1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 43 #include <net/tls.h> 44 45 MODULE_AUTHOR("Mellanox Technologies"); 46 MODULE_DESCRIPTION("Transport Layer Security Support"); 47 MODULE_LICENSE("Dual BSD/GPL"); 48 MODULE_ALIAS_TCP_ULP("tls"); 49 50 enum { 51 TLSV4, 52 TLSV6, 53 TLS_NUM_PROTS, 54 }; 55 56 static struct proto *saved_tcpv6_prot; 57 static DEFINE_MUTEX(tcpv6_prot_mutex); 58 static struct proto *saved_tcpv4_prot; 59 static DEFINE_MUTEX(tcpv4_prot_mutex); 60 static LIST_HEAD(device_list); 61 static DEFINE_SPINLOCK(device_spinlock); 62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 63 static struct proto_ops tls_sw_proto_ops; 64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 65 struct proto *base); 66 67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx) 68 { 69 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 70 71 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]; 72 } 73 74 int wait_on_pending_writer(struct sock *sk, long *timeo) 75 { 76 int rc = 0; 77 DEFINE_WAIT_FUNC(wait, woken_wake_function); 78 79 add_wait_queue(sk_sleep(sk), &wait); 80 while (1) { 81 if (!*timeo) { 82 rc = -EAGAIN; 83 break; 84 } 85 86 if (signal_pending(current)) { 87 rc = sock_intr_errno(*timeo); 88 break; 89 } 90 91 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 92 break; 93 } 94 remove_wait_queue(sk_sleep(sk), &wait); 95 return rc; 96 } 97 98 int tls_push_sg(struct sock *sk, 99 struct tls_context *ctx, 100 struct scatterlist *sg, 101 u16 first_offset, 102 int flags) 103 { 104 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 105 int ret = 0; 106 struct page *p; 107 size_t size; 108 int offset = first_offset; 109 110 size = sg->length - offset; 111 offset += sg->offset; 112 113 ctx->in_tcp_sendpages = true; 114 while (1) { 115 if (sg_is_last(sg)) 116 sendpage_flags = flags; 117 118 /* is sending application-limited? */ 119 tcp_rate_check_app_limited(sk); 120 p = sg_page(sg); 121 retry: 122 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 123 124 if (ret != size) { 125 if (ret > 0) { 126 offset += ret; 127 size -= ret; 128 goto retry; 129 } 130 131 offset -= sg->offset; 132 ctx->partially_sent_offset = offset; 133 ctx->partially_sent_record = (void *)sg; 134 ctx->in_tcp_sendpages = false; 135 return ret; 136 } 137 138 put_page(p); 139 sk_mem_uncharge(sk, sg->length); 140 sg = sg_next(sg); 141 if (!sg) 142 break; 143 144 offset = sg->offset; 145 size = sg->length; 146 } 147 148 ctx->in_tcp_sendpages = false; 149 150 return 0; 151 } 152 153 static int tls_handle_open_record(struct sock *sk, int flags) 154 { 155 struct tls_context *ctx = tls_get_ctx(sk); 156 157 if (tls_is_pending_open_record(ctx)) 158 return ctx->push_pending_record(sk, flags); 159 160 return 0; 161 } 162 163 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 164 unsigned char *record_type) 165 { 166 struct cmsghdr *cmsg; 167 int rc = -EINVAL; 168 169 for_each_cmsghdr(cmsg, msg) { 170 if (!CMSG_OK(msg, cmsg)) 171 return -EINVAL; 172 if (cmsg->cmsg_level != SOL_TLS) 173 continue; 174 175 switch (cmsg->cmsg_type) { 176 case TLS_SET_RECORD_TYPE: 177 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 178 return -EINVAL; 179 180 if (msg->msg_flags & MSG_MORE) 181 return -EINVAL; 182 183 rc = tls_handle_open_record(sk, msg->msg_flags); 184 if (rc) 185 return rc; 186 187 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 188 rc = 0; 189 break; 190 default: 191 return -EINVAL; 192 } 193 } 194 195 return rc; 196 } 197 198 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 199 int flags) 200 { 201 struct scatterlist *sg; 202 u16 offset; 203 204 sg = ctx->partially_sent_record; 205 offset = ctx->partially_sent_offset; 206 207 ctx->partially_sent_record = NULL; 208 return tls_push_sg(sk, ctx, sg, offset, flags); 209 } 210 211 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 212 { 213 struct scatterlist *sg; 214 215 sg = ctx->partially_sent_record; 216 if (!sg) 217 return false; 218 219 while (1) { 220 put_page(sg_page(sg)); 221 sk_mem_uncharge(sk, sg->length); 222 223 if (sg_is_last(sg)) 224 break; 225 sg++; 226 } 227 ctx->partially_sent_record = NULL; 228 return true; 229 } 230 231 static void tls_write_space(struct sock *sk) 232 { 233 struct tls_context *ctx = tls_get_ctx(sk); 234 235 /* If in_tcp_sendpages call lower protocol write space handler 236 * to ensure we wake up any waiting operations there. For example 237 * if do_tcp_sendpages where to call sk_wait_event. 