1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 #include <linux/inet_diag.h> 43 44 #include <net/snmp.h> 45 #include <net/tls.h> 46 #include <net/tls_toe.h> 47 48 MODULE_AUTHOR("Mellanox Technologies"); 49 MODULE_DESCRIPTION("Transport Layer Security Support"); 50 MODULE_LICENSE("Dual BSD/GPL"); 51 MODULE_ALIAS_TCP_ULP("tls"); 52 53 enum { 54 TLSV4, 55 TLSV6, 56 TLS_NUM_PROTS, 57 }; 58 59 static const struct proto *saved_tcpv6_prot; 60 static DEFINE_MUTEX(tcpv6_prot_mutex); 61 static const struct proto *saved_tcpv4_prot; 62 static DEFINE_MUTEX(tcpv4_prot_mutex); 63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 64 static struct proto_ops tls_sw_proto_ops; 65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 66 const struct proto *base); 67 68 void update_sk_prot(struct sock *sk, struct tls_context *ctx) 69 { 70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 71 72 WRITE_ONCE(sk->sk_prot, 73 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); 74 } 75 76 int wait_on_pending_writer(struct sock *sk, long *timeo) 77 { 78 int rc = 0; 79 DEFINE_WAIT_FUNC(wait, woken_wake_function); 80 81 add_wait_queue(sk_sleep(sk), &wait); 82 while (1) { 83 if (!*timeo) { 84 rc = -EAGAIN; 85 break; 86 } 87 88 if (signal_pending(current)) { 89 rc = sock_intr_errno(*timeo); 90 break; 91 } 92 93 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 94 break; 95 } 96 remove_wait_queue(sk_sleep(sk), &wait); 97 return rc; 98 } 99 100 int tls_push_sg(struct sock *sk, 101 struct tls_context *ctx, 102 struct scatterlist *sg, 103 u16 first_offset, 104 int flags) 105 { 106 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 107 int ret = 0; 108 struct page *p; 109 size_t size; 110 int offset = first_offset; 111 112 size = sg->length - offset; 113 offset += sg->offset; 114 115 ctx->in_tcp_sendpages = true; 116 while (1) { 117 if (sg_is_last(sg)) 118 sendpage_flags = flags; 119 120 /* is sending application-limited? */ 121 tcp_rate_check_app_limited(sk); 122 p = sg_page(sg); 123 retry: 124 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 125 126 if (ret != size) { 127 if (ret > 0) { 128 offset += ret; 129 size -= ret; 130 goto retry; 131 } 132 133 offset -= sg->offset; 134 ctx->partially_sent_offset = offset; 135 ctx->partially_sent_record = (void *)sg; 136 ctx->in_tcp_sendpages = false; 137 return ret; 138 } 139 140 put_page(p); 141 sk_mem_uncharge(sk, sg->length); 142 sg = sg_next(sg); 143 if (!sg) 144 break; 145 146 offset = sg->offset; 147 size = sg->length; 148 } 149 150 ctx->in_tcp_sendpages = false; 151 152 return 0; 153 } 154 155 static int tls_handle_open_record(struct sock *sk, int flags) 156 { 157 struct tls_context *ctx = tls_get_ctx(sk); 158 159 if (tls_is_pending_open_record(ctx)) 160 return ctx->push_pending_record(sk, flags); 161 162 return 0; 163 } 164 165 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 166 unsigned char *record_type) 167 { 168 struct cmsghdr *cmsg; 169 int rc = -EINVAL; 170 171 for_each_cmsghdr(cmsg, msg) { 172 if (!CMSG_OK(msg, cmsg)) 173 return -EINVAL; 174 if (cmsg->cmsg_level != SOL_TLS) 175 continue; 176 177 switch (cmsg->cmsg_type) { 178 case TLS_SET_RECORD_TYPE: 179 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 180 return -EINVAL; 181 182 if (msg->msg_flags & MSG_MORE) 183 return -EINVAL; 184 185 rc = tls_handle_open_record(sk, msg->msg_flags); 186 if (rc) 187 return rc; 188 189 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 190 rc = 0; 191 break; 192 default: 193 return -EINVAL; 194 } 195 } 196 197 return rc; 198 } 199 200 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 201 int flags) 202 { 203 struct scatterlist *sg; 204 u16 offset; 205 206 sg = ctx->partially_sent_record; 207 offset = ctx->partially_sent_offset; 208 209 ctx->partially_sent_record = NULL; 210 return tls_push_sg(sk, ctx, sg, offset, flags); 211 } 212 213 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 214 { 215 struct scatterlist *sg; 216 217 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { 218 put_page(sg_page(sg)); 219 sk_mem_uncharge(sk, sg->length); 220 } 221 ctx->partially_sent_record = NULL; 222 } 223 224 static void tls_write_space(struct sock *sk) 225 { 226 struct tls_context *ctx = tls_get_ctx(sk); 227 228 /* If in_tcp_sendpages call lower protocol write space handler 229 * to ensure we wake up any waiting operations there. For example 230 * if do_tcp_sendpages where to call sk_wait_event. 