 	if (ctx->in_tcp_sendpages)
225 		return;
226 
227 	if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
228 		gfp_t sk_allocation = sk->sk_allocation;
229 		int rc;
230 		long timeo = 0;
231 
232 		sk->sk_allocation = GFP_ATOMIC;
233 		rc = tls_push_pending_closed_record(sk, ctx,
234 						    MSG_DONTWAIT |
235 						    MSG_NOSIGNAL,
236 						    &timeo);
237 		sk->sk_allocation = sk_allocation;
238 
239 		if (rc < 0)
240 			return;
241 	}
242 
243 	ctx->sk_write_space(sk);
244 }
245 
246 static void tls_sk_proto_close(struct sock *sk, long timeout)
247 {
248 	struct tls_context *ctx = tls_get_ctx(sk);
249 	long timeo = sock_sndtimeo(sk, 0);
250 	void (*sk_proto_close)(struct sock *sk, long timeout);
251 
252 	lock_sock(sk);
253 	sk_proto_close = ctx->sk_proto_close;
254 
255 	if (ctx->conf == TLS_HW_RECORD)
256 		goto skip_tx_cleanup;
257 
258 	if (ctx->conf == TLS_BASE) {
259 		kfree(ctx);
260 		ctx = NULL;
261 		goto skip_tx_cleanup;
262 	}
263 
264 	if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
265 		tls_handle_open_record(sk, 0);
266 
267 	if (ctx->partially_sent_record) {
268 		struct scatterlist *sg = ctx->partially_sent_record;
269 
270 		while (1) {
271 			put_page(sg_page(sg));
272 			sk_mem_uncharge(sk, sg->length);
273 
274 			if (sg_is_last(sg))
275 				break;
276 			sg++;
277 		}
278 	}
279 
280 	kfree(ctx->tx.rec_seq);
281 	kfree(ctx->tx.iv);
282 	kfree(ctx->rx.rec_seq);
283 	kfree(ctx->rx.iv);
284 
285 	if (ctx->conf == TLS_SW_TX ||
286 	    ctx->conf == TLS_SW_RX ||
287 	    ctx->conf == TLS_SW_RXTX) {
288 		tls_sw_free_resources(sk);
289 	}
290 
291 skip_tx_cleanup:
292 	release_sock(sk);
293 	sk_proto_close(sk, timeout);
294 	/* free ctx for TLS_HW_RECORD, used by tcp_set_state
295 	 * for sk->sk_prot->unhash [tls_hw_unhash]
296 	 */
297 	if (ctx && ctx->conf == TLS_HW_RECORD)
298 		kfree(ctx);
299 }
300 
301 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
302 				int __user *optlen)
303 {
304 	int rc = 0;
305 	struct tls_context *ctx = tls_get_ctx(sk);
306 	struct tls_crypto_info *crypto_info;
307 	int len;
308 
309 	if (get_user(len, optlen))
310 		return -EFAULT;
311 
312 	if (!optval || (len < sizeof(*crypto_info))) {
313 		rc = -EINVAL;
314 		goto out;
315 	}
316 
317 	if (!ctx) {
318 		rc = -EBUSY;
319 		goto out;
320 	}
321 
322 	/* get user crypto info */
323 	crypto_info = &ctx->crypto_send;
324 
325 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
326 		rc = -EBUSY;
327 		goto out;
328 	}
329 
330 	if (len == sizeof(*crypto_info)) {
331 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
332 			rc = -EFAULT;
333 		goto out;
334 	}
335 
336 	switch (crypto_info->cipher_type) {
337 	case TLS_CIPHER_AES_GCM_128: {
338 		struct tls12_crypto_info_aes_gcm_128 *
339 		  crypto_info_aes_gcm_128 =
340 		  container_of(crypto_info,
341 			       struct tls12_crypto_info_aes_gcm_128,
342 			       info);
343 
344 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
345 			rc = -EINVAL;
346 			goto out;
347 		}
348 		lock_sock(sk);
349 		memcpy(crypto_info_aes_gcm_128->iv,
