xref: /openbmc/linux/net/tls/tls_main.c (revision a7b15ab8)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 
43 #include <net/tls.h>
44 
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 
49 enum {
50 	TLSV4,
51 	TLSV6,
52 	TLS_NUM_PROTS,
53 };
54 enum {
55 	TLS_BASE,
56 	TLS_SW,
57 #ifdef CONFIG_TLS_DEVICE
58 	TLS_HW,
59 #endif
60 	TLS_HW_RECORD,
61 	TLS_NUM_CONFIG,
62 };
63 
64 static struct proto *saved_tcpv6_prot;
65 static DEFINE_MUTEX(tcpv6_prot_mutex);
66 static LIST_HEAD(device_list);
67 static DEFINE_MUTEX(device_mutex);
68 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
69 static struct proto_ops tls_sw_proto_ops;
70 
71 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
72 {
73 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
74 
75 	sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
76 }
77 
78 int wait_on_pending_writer(struct sock *sk, long *timeo)
79 {
80 	int rc = 0;
81 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
82 
83 	add_wait_queue(sk_sleep(sk), &wait);
84 	while (1) {
85 		if (!*timeo) {
86 			rc = -EAGAIN;
87 			break;
88 		}
89 
90 		if (signal_pending(current)) {
91 			rc = sock_intr_errno(*timeo);
92 			break;
93 		}
94 
95 		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
96 			break;
97 	}
98 	remove_wait_queue(sk_sleep(sk), &wait);
99 	return rc;
100 }
101 
102 int tls_push_sg(struct sock *sk,
103 		struct tls_context *ctx,
104 		struct scatterlist *sg,
105 		u16 first_offset,
106 		int flags)
107 {
108 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109 	int ret = 0;
110 	struct page *p;
111 	size_t size;
112 	int offset = first_offset;
113 
114 	size = sg->length - offset;
115 	offset += sg->offset;
116 
117 	ctx->in_tcp_sendpages = true;
118 	while (1) {
119 		if (sg_is_last(sg))
120 			sendpage_flags = flags;
121 
122 		/* is sending application-limited? */
123 		tcp_rate_check_app_limited(sk);
124 		p = sg_page(sg);
125 retry:
126 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
127 
128 		if (ret != size) {
129 			if (ret > 0) {
130 				offset += ret;
131 				size -= ret;
132 				goto retry;
133 			}
134 
135 			offset -= sg->offset;
136 			ctx->partially_sent_offset = offset;
137 			ctx->partially_sent_record = (void *)sg;
138 			return ret;
139 		}
140 
141 		put_page(p);
142 		sk_mem_uncharge(sk, sg->length);
143 		sg = sg_next(sg);
144 		if (!sg)
145 			break;
146 
147 		offset = sg->offset;
148 		size = sg->length;
149 	}
150 
151 	clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
152 	ctx->in_tcp_sendpages = false;
153 	ctx->sk_write_space(sk);
154 
155 	return 0;
156 }
157 
158 static int tls_handle_open_record(struct sock *sk, int flags)
159 {
160 	struct tls_context *ctx = tls_get_ctx(sk);
161 
162 	if (tls_is_pending_open_record(ctx))
163 		return ctx->push_pending_record(sk, flags);
164 
165 	return 0;
166 }
167 
168 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
169 		      unsigned char *record_type)
170 {
171 	struct cmsghdr *cmsg;
172 	int rc = -EINVAL;
173 
174 	for_each_cmsghdr(cmsg, msg) {
175 		if (!CMSG_OK(msg, cmsg))
176 			return -EINVAL;
177 		if (cmsg->cmsg_level != SOL_TLS)
178 			continue;
179 
180 		switch (cmsg->cmsg_type) {
181 		case TLS_SET_RECORD_TYPE:
182 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
183 				return -EINVAL;
184 
185 			if (msg->msg_flags & MSG_MORE)
186 				return -EINVAL;
187 
188 			rc = tls_handle_open_record(sk, msg->msg_flags);
189 			if (rc)
190 				return rc;
191 
192 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
