xref: /openbmc/linux/net/tls/tls_main.c (revision 98ddec80)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 
43 #include <net/tls.h>
44 
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 
49 enum {
50 	TLSV4,
51 	TLSV6,
52 	TLS_NUM_PROTS,
53 };
54 enum {
55 	TLS_BASE,
56 	TLS_SW,
57 #ifdef CONFIG_TLS_DEVICE
58 	TLS_HW,
59 #endif
60 	TLS_HW_RECORD,
61 	TLS_NUM_CONFIG,
62 };
63 
64 static struct proto *saved_tcpv6_prot;
65 static DEFINE_MUTEX(tcpv6_prot_mutex);
66 static LIST_HEAD(device_list);
67 static DEFINE_MUTEX(device_mutex);
68 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
69 static struct proto_ops tls_sw_proto_ops;
70 
71 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
72 {
73 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
74 
75 	sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
76 }
77 
78 int wait_on_pending_writer(struct sock *sk, long *timeo)
79 {
80 	int rc = 0;
81 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
82 
83 	add_wait_queue(sk_sleep(sk), &wait);
84 	while (1) {
85 		if (!*timeo) {
86 			rc = -EAGAIN;
87 			break;
88 		}
89 
90 		if (signal_pending(current)) {
91 			rc = sock_intr_errno(*timeo);
92 			break;
93 		}
94 
95 		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
96 			break;
97 	}
98 	remove_wait_queue(sk_sleep(sk), &wait);
99 	return rc;
100 }
101 
102 int tls_push_sg(struct sock *sk,
103 		struct tls_context *ctx,
104 		struct scatterlist *sg,
105 		u16 first_offset,
106 		int flags)
107 {
108 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109 	int ret = 0;
110 	struct page *p;
111 	size_t size;
112 	int offset = first_offset;
113 
114 	size = sg->length - offset;
115 	offset += sg->offset;
116 
117 	ctx->in_tcp_sendpages = true;
118 	while (1) {
119 		if (sg_is_last(sg))
120 			sendpage_flags = flags;
121 
122 		/* is sending application-limited? */
123 		tcp_rate_check_app_limited(sk);
124 		p = sg_page(sg);
125 retry:
126 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
127 
128 		if (ret != size) {
129 			if (ret > 0) {
130 				offset += ret;
131 				size -= ret;
132 				goto retry;
133 			}
134 
135 			offset -= sg->offset;
136 			ctx->partially_sent_offset = offset;
137 			ctx->partially_sent_record = (void *)sg;
138 			ctx->in_tcp_sendpages = false;
139 			return ret;
140 		}
141 
142 		put_page(p);
143 		sk_mem_uncharge(sk, sg->length);
144 		sg = sg_next(sg);
145 		if (!sg)
146 			break;
147 
148 		offset = sg->offset;
149 		size = sg->length;
150 	}
151 
152 	clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
153 	ctx->in_tcp_sendpages = false;
154 	ctx->sk_write_space(sk);
155 
156 	return 0;
157 }
158 
159 static int tls_handle_open_record(struct sock *sk, int flags)
160 {
161 	struct tls_context *ctx = tls_get_ctx(sk);
162 
163 	if (tls_is_pending_open_record(ctx))
164 		return ctx->push_pending_record(sk, flags);
165 
166 	return 0;
167 }
168 
169 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
170 		      unsigned char *record_type)
171 {
172 	struct cmsghdr *cmsg;
173 	int rc = -EINVAL;
174 
175 	for_each_cmsghdr(cmsg, msg) {
176 		if (!CMSG_OK(msg, cmsg))
177 			return -EINVAL;
178 		if (cmsg->cmsg_level != SOL_TLS)
179 			continue;
180 
181 		switch (cmsg->cmsg_type) {
182 		case TLS_SET_RECORD_TYPE:
183 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
184 				return -EINVAL;
185 
186 			if (msg->msg_flags & MSG_MORE)
187 				return -EINVAL;
188 
189 			rc = tls_handle_open_record(sk, msg->msg_flags);
190 			if (rc)
191 				return rc;
192 
193 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
194 			rc = 0;
195 			break;
196 		default:
197 			return -EINVAL;
198 		}
199 	}
200 
201 	return rc;
202 }
203 
204 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
205 				   int flags, long *timeo)
206 {
207 	struct scatterlist *sg;
208 	u16 offset;
209 
210 	if (!tls_is_partially_sent_record(ctx))
211 		return ctx->push_pending_record(sk, flags);