231 */ 232 if (ctx->in_tcp_sendpages) { 233 ctx->sk_write_space(sk); 234 return; 235 } 236 237 #ifdef CONFIG_TLS_DEVICE 238 if (ctx->tx_conf == TLS_HW) 239 tls_device_write_space(sk, ctx); 240 else 241 #endif 242 tls_sw_write_space(sk, ctx); 243 244 ctx->sk_write_space(sk); 245 } 246 247 /** 248 * tls_ctx_free() - free TLS ULP context 249 * @sk: socket to with @ctx is attached 250 * @ctx: TLS context structure 251 * 252 * Free TLS context. If @sk is %NULL caller guarantees that the socket 253 * to which @ctx was attached has no outstanding references. 254 */ 255 void tls_ctx_free(struct sock *sk, struct tls_context *ctx) 256 { 257 if (!ctx) 258 return; 259 260 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 261 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 262 mutex_destroy(&ctx->tx_lock); 263 264 if (sk) 265 kfree_rcu(ctx, rcu); 266 else 267 kfree(ctx); 268 } 269 270 static void tls_sk_proto_cleanup(struct sock *sk, 271 struct tls_context *ctx, long timeo) 272 { 273 if (unlikely(sk->sk_write_pending) && 274 !wait_on_pending_writer(sk, &timeo)) 275 tls_handle_open_record(sk, 0); 276 277 /* We need these for tls_sw_fallback handling of other packets */ 278 if (ctx->tx_conf == TLS_SW) { 279 kfree(ctx->tx.rec_seq); 280 kfree(ctx->tx.iv); 281 tls_sw_release_resources_tx(sk); 282 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 283 } else if (ctx->tx_conf == TLS_HW) { 284 tls_device_free_resources_tx(sk); 285 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 286 } 287 288 if (ctx->rx_conf == TLS_SW) { 289 tls_sw_release_resources_rx(sk); 290 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 291 } else if (ctx->rx_conf == TLS_HW) { 292 tls_device_offload_cleanup_rx(sk); 293 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 294 } 295 } 296 297 static void tls_sk_proto_close(struct sock *sk, long timeout) 298 { 299 struct inet_connection_sock *icsk = inet_csk(sk); 300 struct tls_context *ctx = tls_get_ctx(sk); 301 long timeo = sock_sndtimeo(sk, 0); 302 bool free_ctx; 303 304 if (ctx->tx_conf == TLS_SW) 305 tls_sw_cancel_work_tx(ctx); 306 307 lock_sock(sk); 308 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 309 310 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 311 tls_sk_proto_cleanup(sk, ctx, timeo); 312 313 write_lock_bh(&sk->sk_callback_lock); 314 if (free_ctx) 315 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 316 WRITE_ONCE(sk->sk_prot, ctx->sk_proto); 317 if (sk->sk_write_space == tls_write_space) 318 sk->sk_write_space = ctx->sk_write_space; 319 write_unlock_bh(&sk->sk_callback_lock); 320 release_sock(sk); 321 if (ctx->tx_conf == TLS_SW) 322 tls_sw_free_ctx_tx(ctx); 323 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 324 tls_sw_strparser_done(ctx); 325 if (ctx->rx_conf == TLS_SW) 326 tls_sw_free_ctx_rx(ctx); 327 ctx->sk_proto->close(sk, timeout); 328 329 if (free_ctx) 330 tls_ctx_free(sk, ctx); 331 } 332 333 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, 334 int __user *optlen) 335 { 336 int rc = 0; 337 struct tls_context *ctx = tls_get_ctx(sk); 338 struct tls_crypto_info *crypto_info; 339 int len; 340 341 if (get_user(len, optlen)) 342 return -EFAULT; 343 344 if (!optval || (len < sizeof(*crypto_info))) { 345 rc = -EINVAL; 346 goto out; 347 } 348 349 if (!ctx) { 350 rc = -EBUSY; 351 goto out; 352 } 353 354 /* get user crypto info */ 355 crypto_info = &ctx->crypto_send.info; 356 357 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 358 rc = -EBUSY; 359 goto out; 360 } 361 362 if (len == sizeof(*crypto_info)) { 363 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 364 rc = -EFAULT; 365 goto out; 366 } 367 368 switch (crypto_info->cipher_type) { 369 case TLS_CIPHER_AES_GCM_128: { 370 struct tls12_crypto_info_aes_gcm_128 * 371 crypto_info_aes_gcm_128 = 372 container_of(crypto_info, 373 struct tls12_crypto_info_aes_gcm_128, 374 info); 375 376 if (len != sizeof(*crypto_info_aes_gcm_128)) { 377 rc = -EINVAL; 378 goto out; 379 } 380 lock_sock(sk); 381 memcpy(crypto_info_aes_gcm_128->iv, 382 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 383 TLS_CIPHER_AES_GCM_128_IV_SIZE); 384 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, 385 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 386 