350 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
351 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
352 		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
353 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
354 		release_sock(sk);
355 		if (copy_to_user(optval,
356 				 crypto_info_aes_gcm_128,
357 				 sizeof(*crypto_info_aes_gcm_128)))
358 			rc = -EFAULT;
359 		break;
360 	}
361 	default:
362 		rc = -EINVAL;
363 	}
364 
365 out:
366 	return rc;
367 }
368 
369 static int do_tls_getsockopt(struct sock *sk, int optname,
370 			     char __user *optval, int __user *optlen)
371 {
372 	int rc = 0;
373 
374 	switch (optname) {
375 	case TLS_TX:
376 		rc = do_tls_getsockopt_tx(sk, optval, optlen);
377 		break;
378 	default:
379 		rc = -ENOPROTOOPT;
380 		break;
381 	}
382 	return rc;
383 }
384 
385 static int tls_getsockopt(struct sock *sk, int level, int optname,
386 			  char __user *optval, int __user *optlen)
387 {
388 	struct tls_context *ctx = tls_get_ctx(sk);
389 
390 	if (level != SOL_TLS)
391 		return ctx->getsockopt(sk, level, optname, optval, optlen);
392 
393 	return do_tls_getsockopt(sk, optname, optval, optlen);
394 }
395 
396 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
397 				  unsigned int optlen, int tx)
398 {
399 	struct tls_crypto_info *crypto_info;
400 	struct tls_context *ctx = tls_get_ctx(sk);
401 	int rc = 0;
402 	int conf;
403 
404 	if (!optval || (optlen < sizeof(*crypto_info))) {
405 		rc = -EINVAL;
406 		goto out;
407 	}
408 
409 	if (tx)
410 		crypto_info = &ctx->crypto_send;
411 	else
412 		crypto_info = &ctx->crypto_recv;
413 
414 	/* Currently we don't support set crypto info more than one time */
415 	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
416 		rc = -EBUSY;
417 		goto out;
418 	}
419 
420 	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
421 	if (rc) {
422 		rc = -EFAULT;
423 		goto err_crypto_info;
424 	}
425 
426 	/* check version */
427 	if (crypto_info->version != TLS_1_2_VERSION) {
428 		rc = -ENOTSUPP;
429 		goto err_crypto_info;
430 	}
431 
432 	switch (crypto_info->cipher_type) {
433 	case TLS_CIPHER_AES_GCM_128: {
434 		if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
435 			rc = -EINVAL;
436 			goto err_crypto_info;
437 		}
438 		rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
439 				    optlen - sizeof(*crypto_info));
440 		if (rc) {
441 			rc = -EFAULT;
442 			goto err_crypto_info;
443 		}
444 		break;
445 	}
446 	default:
447 		rc = -EINVAL;
448 		goto err_crypto_info;
449 	}
450 
451 	/* currently SW is default, we will have ethtool in future */
452 	if (tx) {
453 		rc = tls_set_sw_offload(sk, ctx, 1);
454 		if (ctx->conf == TLS_SW_RX)
455 			conf = TLS_SW_RXTX;
456 		else
457 			conf = TLS_SW_TX;
458 	} else {
459 		rc = tls_set_sw_offload(sk, ctx, 0);
460 		if (ctx->conf == TLS_SW_TX)
461 			conf = TLS_SW_RXTX;
462 		else
463 			conf = TLS_SW_RX;
464 	}
465 
466 	if (rc)
467 		goto err_crypto_info;
468 
469 	ctx->conf = conf;
470 	update_sk_prot(sk, ctx);
471 	if (tx) {