212 
213 	sg = ctx->partially_sent_record;
214 	offset = ctx->partially_sent_offset;
215 
216 	ctx->partially_sent_record = NULL;
217 	return tls_push_sg(sk, ctx, sg, offset, flags);
218 }
219 
220 static void tls_write_space(struct sock *sk)
221 {
222 	struct tls_context *ctx = tls_get_ctx(sk);
223 
224 	/* We are already sending pages, ignore notification */
225 	if (ctx->in_tcp_sendpages)
226 		return;
227 
228 	if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
229 		gfp_t sk_allocation = sk->sk_allocation;
230 		int rc;
231 		long timeo = 0;
232 
233 		sk->sk_allocation = GFP_ATOMIC;
234 		rc = tls_push_pending_closed_record(sk, ctx,
235 						    MSG_DONTWAIT |
236 						    MSG_NOSIGNAL,
237 						    &timeo);
238 		sk->sk_allocation = sk_allocation;
239 
240 		if (rc < 0)
241 			return;
242 	}
243 
244 	ctx->sk_write_space(sk);
245 }
246 
247 static void tls_sk_proto_close(struct sock *sk, long timeout)
248 {
249 	struct tls_context *ctx = tls_get_ctx(sk);
250 	long timeo = sock_sndtimeo(sk, 0);
251 	void (*sk_proto_close)(struct sock *sk, long timeout);
252 	bool free_ctx = false;
253 
254 	lock_sock(sk);
255 	sk_proto_close = ctx->sk_proto_close;
256 
257 	if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
258 	    (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
259 		free_ctx = true;
260 		goto skip_tx_cleanup;
261 	}
262 
263 	if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
264 		tls_handle_open_record(sk, 0);
265 
266 	if (ctx->partially_sent_record) {
267 		struct scatterlist *sg = ctx->partially_sent_record;
268 
269 		while (1) {
270 			put_page(sg_page(sg));
271 			sk_mem_uncharge(sk, sg->length);
272 
273 			if (sg_is_last(sg))
274 				break;
275 			sg++;
276 		}
277 	}
278 
279 	/* We need these for tls_sw_fallback handling of other packets */
280 	if (ctx->tx_conf == TLS_SW) {
281 		kfree(ctx->tx.rec_seq);
282 		kfree(ctx->tx.iv);
283 		tls_sw_free_resources_tx(sk);
284 	}
285 
286 	if (ctx->rx_conf == TLS_SW) {
287 		kfree(ctx->rx.rec_seq);
288 		kfree(ctx->rx.iv);
289 		tls_sw_free_resources_rx(sk);
290 	}
291 
292 #ifdef CONFIG_TLS_DEVICE
293 	if (ctx->tx_conf != TLS_HW) {
294 #else
295 	{
296 #endif
297 		kfree(ctx);
298 		ctx = NULL;
299 	}
300 
301 skip_tx_cleanup:
302 	release_sock(sk);
303 	sk_proto_close(sk, timeout);
304 	/* free ctx for TLS_HW_RECORD, used by tcp_set_state
305 	 * for sk->sk_prot->unhash [tls_hw_unhash]
306 	 */
307 	if (free_ctx)
308 		kfree(ctx);
309 }
310 
311 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
312 				int __user *optlen)
313 {
314 	int rc = 0;
315 	struct tls_context *ctx = tls_get_ctx(sk);
316 	struct tls_crypto_info *crypto_info;
317 	int len;
318 
319 	if (get_user(len, optlen))
320 		return -EFAULT;
321 
322 	if (!optval || (len < sizeof(*crypto_info))) {
323 		rc = -EINVAL;
324 		goto out;
325 	}
326 
327 	if (!ctx) {
328 		rc = -EBUSY;
329 		goto out;
330 	}
331 
332 	/* get user crypto info */
333 	crypto_info = &ctx->crypto_send;
334 
335 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
336 		rc = -EBUSY;
337 		goto out;
338 	}
339 
340 	if (len == sizeof(*crypto_info)) {
341 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
342 			rc = -EFAULT;
343 		goto out;
344 	}
345 
346 	switch (crypto_info->cipher_type) {
347 	case TLS_CIPHER_AES_GCM_128: {
348 		struct tls12_crypto_info_aes_gcm_128 *
349 		  crypto_info_aes_gcm_128 =
350 		  container_of(crypto_info,
351 			       struct tls12_crypto_info_aes_gcm_128,
352 			       info);
353 
354 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
355 			rc = -EINVAL;
356 			goto out;
357 		}
358 		lock_sock(sk);
359 		memcpy(crypto_info_aes_gcm_128->iv,
360 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
361 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
362 		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
363 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
364 		release_sock(sk);