release_sock(sk); 387 if (copy_to_user(optval, 388 crypto_info_aes_gcm_128, 389 sizeof(*crypto_info_aes_gcm_128))) 390 rc = -EFAULT; 391 break; 392 } 393 case TLS_CIPHER_AES_GCM_256: { 394 struct tls12_crypto_info_aes_gcm_256 * 395 crypto_info_aes_gcm_256 = 396 container_of(crypto_info, 397 struct tls12_crypto_info_aes_gcm_256, 398 info); 399 400 if (len != sizeof(*crypto_info_aes_gcm_256)) { 401 rc = -EINVAL; 402 goto out; 403 } 404 lock_sock(sk); 405 memcpy(crypto_info_aes_gcm_256->iv, 406 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 407 TLS_CIPHER_AES_GCM_256_IV_SIZE); 408 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq, 409 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 410 release_sock(sk); 411 if (copy_to_user(optval, 412 crypto_info_aes_gcm_256, 413 sizeof(*crypto_info_aes_gcm_256))) 414 rc = -EFAULT; 415 break; 416 } 417 default: 418 rc = -EINVAL; 419 } 420 421 out: 422 return rc; 423 } 424 425 static int do_tls_getsockopt(struct sock *sk, int optname, 426 char __user *optval, int __user *optlen) 427 { 428 int rc = 0; 429 430 switch (optname) { 431 case TLS_TX: 432 rc = do_tls_getsockopt_tx(sk, optval, optlen); 433 break; 434 default: 435 rc = -ENOPROTOOPT; 436 break; 437 } 438 return rc; 439 } 440 441 static int tls_getsockopt(struct sock *sk, int level, int optname, 442 char __user *optval, int __user *optlen) 443 { 444 struct tls_context *ctx = tls_get_ctx(sk); 445 446 if (level != SOL_TLS) 447 return ctx->sk_proto->getsockopt(sk, level, 448 optname, optval, optlen); 449 450 return do_tls_getsockopt(sk, optname, optval, optlen); 451 } 452 453 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval, 454 unsigned int optlen, int tx) 455 { 456 struct tls_crypto_info *crypto_info; 457 struct tls_crypto_info *alt_crypto_info; 458 struct tls_context *ctx = tls_get_ctx(sk); 459 size_t optsize; 460 int rc = 0; 461 int conf; 462 463 if (!optval || (optlen < sizeof(*crypto_info))) { 464 rc = -EINVAL; 465 goto out; 466 } 467 468 if (tx) { 469 crypto_info = &ctx->crypto_send.info; 470 alt_crypto_info = &ctx->crypto_recv.info; 471 } else { 472 crypto_info = &ctx->crypto_recv.info; 473 alt_crypto_info = &ctx->crypto_send.info; 474 } 475 476 /* Currently we don't support set crypto info more than one time */ 477 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 478 rc = -EBUSY; 479 goto out; 480 } 481 482 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); 483 if (rc) { 484 rc = -EFAULT; 485 goto err_crypto_info; 486 } 487 488 /* check version */ 489 if (crypto_info->version != TLS_1_2_VERSION && 490 crypto_info->version != TLS_1_3_VERSION) { 491 rc = -EINVAL; 492 goto err_crypto_info; 493 } 494 495 /* Ensure that TLS version and ciphers are same in both directions */ 496 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 497 if (alt_crypto_info->version != crypto_info->version || 498 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 499 rc = -EINVAL; 500 goto err_crypto_info; 501 } 502 } 503 504 switch (crypto_info->cipher_type) { 505 case TLS_CIPHER_AES_GCM_128: 506 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 507 break; 508 case TLS_CIPHER_AES_GCM_256: { 509 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 510 break; 511 } 512 case TLS_CIPHER_AES_CCM_128: 513 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 514 break; 515 default: 516 rc = -EINVAL; 517 goto err_crypto_info; 518 } 519 520 if (optlen != optsize) { 521 rc = -EINVAL; 522 goto err_crypto_info; 523 } 524 525 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), 526 optlen - sizeof(*crypto_info)); 527 if (rc) { 528 rc = -EFAULT; 529 goto err_crypto_info; 530 } 531 532 if (tx) { 533 rc = tls_set_device_offload(sk, ctx); 534 conf = TLS_HW; 535 if (!rc) { 536 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); 537 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 538 } else { 539 rc = tls_set_sw_offload(sk, ctx, 1); 540 if (rc) 541 goto err_crypto_info; 542 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); 543 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 544 conf = TLS_SW; 545 } 546 } else { 547 rc = tls_set_device_offload_rx(sk, ctx); 548 conf = TLS_HW; 549 if (!rc) { 550 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); 551 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 552 } else { 553 rc = tls_set_sw_offload(sk, ctx, 