472 		ctx->sk_write_space = sk->sk_write_space;
473 		sk->sk_write_space = tls_write_space;
474 	} else {
475 		sk->sk_socket->ops = &tls_sw_proto_ops;
476 	}
477 	goto out;
478 
479 err_crypto_info:
480 	memset(crypto_info, 0, sizeof(*crypto_info));
481 out:
482 	return rc;
483 }
484 
485 static int do_tls_setsockopt(struct sock *sk, int optname,
486 			     char __user *optval, unsigned int optlen)
487 {
488 	int rc = 0;
489 
490 	switch (optname) {
491 	case TLS_TX:
492 	case TLS_RX:
493 		lock_sock(sk);
494 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
495 					    optname == TLS_TX);
496 		release_sock(sk);
497 		break;
498 	default:
499 		rc = -ENOPROTOOPT;
500 		break;
501 	}
502 	return rc;
503 }
504 
505 static int tls_setsockopt(struct sock *sk, int level, int optname,
506 			  char __user *optval, unsigned int optlen)
507 {
508 	struct tls_context *ctx = tls_get_ctx(sk);
509 
510 	if (level != SOL_TLS)
511 		return ctx->setsockopt(sk, level, optname, optval, optlen);
512 
513 	return do_tls_setsockopt(sk, optname, optval, optlen);
514 }
515 
516 static struct tls_context *create_ctx(struct sock *sk)
517 {
518 	struct inet_connection_sock *icsk = inet_csk(sk);
519 	struct tls_context *ctx;
520 
521 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
522 	if (!ctx)
523 		return NULL;
524 
525 	icsk->icsk_ulp_data = ctx;
526 	return ctx;
527 }
528 
529 static int tls_hw_prot(struct sock *sk)
530 {
531 	struct tls_context *ctx;
532 	struct tls_device *dev;
533 	int rc = 0;
534 
535 	mutex_lock(&device_mutex);
536 	list_for_each_entry(dev, &device_list, dev_list) {
537 		if (dev->feature && dev->feature(dev)) {
538 			ctx = create_ctx(sk);
539 			if (!ctx)
540 				goto out;
541 
542 			ctx->hash = sk->sk_prot->hash;
543 			ctx->unhash = sk->sk_prot->unhash;
544 			ctx->sk_proto_close = sk->sk_prot->close;
545 			ctx->conf = TLS_HW_RECORD;
546 			update_sk_prot(sk, ctx);
547 			rc = 1;
548 			break;
549 		}
550 	}
551 out:
552 	mutex_unlock(&device_mutex);
553 	return rc;
554 }
555 
556 static void tls_hw_unhash(struct sock *sk)
557 {
558 	struct tls_context *ctx = tls_get_ctx(sk);
559 	struct tls_device *dev;
560 
561 	mutex_lock(&device_mutex);
562 	list_for_each_entry(dev, &device_list, dev_list) {
563 		if (dev->unhash)
564 			dev->unhash(dev, sk);
565 	}
566 	mutex_unlock(&device_mutex);
567 	ctx->unhash(sk);
568 }
569 
570 static int tls_hw_hash(struct sock *sk)
571 {
572 	struct tls_context *ctx = tls_get_ctx(sk);
573 	struct tls_device *dev;
574 	int err;
575 
576 	err = ctx->hash(sk);
577 	mutex_lock(&device_mutex);
578 	list_for_each_entry(dev, &device_list, dev_list) {
579 		if (dev->hash)
580 			err |= dev->hash(dev, sk);
581 	}
582 	mutex_unlock(&device_mutex);
583 
584 	if (err)
585 		tls_hw_unhash(sk);
586 	return err;
587 }
588 
589 static void build_protos(struct proto *prot, struct proto *base)
590 {
591 	prot[TLS_BASE] = *base;
592 	prot[TLS_BASE].setsockopt	= tls_setsockopt;
593 	prot[TLS_BASE].getsockopt	= tls_getsockopt;
594 	prot[TLS_BASE].close		= tls_sk_proto_close;
595 
596 	prot[TLS_SW_TX] = prot[TLS_BASE];