365 		if (copy_to_user(optval,
366 				 crypto_info_aes_gcm_128,
367 				 sizeof(*crypto_info_aes_gcm_128)))
368 			rc = -EFAULT;
369 		break;
370 	}
371 	default:
372 		rc = -EINVAL;
373 	}
374 
375 out:
376 	return rc;
377 }
378 
379 static int do_tls_getsockopt(struct sock *sk, int optname,
380 			     char __user *optval, int __user *optlen)
381 {
382 	int rc = 0;
383 
384 	switch (optname) {
385 	case TLS_TX:
386 		rc = do_tls_getsockopt_tx(sk, optval, optlen);
387 		break;
388 	default:
389 		rc = -ENOPROTOOPT;
390 		break;
391 	}
392 	return rc;
393 }
394 
395 static int tls_getsockopt(struct sock *sk, int level, int optname,
396 			  char __user *optval, int __user *optlen)
397 {
398 	struct tls_context *ctx = tls_get_ctx(sk);
399 
400 	if (level != SOL_TLS)
401 		return ctx->getsockopt(sk, level, optname, optval, optlen);
402 
403 	return do_tls_getsockopt(sk, optname, optval, optlen);
404 }
405 
406 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
407 				  unsigned int optlen, int tx)
408 {
409 	struct tls_crypto_info *crypto_info;
410 	struct tls_context *ctx = tls_get_ctx(sk);
411 	int rc = 0;
412 	int conf;
413 
414 	if (!optval || (optlen < sizeof(*crypto_info))) {
415 		rc = -EINVAL;
416 		goto out;
417 	}
418 
419 	if (tx)
420 		crypto_info = &ctx->crypto_send;
421 	else
422 		crypto_info = &ctx->crypto_recv;
423 
424 	/* Currently we don't support set crypto info more than one time */
425 	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
426 		rc = -EBUSY;
427 		goto out;
428 	}
429 
430 	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
431 	if (rc) {
432 		rc = -EFAULT;
433 		goto err_crypto_info;
434 	}
435 
436 	/* check version */
437 	if (crypto_info->version != TLS_1_2_VERSION) {
438 		rc = -ENOTSUPP;
439 		goto err_crypto_info;
440 	}
441 
442 	switch (crypto_info->cipher_type) {
443 	case TLS_CIPHER_AES_GCM_128: {
444 		if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
445 			rc = -EINVAL;
446 			goto err_crypto_info;
447 		}
448 		rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
449 				    optlen - sizeof(*crypto_info));
450 		if (rc) {
451 			rc = -EFAULT;
452 			goto err_crypto_info;
453 		}
454 		break;
455 	}
456 	default:
457 		rc = -EINVAL;
458 		goto err_crypto_info;
459 	}
460 
461 	if (tx) {
462 #ifdef CONFIG_TLS_DEVICE
463 		rc = tls_set_device_offload(sk, ctx);
464 		conf = TLS_HW;
465 		if (rc) {
466 #else
467 		{
468 #endif
469 			rc = tls_set_sw_offload(sk, ctx, 1);
470 			conf = TLS_SW;
471 		}
472 	} else {
473 		rc = tls_set_sw_offload(sk, ctx, 0);
474 		conf = TLS_SW;
475 	}
476 
477 	if (rc)
478 		goto err_crypto_info;
479 
480 	if (tx)
481 		ctx->tx_conf = conf;
482 	else
483 		ctx->rx_conf = conf;
484 	update_sk_prot(sk, ctx);
485 	if (tx) {
486 		ctx->sk_write_space = sk->sk_write_space;
487 		sk->sk_write_space = tls_write_space;
488 	} else {
489 		sk->sk_socket->ops = &tls_sw_proto_ops;
490 	}
491 	goto out;
492 
493 err_crypto_info:
494 	memset(crypto_info, 0, sizeof(*crypto_info));
495 out:
496 	return rc;
497 }
498 
499 static int do_tls_setsockopt(struct sock *sk, int optname,
500 			     char __user *optval, unsigned int optlen)
501 {
502 	int rc = 0;
503 
504 	switch (optname) {
505 	case TLS_TX:
506 	case TLS_RX:
507 		lock_sock(sk);
508 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
509 					    optname == TLS_TX);
510 		release_sock(sk);
511 		break;
512 	default:
513 		rc = -ENOPROTOOPT;
514 		break;
515 	}
516 	return rc;
517 }
518 
519 static int tls_setsockopt(struct sock *sk, int level, int optname,
520 			  char __user *optval, unsigned int optlen)
521 {
522 	struct tls_context *ctx = tls_get_ctx(sk);
523 
524 	if (level != SOL_TLS)
525 		return ctx->setsockopt(sk, level, optname, optval, optlen);
526 
527 	return do_tls_setsockopt(sk, optname, optval, optlen);
528 }
529 
530 static struct tls_context *create_ctx(struct sock *sk)
531 {
532 	struct inet_connection_sock *icsk = inet_csk(sk);