238 */ 239 if (ctx->in_tcp_sendpages) { 240 ctx->sk_write_space(sk); 241 return; 242 } 243 244 #ifdef CONFIG_TLS_DEVICE 245 if (ctx->tx_conf == TLS_HW) 246 tls_device_write_space(sk, ctx); 247 else 248 #endif 249 tls_sw_write_space(sk, ctx); 250 251 ctx->sk_write_space(sk); 252 } 253 254 static void tls_ctx_free(struct tls_context *ctx) 255 { 256 if (!ctx) 257 return; 258 259 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 260 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 261 kfree(ctx); 262 } 263 264 static void tls_sk_proto_close(struct sock *sk, long timeout) 265 { 266 struct tls_context *ctx = tls_get_ctx(sk); 267 long timeo = sock_sndtimeo(sk, 0); 268 void (*sk_proto_close)(struct sock *sk, long timeout); 269 bool free_ctx = false; 270 271 lock_sock(sk); 272 sk_proto_close = ctx->sk_proto_close; 273 274 if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) 275 goto skip_tx_cleanup; 276 277 if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) { 278 free_ctx = true; 279 goto skip_tx_cleanup; 280 } 281 282 if (!tls_complete_pending_work(sk, ctx, 0, &timeo)) 283 tls_handle_open_record(sk, 0); 284 285 /* We need these for tls_sw_fallback handling of other packets */ 286 if (ctx->tx_conf == TLS_SW) { 287 kfree(ctx->tx.rec_seq); 288 kfree(ctx->tx.iv); 289 tls_sw_free_resources_tx(sk); 290 #ifdef CONFIG_TLS_DEVICE 291 } else if (ctx->tx_conf == TLS_HW) { 292 tls_device_free_resources_tx(sk); 293 #endif 294 } 295 296 if (ctx->rx_conf == TLS_SW) 297 tls_sw_free_resources_rx(sk); 298 299 #ifdef CONFIG_TLS_DEVICE 300 if (ctx->rx_conf == TLS_HW) 301 tls_device_offload_cleanup_rx(sk); 302 303 if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) { 304 #else 305 { 306 #endif 307 tls_ctx_free(ctx); 308 ctx = NULL; 309 } 310 311 skip_tx_cleanup: 312 release_sock(sk); 313 sk_proto_close(sk, timeout); 314 /* free ctx for TLS_HW_RECORD, used by tcp_set_state 315 * for sk->sk_prot->unhash [tls_hw_unhash] 316 */ 317 if (free_ctx) 318 tls_ctx_free(ctx); 319 } 320 321 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, 322 int __user *optlen) 323 { 324 int rc = 0; 325 struct tls_context *ctx = tls_get_ctx(sk); 326 struct tls_crypto_info *crypto_info; 327 int len; 328 329 if (get_user(len, optlen)) 330 return -EFAULT; 331 332 if (!optval || (len < sizeof(*crypto_info))) { 333 rc = -EINVAL; 334 goto out; 335 } 336 337 if (!ctx) { 338 rc = -EBUSY; 339 goto out; 340 } 341 342 /* get user crypto info */ 343 crypto_info = &ctx->crypto_send.info; 344 345 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 346 rc = -EBUSY; 347 goto out; 348 } 349 350 if (len == sizeof(*crypto_info)) { 351 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 352 rc = -EFAULT; 353 goto out; 354 } 355 356 switch (crypto_info->cipher_type) { 357 case TLS_CIPHER_AES_GCM_128: { 358 struct tls12_crypto_info_aes_gcm_128 * 359 crypto_info_aes_gcm_128 = 360 container_of(crypto_info, 361 struct tls12_crypto_info_aes_gcm_128, 362 info); 363 364 if (len != sizeof(*crypto_info_aes_gcm_128)) { 365 rc = -EINVAL; 366 goto out; 367 } 368 lock_sock(sk); 369 memcpy(crypto_info_aes_gcm_128->iv, 370 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 371 TLS_CIPHER_AES_GCM_128_IV_SIZE); 372 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, 373 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 374 release_sock(sk); 375 if (copy_to_user(optval, 376 crypto_info_aes_gcm_128, 377 sizeof(*crypto_info_aes_gcm_128))) 378 rc = -EFAULT; 379 break; 380 } 381 case TLS_CIPHER_AES_GCM_256: { 382 struct tls12_crypto_info_aes_gcm_256 * 383 crypto_info_aes_gcm_256 = 384 container_of(crypto_info, 385 struct tls12_crypto_info_aes_gcm_256, 386 info); 387 388 if (len != sizeof(*crypto_info_aes_gcm_256)) { 389 rc = -EINVAL; 390 goto out; 391 } 392 lock_sock(sk); 393 memcpy(crypto_info_aes_gcm_256->iv, 394 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 395 TLS_CIPHER_AES_GCM_256_IV_SIZE); 396 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq, 397 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 398 release_sock(sk); 399 if (copy_to_user(optval, 400 crypto_info_aes_gcm_256, 401 sizeof(*crypto_info_aes_gcm_256))) 402 rc = -EFAULT; 403 break; 404 } 405 default: 406 rc = -EINVAL; 407 } 408 409 out: 410 return rc; 411 } 412 413 static int do_tls_getsockopt(struct sock *sk, int optname, 414 char __user *optval, int __user *optlen) 415 { 416 int rc = 0; 417 418 switch (optname) { 419 case TLS_TX: 420 rc = do_tls_getsockopt_tx(sk, optval, optlen); 421 break; 422 default: 423 rc = -ENOPROTOOPT; 424 break; 425 } 426 return rc; 427 } 428 429 static int tls_getsockopt(struct sock *sk, int level, int optname, 430 char __user *optval, int __user *optlen) 431 { 432 struct tls_context *ctx = tls_get_ctx(sk); 433 434 if (level != SOL_TLS) 435 return ctx->getsockopt(sk, level, optname, optval, optlen); 436 437 return do_tls_getsockopt(sk, optname, optval, optlen); 438 } 439 440 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval, 441 unsigned int optlen, int tx) 442 { 443 struct tls_crypto_info *crypto_info; 444 struct tls_crypto_info *alt_crypto_info; 445 struct tls_context *ctx = tls_get_ctx(sk); 446 size_t optsize; 447 int rc = 0; 448 int conf; 449 450 if (!optval || (optlen < sizeof(*crypto_info))) { 451 rc = -EINVAL; 452 goto out; 453 } 454 455 if (tx) { 456 crypto_info = &ctx->crypto_send.info; 457 alt_crypto_info = &ctx->crypto_recv.info; 458 } else { 459 crypto_info = &ctx->crypto_recv.info; 460 alt_crypto_info = &ctx->crypto_send.info; 461 } 462 463 /* Currently we don't support set crypto info more than one time */ 464 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 465 rc = -EBUSY; 466 goto out; 467 } 468 469 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); 470 if (rc) { 471 rc = -EFAULT; 472 goto err_crypto_info; 473 } 474 475 /* check version */ 476 if (crypto_info->version != TLS_1_2_VERSION && 477 crypto_info->version != TLS_1_3_VERSION) { 478 rc = -ENOTSUPP; 479 goto err_crypto_info; 480 } 481 482 /* Ensure that TLS version and ciphers are same in both directions */ 483 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 484 if (alt_crypto_info->version != crypto_info->version || 485 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 486 rc = -EINVAL; 487 goto err_crypto_info; 488 } 489 } 490 491 switch (crypto_info->cipher_type) { 492 case TLS_CIPHER_AES_GCM_128: 493 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 494 break; 495 case TLS_CIPHER_AES_GCM_256: { 496 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 497 break; 498 } 499 case TLS_CIPHER_AES_CCM_128: 500 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 501 break; 502 default: 503 rc = -EINVAL; 504 goto err_crypto_info; 505 } 506 507 if (optlen != optsize) { 508 rc = -EINVAL; 509 goto err_crypto_info; 510 } 511 512 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), 513 optlen - sizeof(*crypto_info)); 514 if (rc) { 515 rc = -EFAULT; 516 goto err_crypto_info; 517 } 518 519 if (tx) { 520 #ifdef CONFIG_TLS_DEVICE 521 rc = tls_set_device_offload(sk, ctx); 522 conf = TLS_HW; 523 if (rc) { 524 #else 525 { 526 #endif 527 rc = tls_set_sw_offload(sk, ctx, 1); 528 conf = TLS_SW; 529 } 530 } else { 531 #ifdef CONFIG_TLS_DEVICE 532 rc = tls_set_device_offload_rx(sk, ctx); 533 conf = TLS_HW; 534 if (rc) { 535 #else 536 { 537 #endif 538 rc = tls_set_sw_offload(sk, ctx, 0); 539 conf = TLS_SW; 540 } 541 } 542 543 if (rc) 544 goto err_crypto_info; 545 546 if (tx) 547 ctx->tx_conf = conf; 548 else 549 ctx->rx_conf = conf; 550 update_sk_prot(sk, ctx); 551 if (tx) { 552 ctx->sk_write_space = sk->sk_write_space; 