193 			rc = 0;
194 			break;
195 		default:
196 			return -EINVAL;
197 		}
198 	}
199 
200 	return rc;
201 }
202 
203 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
204 				   int flags, long *timeo)
205 {
206 	struct scatterlist *sg;
207 	u16 offset;
208 
209 	if (!tls_is_partially_sent_record(ctx))
210 		return ctx->push_pending_record(sk, flags);
211 
212 	sg = ctx->partially_sent_record;
213 	offset = ctx->partially_sent_offset;
214 
215 	ctx->partially_sent_record = NULL;
216 	return tls_push_sg(sk, ctx, sg, offset, flags);
217 }
218 
219 static void tls_write_space(struct sock *sk)
220 {
221 	struct tls_context *ctx = tls_get_ctx(sk);
222 
223 	/* We are already sending pages, ignore notification */
224 	if (ctx->in_tcp_sendpages)
225 		return;
226 
227 	if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
228 		gfp_t sk_allocation = sk->sk_allocation;
229 		int rc;
230 		long timeo = 0;
231 
232 		sk->sk_allocation = GFP_ATOMIC;
233 		rc = tls_push_pending_closed_record(sk, ctx,
234 						    MSG_DONTWAIT |
235 						    MSG_NOSIGNAL,
236 						    &timeo);
237 		sk->sk_allocation = sk_allocation;
238 
239 		if (rc < 0)
240 			return;
241 	}
242 
243 	ctx->sk_write_space(sk);
244 }
245 
246 static void tls_sk_proto_close(struct sock *sk, long timeout)
247 {
248 	struct tls_context *ctx = tls_get_ctx(sk);
249 	long timeo = sock_sndtimeo(sk, 0);
250 	void (*sk_proto_close)(struct sock *sk, long timeout);
251 
252 	lock_sock(sk);
253 	sk_proto_close = ctx->sk_proto_close;
254 
255 	if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD)
256 		goto skip_tx_cleanup;
257 
258 	if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) {
259 		kfree(ctx);
260 		ctx = NULL;
261 		goto skip_tx_cleanup;
262 	}
263 
264 	if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
265 		tls_handle_open_record(sk, 0);
266 
267 	if (ctx->partially_sent_record) {
268 		struct scatterlist *sg = ctx->partially_sent_record;
269 
270 		while (1) {
271 			put_page(sg_page(sg));
272 			sk_mem_uncharge(sk, sg->length);
273 
274 			if (sg_is_last(sg))
275 				break;
276 			sg++;
277 		}
278 	}
279 
280 	/* We need these for tls_sw_fallback handling of other packets */
281 	if (ctx->tx_conf == TLS_SW) {
282 		kfree(ctx->tx.rec_seq);
283 		kfree(ctx->tx.iv);
284 		tls_sw_free_resources_tx(sk);
285 	}
286 
287 	if (ctx->rx_conf == TLS_SW) {
288 		kfree(ctx->rx.rec_seq);
289 		kfree(ctx->rx.iv);
290 		tls_sw_free_resources_rx(sk);
291 	}
292 
293 #ifdef CONFIG_TLS_DEVICE
294 	if (ctx->tx_conf != TLS_HW) {
295 #else
296 	{
297 #endif
298 		kfree(ctx);
299 		ctx = NULL;
300 	}
301 
302 skip_tx_cleanup:
303 	release_sock(sk);
304 	sk_proto_close(sk, timeout);
305 	/* free ctx for TLS_HW_RECORD, used by tcp_set_state
306 	 * for sk->sk_prot->unhash [tls_hw_unhash]
307 	 */
308 	if (ctx && ctx->tx_conf == TLS_HW_RECORD &&
309 	    ctx->rx_conf == TLS_HW_RECORD)
310 		kfree(ctx);
311 }
312 
313 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
314 				int __user *optlen)
315 {
316 	int rc = 0;
317 	struct tls_context *ctx = tls_get_ctx(sk);
318 	struct tls_crypto_info *crypto_info;
319 	int len;
320 
321 	if (get_user(len, optlen))
322 		return -EFAULT;
323 
324 	if (!optval || (len < sizeof(*crypto_info))) {
325 		rc = -EINVAL;
326 		goto out;
327 	}
328 
329 	if (!ctx) {
330 		rc = -EBUSY;
331 		goto out;
332 	}
333 
334 	/* get user crypto info */
335 	crypto_info = &ctx->crypto_send;
336 
337 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
338 		rc = -EBUSY;
339 		goto out;