0); 554 if (rc) 555 goto err_crypto_info; 556 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); 557 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 558 conf = TLS_SW; 559 } 560 tls_sw_strparser_arm(sk, ctx); 561 } 562 563 if (tx) 564 ctx->tx_conf = conf; 565 else 566 ctx->rx_conf = conf; 567 update_sk_prot(sk, ctx); 568 if (tx) { 569 ctx->sk_write_space = sk->sk_write_space; 570 sk->sk_write_space = tls_write_space; 571 } else { 572 sk->sk_socket->ops = &tls_sw_proto_ops; 573 } 574 goto out; 575 576 err_crypto_info: 577 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 578 out: 579 return rc; 580 } 581 582 static int do_tls_setsockopt(struct sock *sk, int optname, 583 char __user *optval, unsigned int optlen) 584 { 585 int rc = 0; 586 587 switch (optname) { 588 case TLS_TX: 589 case TLS_RX: 590 lock_sock(sk); 591 rc = do_tls_setsockopt_conf(sk, optval, optlen, 592 optname == TLS_TX); 593 release_sock(sk); 594 break; 595 default: 596 rc = -ENOPROTOOPT; 597 break; 598 } 599 return rc; 600 } 601 602 static int tls_setsockopt(struct sock *sk, int level, int optname, 603 char __user *optval, unsigned int optlen) 604 { 605 struct tls_context *ctx = tls_get_ctx(sk); 606 607 if (level != SOL_TLS) 608 return ctx->sk_proto->setsockopt(sk, level, optname, optval, 609 optlen); 610 611 return do_tls_setsockopt(sk, optname, optval, optlen); 612 } 613 614 struct tls_context *tls_ctx_create(struct sock *sk) 615 { 616 struct inet_connection_sock *icsk = inet_csk(sk); 617 struct tls_context *ctx; 618 619 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 620 if (!ctx) 621 return NULL; 622 623 mutex_init(&ctx->tx_lock); 624 rcu_assign_pointer(icsk->icsk_ulp_data, ctx); 625 ctx->sk_proto = READ_ONCE(sk->sk_prot); 626 return ctx; 627 } 628 629 static void tls_build_proto(struct sock *sk) 630 { 631 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 632 struct proto *prot = READ_ONCE(sk->sk_prot); 633 634 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 635 if (ip_ver == TLSV6 && 636 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { 637 mutex_lock(&tcpv6_prot_mutex); 638 if (likely(prot != saved_tcpv6_prot)) { 639 build_protos(tls_prots[TLSV6], prot); 640 smp_store_release(&saved_tcpv6_prot, prot); 641 } 642 mutex_unlock(&tcpv6_prot_mutex); 643 } 644 645 if (ip_ver == TLSV4 && 646 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { 647 mutex_lock(&tcpv4_prot_mutex); 648 if (likely(prot != saved_tcpv4_prot)) { 649 build_protos(tls_prots[TLSV4], prot); 650 smp_store_release(&saved_tcpv4_prot, prot); 651 } 652 mutex_unlock(&tcpv4_prot_mutex); 653 } 654 } 655 656 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 657 const struct proto *base) 658 { 659 prot[TLS_BASE][TLS_BASE] = *base; 660 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 661 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 662 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 663 664 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 665 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 666 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 667 668 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 669 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 670 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read; 671 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 672 673 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 674 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 675 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read; 676 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 677 678 #ifdef CONFIG_TLS_DEVICE 679 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 680 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 681 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 682 683 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 684 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 685 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 686 687 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 688 689 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 690 691 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 692 #endif 693 #ifdef CONFIG_TLS_TOE 694 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 695 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; 696 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; 697 #endif 698 } 699 700 static int tls_init(struct sock *sk) 701 { 702 struct tls_context *ctx; 703 int rc = 0; 704 705 tls_build_proto(sk); 706 707 #ifdef CONFIG_TLS_TOE 708 if (tls_toe_bypass(sk)) 709 return 0; 710 #endif 711 712 /* The TLS ulp is currently supported only for TCP sockets 713 * in ESTABLISHED state. 