597 	prot[TLS_SW_TX].sendmsg		= tls_sw_sendmsg;
598 	prot[TLS_SW_TX].sendpage	= tls_sw_sendpage;
599 
600 	prot[TLS_SW_RX] = prot[TLS_BASE];
601 	prot[TLS_SW_RX].recvmsg		= tls_sw_recvmsg;
602 	prot[TLS_SW_RX].close		= tls_sk_proto_close;
603 
604 	prot[TLS_SW_RXTX] = prot[TLS_SW_TX];
605 	prot[TLS_SW_RXTX].recvmsg	= tls_sw_recvmsg;
606 	prot[TLS_SW_RXTX].close		= tls_sk_proto_close;
607 
608 	prot[TLS_HW_RECORD] = *base;
609 	prot[TLS_HW_RECORD].hash	= tls_hw_hash;
610 	prot[TLS_HW_RECORD].unhash	= tls_hw_unhash;
611 	prot[TLS_HW_RECORD].close	= tls_sk_proto_close;
612 }
613 
614 static int tls_init(struct sock *sk)
615 {
616 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
617 	struct tls_context *ctx;
618 	int rc = 0;
619 
620 	if (tls_hw_prot(sk))
621 		goto out;
622 
623 	/* The TLS ulp is currently supported only for TCP sockets
624 	 * in ESTABLISHED state.
625 	 * Supporting sockets in LISTEN state will require us
626 	 * to modify the accept implementation to clone rather then
627 	 * share the ulp context.
628 	 */
629 	if (sk->sk_state != TCP_ESTABLISHED)
630 		return -ENOTSUPP;
631 
632 	/* allocate tls context */
633 	ctx = create_ctx(sk);
634 	if (!ctx) {
635 		rc = -ENOMEM;
636 		goto out;
637 	}
638 	ctx->setsockopt = sk->sk_prot->setsockopt;
639 	ctx->getsockopt = sk->sk_prot->getsockopt;
640 	ctx->sk_proto_close = sk->sk_prot->close;
641 
642 	/* Build IPv6 TLS whenever the address of tcpv6_prot changes */
643 	if (ip_ver == TLSV6 &&
644 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
645 		mutex_lock(&tcpv6_prot_mutex);
646 		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
647 			build_protos(tls_prots[TLSV6], sk->sk_prot);
648 			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
649 		}
650 		mutex_unlock(&tcpv6_prot_mutex);
651 	}
652 
653 	ctx->conf = TLS_BASE;
654 	update_sk_prot(sk, ctx);
655 out:
656 	return rc;
657 }
658 
659 void tls_register_device(struct tls_device *device)
660 {
661 	mutex_lock(&device_mutex);
662 	list_add_tail(&device->dev_list, &device_list);
663 	mutex_unlock(&device_mutex);
664 }
665 EXPORT_SYMBOL(tls_register_device);
666 
667 void tls_unregister_device(struct tls_device *device)
668 {
669 	mutex_lock(&device_mutex);
670 	list_del(&device->dev_list);
671 	mutex_unlock(&device_mutex);
672 }
673 EXPORT_SYMBOL(tls_unregister_device);
674 
675 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
676 	.name			= "tls",
677 	.uid			= TCP_ULP_TLS,
678 	.user_visible		= true,
679 	.owner			= THIS_MODULE,
680 	.init			= tls_init,
681 };
682 
683 static int __init tls_register(void)
684 {
685 	build_protos(tls_prots[TLSV4], &tcp_prot);
686 
687 	tls_sw_proto_ops = inet_stream_ops;
688 	tls_sw_proto_ops.poll = tls_sw_poll;
689 	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
690 
691 	tcp_register_ulp(&tcp_tls_ulp_ops);
692 
693 	return 0;
694 }
695 
696 static void __exit tls_unregister(void)
697 {
698 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
699 }
700 
701 module_init(tls_register);
702 module_exit(tls_unregister);
703