553 sk->sk_write_space = tls_write_space; 554 } else { 555 sk->sk_socket->ops = &tls_sw_proto_ops; 556 } 557 goto out; 558 559 err_crypto_info: 560 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 561 out: 562 return rc; 563 } 564 565 static int do_tls_setsockopt(struct sock *sk, int optname, 566 char __user *optval, unsigned int optlen) 567 { 568 int rc = 0; 569 570 switch (optname) { 571 case TLS_TX: 572 case TLS_RX: 573 lock_sock(sk); 574 rc = do_tls_setsockopt_conf(sk, optval, optlen, 575 optname == TLS_TX); 576 release_sock(sk); 577 break; 578 default: 579 rc = -ENOPROTOOPT; 580 break; 581 } 582 return rc; 583 } 584 585 static int tls_setsockopt(struct sock *sk, int level, int optname, 586 char __user *optval, unsigned int optlen) 587 { 588 struct tls_context *ctx = tls_get_ctx(sk); 589 590 if (level != SOL_TLS) 591 return ctx->setsockopt(sk, level, optname, optval, optlen); 592 593 return do_tls_setsockopt(sk, optname, optval, optlen); 594 } 595 596 static struct tls_context *create_ctx(struct sock *sk) 597 { 598 struct inet_connection_sock *icsk = inet_csk(sk); 599 struct tls_context *ctx; 600 601 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 602 if (!ctx) 603 return NULL; 604 605 icsk->icsk_ulp_data = ctx; 606 ctx->setsockopt = sk->sk_prot->setsockopt; 607 ctx->getsockopt = sk->sk_prot->getsockopt; 608 ctx->sk_proto_close = sk->sk_prot->close; 609 return ctx; 610 } 611 612 static void tls_build_proto(struct sock *sk) 613 { 614 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 615 616 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 617 if (ip_ver == TLSV6 && 618 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { 619 mutex_lock(&tcpv6_prot_mutex); 620 if (likely(sk->sk_prot != saved_tcpv6_prot)) { 621 build_protos(tls_prots[TLSV6], sk->sk_prot); 622 smp_store_release(&saved_tcpv6_prot, sk->sk_prot); 623 } 624 mutex_unlock(&tcpv6_prot_mutex); 625 } 626 627 if (ip_ver == TLSV4 && 628 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) { 629 mutex_lock(&tcpv4_prot_mutex); 630 if (likely(sk->sk_prot != saved_tcpv4_prot)) { 631 build_protos(tls_prots[TLSV4], sk->sk_prot); 632 smp_store_release(&saved_tcpv4_prot, sk->sk_prot); 633 } 634 mutex_unlock(&tcpv4_prot_mutex); 635 } 636 } 637 638 static void tls_hw_sk_destruct(struct sock *sk) 639 { 640 struct tls_context *ctx = tls_get_ctx(sk); 641 struct inet_connection_sock *icsk = inet_csk(sk); 642 643 ctx->sk_destruct(sk); 644 /* Free ctx */ 645 kfree(ctx); 646 icsk->icsk_ulp_data = NULL; 647 } 648 649 static int tls_hw_prot(struct sock *sk) 650 { 651 struct tls_context *ctx; 652 struct tls_device *dev; 653 int rc = 0; 654 655 spin_lock_bh(&device_spinlock); 656 list_for_each_entry(dev, &device_list, dev_list) { 657 if (dev->feature && dev->feature(dev)) { 658 ctx = create_ctx(sk); 659 if (!ctx) 660 goto out; 661 662 spin_unlock_bh(&device_spinlock); 663 tls_build_proto(sk); 664 ctx->hash = sk->sk_prot->hash; 665 ctx->unhash = sk->sk_prot->unhash; 666 ctx->sk_proto_close = sk->sk_prot->close; 667 ctx->sk_destruct = sk->sk_destruct; 668 sk->sk_destruct = tls_hw_sk_destruct; 669 ctx->rx_conf = TLS_HW_RECORD; 670 ctx->tx_conf = TLS_HW_RECORD; 671 update_sk_prot(sk, ctx); 672 spin_lock_bh(&device_spinlock); 673 rc = 1; 674 break; 675 } 676 } 677 out: 678 spin_unlock_bh(&device_spinlock); 679 return rc; 680 } 681 682 static void tls_hw_unhash(struct sock *sk) 683 { 684 struct tls_context *ctx = tls_get_ctx(sk); 685 struct tls_device *dev; 686 687 spin_lock_bh(&device_spinlock); 688 list_for_each_entry(dev, &device_list, dev_list) { 689 if (dev->unhash) { 690 kref_get(&dev->kref); 691 spin_unlock_bh(&device_spinlock); 692 dev->unhash(dev, sk); 693 kref_put(&dev->kref, dev->release); 694 spin_lock_bh(&device_spinlock); 695 } 696 } 697 spin_unlock_bh(&device_spinlock); 698 ctx->unhash(sk); 699 } 700 701 static int tls_hw_hash(struct sock *sk) 702 { 703 struct tls_context *ctx = tls_get_ctx(sk); 704 struct tls_device *dev; 705 int err; 706 707 err = ctx->hash(sk); 708 