340 	}
341 
342 	if (len == sizeof(*crypto_info)) {
343 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
344 			rc = -EFAULT;
345 		goto out;
346 	}
347 
348 	switch (crypto_info->cipher_type) {
349 	case TLS_CIPHER_AES_GCM_128: {
350 		struct tls12_crypto_info_aes_gcm_128 *
351 		  crypto_info_aes_gcm_128 =
352 		  container_of(crypto_info,
353 			       struct tls12_crypto_info_aes_gcm_128,
354 			       info);
355 
356 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
357 			rc = -EINVAL;
358 			goto out;
359 		}
360 		lock_sock(sk);
361 		memcpy(crypto_info_aes_gcm_128->iv,
362 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
363 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
364 		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
365 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
366 		release_sock(sk);
367 		if (copy_to_user(optval,
368 				 crypto_info_aes_gcm_128,
369 				 sizeof(*crypto_info_aes_gcm_128)))
370 			rc = -EFAULT;
371 		break;
372 	}
373 	default:
374 		rc = -EINVAL;
375 	}
376 
377 out:
378 	return rc;
379 }
380 
381 static int do_tls_getsockopt(struct sock *sk, int optname,
382 			     char __user *optval, int __user *optlen)
383 {
384 	int rc = 0;
385 
386 	switch (optname) {
387 	case TLS_TX:
388 		rc = do_tls_getsockopt_tx(sk, optval, optlen);
389 		break;
390 	default:
391 		rc = -ENOPROTOOPT;
392 		break;
393 	}
394 	return rc;
395 }
396 
397 static int tls_getsockopt(struct sock *sk, int level, int optname,
398 			  char __user *optval, int __user *optlen)
399 {
400 	struct tls_context *ctx = tls_get_ctx(sk);
401 
402 	if (level != SOL_TLS)
403 		return ctx->getsockopt(sk, level, optname, optval, optlen);
404 
405 	return do_tls_getsockopt(sk, optname, optval, optlen);
406 }
407 
408 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
409 				  unsigned int optlen, int tx)
410 {
411 	struct tls_crypto_info *crypto_info;
412 	struct tls_context *ctx = tls_get_ctx(sk);
413 	int rc = 0;
414 	int conf;
415 
416 	if (!optval || (optlen < sizeof(*crypto_info))) {
417 		rc = -EINVAL;
418 		goto out;
419 	}
420 
421 	if (tx)
422 		crypto_info = &ctx->crypto_send;
423 	else
424 		crypto_info = &ctx->crypto_recv;
425 
426 	/* Currently we don't support set crypto info more than one time */
427 	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
428 		rc = -EBUSY;
429 		goto out;
430 	}
431 
432 	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
433 	if (rc) {
434 		rc = -EFAULT;
435 		goto err_crypto_info;
436 	}
437 
438 	/* check version */
439 	if (crypto_info->version != TLS_1_2_VERSION) {
440 		rc = -ENOTSUPP;
441 		goto err_crypto_info;
442 	}
443 
444 	switch (crypto_info->cipher_type) {
445 	case TLS_CIPHER_AES_GCM_128: {
446 		if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
447 			rc = -EINVAL;
448 			goto err_crypto_info;
449 		}
450 		rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
451 				    optlen - sizeof(*crypto_info));
452 		if (rc) {
453 			rc = -EFAULT;
454 			goto err_crypto_info;
455 		}
456 		break;
457 	}
458 	default:
459 		rc = -EINVAL;
460 		goto err_crypto_info;
461 	}
462 
463 	if (tx) {
464 #ifdef CONFIG_TLS_DEVICE
465 		rc = tls_set_device_offload(sk, ctx);
466 		conf = TLS_HW;
467 		if (rc) {
468 #else
469 		{
470 #endif
471 			rc = tls_set_sw_offload(sk, ctx, 1);
472 			conf = TLS_SW;
473 		}
474 	} else {
475 		rc = tls_set_sw_offload(sk, ctx, 0);
476 		conf = TLS_SW;
477 	}
478 
479 	if (rc)
480 		goto err_crypto_info;
481 
482 	if (tx)
483 		ctx->tx_conf = conf;