714 * Supporting sockets in LISTEN state will require us 715 * to modify the accept implementation to clone rather then 716 * share the ulp context. 717 */ 718 if (sk->sk_state != TCP_ESTABLISHED) 719 return -ENOTCONN; 720 721 /* allocate tls context */ 722 write_lock_bh(&sk->sk_callback_lock); 723 ctx = tls_ctx_create(sk); 724 if (!ctx) { 725 rc = -ENOMEM; 726 goto out; 727 } 728 729 ctx->tx_conf = TLS_BASE; 730 ctx->rx_conf = TLS_BASE; 731 update_sk_prot(sk, ctx); 732 out: 733 write_unlock_bh(&sk->sk_callback_lock); 734 return rc; 735 } 736 737 static void tls_update(struct sock *sk, struct proto *p, 738 void (*write_space)(struct sock *sk)) 739 { 740 struct tls_context *ctx; 741 742 ctx = tls_get_ctx(sk); 743 if (likely(ctx)) { 744 ctx->sk_write_space = write_space; 745 ctx->sk_proto = p; 746 } else { 747 /* Pairs with lockless read in sk_clone_lock(). */ 748 WRITE_ONCE(sk->sk_prot, p); 749 sk->sk_write_space = write_space; 750 } 751 } 752 753 static int tls_get_info(const struct sock *sk, struct sk_buff *skb) 754 { 755 u16 version, cipher_type; 756 struct tls_context *ctx; 757 struct nlattr *start; 758 int err; 759 760 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); 761 if (!start) 762 return -EMSGSIZE; 763 764 rcu_read_lock(); 765 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); 766 if (!ctx) { 767 err = 0; 768 goto nla_failure; 769 } 770 version = ctx->prot_info.version; 771 if (version) { 772 err = nla_put_u16(skb, TLS_INFO_VERSION, version); 773 if (err) 774 goto nla_failure; 775 } 776 cipher_type = ctx->prot_info.cipher_type; 777 if (cipher_type) { 778 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); 779 if (err) 780 goto nla_failure; 781 } 782 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); 783 if (err) 784 goto nla_failure; 785 786 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); 787 if (err) 788 goto nla_failure; 789 790 rcu_read_unlock(); 791 nla_nest_end(skb, start); 792 return 0; 793 794 nla_failure: 795 rcu_read_unlock(); 796 nla_nest_cancel(skb, start); 797 return err; 798 } 799 800 static size_t tls_get_info_size(const struct sock *sk) 801 { 802 size_t size = 0; 803 804 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ 805 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ 806 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ 807 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ 808 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 809 0; 810 811 return size; 812 } 813 814 static int __net_init tls_init_net(struct net *net) 815 { 816 int err; 817 818 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); 819 if (!net->mib.tls_statistics) 820 return -ENOMEM; 821 822 err = tls_proc_init(net); 823 if (err) 824 goto err_free_stats; 825 826 return 0; 827 err_free_stats: 828 free_percpu(net->mib.tls_statistics); 829 return err; 830 } 831 832 static void __net_exit tls_exit_net(struct net *net) 833 { 834 tls_proc_fini(net); 835 free_percpu(net->mib.tls_statistics); 836 } 837 838 static struct pernet_operations tls_proc_ops = { 839 .init = tls_init_net, 840 .exit = tls_exit_net, 841 }; 842 843 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 844 .name = "tls", 845 .owner = THIS_MODULE, 846 .init = tls_init, 847 .update = tls_update, 848 .get_info = tls_get_info, 849 .get_info_size = tls_get_info_size, 850 }; 851 852 static int __init tls_register(void) 853 { 854 int err; 855 856 err = register_pernet_subsys(&tls_proc_ops); 857 if (err) 858 return err; 859 860 tls_sw_proto_ops = inet_stream_ops; 861 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 862 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked, 863 864 tls_device_init(); 865 tcp_register_ulp(&tcp_tls_ulp_ops); 866 867 return 0; 868 } 869 870 static void __exit tls_unregister(void) 871 { 872 tcp_unregister_ulp(&tcp_tls_ulp_ops); 873 tls_device_cleanup(); 874 unregister_pernet_subsys(&tls_proc_ops); 875 } 876 877 module_init(tls_register); 878 module_exit(tls_unregister); 879