spin_lock_bh(&device_spinlock); 709 list_for_each_entry(dev, &device_list, dev_list) { 710 if (dev->hash) { 711 kref_get(&dev->kref); 712 spin_unlock_bh(&device_spinlock); 713 err |= dev->hash(dev, sk); 714 kref_put(&dev->kref, dev->release); 715 spin_lock_bh(&device_spinlock); 716 } 717 } 718 spin_unlock_bh(&device_spinlock); 719 720 if (err) 721 tls_hw_unhash(sk); 722 return err; 723 } 724 725 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 726 struct proto *base) 727 { 728 prot[TLS_BASE][TLS_BASE] = *base; 729 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 730 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 731 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 732 733 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 734 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 735 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 736 737 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 738 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 739 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read; 740 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 741 742 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 743 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 744 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read; 745 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 746 747 #ifdef CONFIG_TLS_DEVICE 748 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 749 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 750 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 751 752 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 753 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 754 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 755 756 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 757 758 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 759 760 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 761 #endif 762 763 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 764 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash; 765 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash; 766 prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close; 767 } 768 769 static int tls_init(struct sock *sk) 770 { 771 struct tls_context *ctx; 772 int rc = 0; 773 774 if (tls_hw_prot(sk)) 775 goto out; 776 777 /* The TLS ulp is currently supported only for TCP sockets 778 * in ESTABLISHED state. 779 * Supporting sockets in LISTEN state will require us 780 * to modify the accept implementation to clone rather then 781 * share the ulp context. 782 */ 783 if (sk->sk_state != TCP_ESTABLISHED) 784 return -ENOTSUPP; 785 786 /* allocate tls context */ 787 ctx = create_ctx(sk); 788 if (!ctx) { 789 rc = -ENOMEM; 790 goto out; 791 } 792 793 tls_build_proto(sk); 794 ctx->tx_conf = TLS_BASE; 795 ctx->rx_conf = TLS_BASE; 796 update_sk_prot(sk, ctx); 797 out: 798 return rc; 799 } 800 801 void tls_register_device(struct tls_device *device) 802 { 803 spin_lock_bh(&device_spinlock); 804 list_add_tail(&device->dev_list, &device_list); 805 spin_unlock_bh(&device_spinlock); 806 } 807 EXPORT_SYMBOL(tls_register_device); 808 809 void tls_unregister_device(struct tls_device *device) 810 { 811 spin_lock_bh(&device_spinlock); 812 list_del(&device->dev_list); 813 spin_unlock_bh(&device_spinlock); 814 } 815 EXPORT_SYMBOL(tls_unregister_device); 816 817 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 818 .name = "tls", 819 .owner = THIS_MODULE, 820 .init = tls_init, 821 }; 822 823 static int __init tls_register(void) 824 { 825 tls_sw_proto_ops = inet_stream_ops; 826 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 827 828 #ifdef CONFIG_TLS_DEVICE 829 tls_device_init(); 830 #endif 831 tcp_register_ulp(&tcp_tls_ulp_ops); 832 833 return 0; 834 } 835 836 static void __exit tls_unregister(void) 837 { 838 tcp_unregister_ulp(&tcp_tls_ulp_ops); 839 #ifdef CONFIG_TLS_DEVICE 840 tls_device_cleanup(); 841 #endif 842 } 843 844 module_init(tls_register); 845 module_exit(tls_unregister); 846