484 	else
485 		ctx->rx_conf = conf;
486 	update_sk_prot(sk, ctx);
487 	if (tx) {
488 		ctx->sk_write_space = sk->sk_write_space;
489 		sk->sk_write_space = tls_write_space;
490 	} else {
491 		sk->sk_socket->ops = &tls_sw_proto_ops;
492 	}
493 	goto out;
494 
495 err_crypto_info:
496 	memset(crypto_info, 0, sizeof(*crypto_info));
497 out:
498 	return rc;
499 }
500 
501 static int do_tls_setsockopt(struct sock *sk, int optname,
502 			     char __user *optval, unsigned int optlen)
503 {
504 	int rc = 0;
505 
506 	switch (optname) {
507 	case TLS_TX:
508 	case TLS_RX:
509 		lock_sock(sk);
510 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
511 					    optname == TLS_TX);
512 		release_sock(sk);
513 		break;
514 	default:
515 		rc = -ENOPROTOOPT;
516 		break;
517 	}
518 	return rc;
519 }
520 
521 static int tls_setsockopt(struct sock *sk, int level, int optname,
522 			  char __user *optval, unsigned int optlen)
523 {
524 	struct tls_context *ctx = tls_get_ctx(sk);
525 
526 	if (level != SOL_TLS)
527 		return ctx->setsockopt(sk, level, optname, optval, optlen);
528 
529 	return do_tls_setsockopt(sk, optname, optval, optlen);
530 }
531 
532 static struct tls_context *create_ctx(struct sock *sk)
533 {
534 	struct inet_connection_sock *icsk = inet_csk(sk);
535 	struct tls_context *ctx;
536 
537 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
538 	if (!ctx)
539 		return NULL;
540 
541 	icsk->icsk_ulp_data = ctx;
542 	return ctx;
543 }
544 
545 static int tls_hw_prot(struct sock *sk)
546 {
547 	struct tls_context *ctx;
548 	struct tls_device *dev;
549 	int rc = 0;
550 
551 	mutex_lock(&device_mutex);
552 	list_for_each_entry(dev, &device_list, dev_list) {
553 		if (dev->feature && dev->feature(dev)) {
554 			ctx = create_ctx(sk);
555 			if (!ctx)
556 				goto out;
557 
558 			ctx->hash = sk->sk_prot->hash;
559 			ctx->unhash = sk->sk_prot->unhash;
560 			ctx->sk_proto_close = sk->sk_prot->close;
561 			ctx->rx_conf = TLS_HW_RECORD;
562 			ctx->tx_conf = TLS_HW_RECORD;
563 			update_sk_prot(sk, ctx);
564 			rc = 1;
565 			break;
566 		}
567 	}
568 out:
569 	mutex_unlock(&device_mutex);
570 	return rc;
571 }
572 
573 static void tls_hw_unhash(struct sock *sk)
574 {
575 	struct tls_context *ctx = tls_get_ctx(sk);
576 	struct tls_device *dev;
577 
578 	mutex_lock(&device_mutex);
579 	list_for_each_entry(dev, &device_list, dev_list) {
580 		if (dev->unhash)
581 			dev->unhash(dev, sk);
582 	}
583 	mutex_unlock(&device_mutex);
584 	ctx->unhash(sk);
585 }
586 
587 static int tls_hw_hash(struct sock *sk)
588 {
589 	struct tls_context *ctx = tls_get_ctx(sk);
590 	struct tls_device *dev;
591 	int err;
592 
593 	err = ctx->hash(sk);
594 	mutex_lock(&device_mutex);
595 	list_for_each_entry(dev, &device_list, dev_list) {
596 		if (dev->hash)
597 			err |= dev->hash(dev, sk);
598 	}
599 	mutex_unlock(&device_mutex);
600 
601 	if (err)
602 		tls_hw_unhash(sk);
603 	return err;
604 }
605 
606 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
607 			 struct proto *base)
608 {
609 	prot[TLS_BASE][TLS_BASE] = *base;
610 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
611 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
612 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
613 
614 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
615 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
616 	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
617 
618 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
619 	prot[TLS_BASE][TLS_SW].recvmsg		= tls_sw_recvmsg;
620 	prot[TLS_BASE][TLS_SW].close		= tls_sk_proto_close;
621 
622 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
623 	prot[TLS_SW][TLS_SW].recvmsg	= tls_sw_recvmsg;
624 	prot[TLS_SW][TLS_SW].close	= tls_sk_proto_close;
625 
626 #ifdef CONFIG_TLS_DEVICE
627 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
628 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
629 	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
630 
631 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
632 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
633 	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
634 #endif
635 
636 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
637 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_hw_hash;
638 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_hw_unhash;
639 	prot[TLS_HW_RECORD][TLS_HW_RECORD].close	= tls_sk_proto_close;
640 }
641 
642 static int tls_init(struct sock *sk)
643 {
644 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
645 	struct tls_context *ctx;
646 	int rc = 0;
647 
648 	if (tls_hw_prot(sk))
649 		goto out;
650 
651 	/* The TLS ulp is currently supported only for TCP sockets
652 	 * in ESTABLISHED state.
653 	 * Supporting sockets in LISTEN state will require us
654 	 * to modify the accept implementation to clone rather then
655 	 * share the ulp context.
656 	 */
657 	if (sk->sk_state != TCP_ESTABLISHED)
658 		return -ENOTSUPP;
659 
660 	/* allocate tls context */
661 	ctx = create_ctx(sk);
662 	if (!ctx) {
663 		rc = -ENOMEM;
664 		goto out;
665 	}
666 	ctx->setsockopt = sk->sk_prot->setsockopt;
667 	ctx->getsockopt = sk->sk_prot->getsockopt;
668 	ctx->sk_proto_close = sk->sk_prot->close;
669 
670 	/* Build IPv6 TLS whenever the address of tcpv6	_prot changes */
671 	if (ip_ver == TLSV6 &&
672 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
673 		mutex_lock(&tcpv6_prot_mutex);
674 		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
675 			build_protos(tls_prots[TLSV6], sk->sk_prot);
676 			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
677 		}
678 		mutex_unlock(&tcpv6_prot_mutex);
679 	}
680 
681 	ctx->tx_conf = TLS_BASE;
682 	ctx->rx_conf = TLS_BASE;
683 	update_sk_prot(sk, ctx);
684 out:
685 	return rc;
686 }
687 
688 void tls_register_device(struct tls_device *device)
689 {
690 	mutex_lock(&device_mutex);
691 	list_add_tail(&device->dev_list, &device_list);
692 	mutex_unlock(&device_mutex);
693 }
694 EXPORT_SYMBOL(tls_register_device);
695 
696 void tls_unregister_device(struct tls_device *device)
697 {
698 	mutex_lock(&device_mutex);
699 	list_del(&device->dev_list);
700 	mutex_unlock(&device_mutex);
701 }
702 EXPORT_SYMBOL(tls_unregister_device);
703 
704 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
705 	.name			= "tls",
706 	.uid			= TCP_ULP_TLS,
707 	.user_visible		= true,
708 	.owner			= THIS_MODULE,
709 	.init			= tls_init,
710 };
711 
712 static int __init tls_register(void)
713 {
714 	build_protos(tls_prots[TLSV4], &tcp_prot);
715 
716 	tls_sw_proto_ops = inet_stream_ops;
717 	tls_sw_proto_ops.poll = tls_sw_poll;
718 	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
719 
720 #ifdef CONFIG_TLS_DEVICE
721 	tls_device_init();
722 #endif
723 	tcp_register_ulp(&tcp_tls_ulp_ops);
724 
725 	return 0;
726 }
727 
728 static void __exit tls_unregister(void)
729 {
730 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
731 #ifdef CONFIG_TLS_DEVICE
732 	tls_device_cleanup();
733 #endif
734 }
735 
736 module_init(tls_register);
737 module_exit(tls_unregister);
738