533 	struct tls_context *ctx;
534 
535 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
536 	if (!ctx)
537 		return NULL;
538 
539 	icsk->icsk_ulp_data = ctx;
540 	return ctx;
541 }
542 
543 static int tls_hw_prot(struct sock *sk)
544 {
545 	struct tls_context *ctx;
546 	struct tls_device *dev;
547 	int rc = 0;
548 
549 	mutex_lock(&device_mutex);
550 	list_for_each_entry(dev, &device_list, dev_list) {
551 		if (dev->feature && dev->feature(dev)) {
552 			ctx = create_ctx(sk);
553 			if (!ctx)
554 				goto out;
555 
556 			ctx->hash = sk->sk_prot->hash;
557 			ctx->unhash = sk->sk_prot->unhash;
558 			ctx->sk_proto_close = sk->sk_prot->close;
559 			ctx->rx_conf = TLS_HW_RECORD;
560 			ctx->tx_conf = TLS_HW_RECORD;
561 			update_sk_prot(sk, ctx);
562 			rc = 1;
563 			break;
564 		}
565 	}
566 out:
567 	mutex_unlock(&device_mutex);
568 	return rc;
569 }
570 
571 static void tls_hw_unhash(struct sock *sk)
572 {
573 	struct tls_context *ctx = tls_get_ctx(sk);
574 	struct tls_device *dev;
575 
576 	mutex_lock(&device_mutex);
577 	list_for_each_entry(dev, &device_list, dev_list) {
578 		if (dev->unhash)
579 			dev->unhash(dev, sk);
580 	}
581 	mutex_unlock(&device_mutex);
582 	ctx->unhash(sk);
583 }
584 
585 static int tls_hw_hash(struct sock *sk)
586 {
587 	struct tls_context *ctx = tls_get_ctx(sk);
588 	struct tls_device *dev;
589 	int err;
590 
591 	err = ctx->hash(sk);
592 	mutex_lock(&device_mutex);
593 	list_for_each_entry(dev, &device_list, dev_list) {
594 		if (dev->hash)
595 			err |= dev->hash(dev, sk);
596 	}
597 	mutex_unlock(&device_mutex);
598 
599 	if (err)
600 		tls_hw_unhash(sk);
601 	return err;
602 }
603 
604 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
605 			 struct proto *base)
606 {
607 	prot[TLS_BASE][TLS_BASE] = *base;
608 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
609 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
610 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
611 
612 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
613 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
614 	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
615 
616 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
617 	prot[TLS_BASE][TLS_SW].recvmsg		= tls_sw_recvmsg;
618 	prot[TLS_BASE][TLS_SW].close		= tls_sk_proto_close;
619 
620 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
621 	prot[TLS_SW][TLS_SW].recvmsg	= tls_sw_recvmsg;
622 	prot[TLS_SW][TLS_SW].close	= tls_sk_proto_close;
623 
624 #ifdef CONFIG_TLS_DEVICE
625 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
626 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
627 	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
628 
629 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
630 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
631 	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
632 #endif
633 
634 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
635 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_hw_hash;
636 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_hw_unhash;
637 	prot[TLS_HW_RECORD][TLS_HW_RECORD].close	= tls_sk_proto_close;
638 }
639 
640 static int tls_init(struct sock *sk)
641 {
642 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
643 	struct tls_context *ctx;
644 	int rc = 0;
645 
646 	if (tls_hw_prot(sk))
647 		goto out;
648 
649 	/* The TLS ulp is currently supported only for TCP sockets
650 	 * in ESTABLISHED state.
651 	 * Supporting sockets in LISTEN state will require us
652 	 * to modify the accept implementation to clone rather then
653 	 * share the ulp context.
654 	 */
655 	if (sk->sk_state != TCP_ESTABLISHED)
656 		return -ENOTSUPP;
657 
658 	/* allocate tls context */
659 	ctx = create_ctx(sk);
660 	if (!ctx) {
661 		rc = -ENOMEM;
662 		goto out;
663 	}
664 	ctx->setsockopt = sk->sk_prot->setsockopt;
665 	ctx->getsockopt = sk->sk_prot->getsockopt;
666 	ctx->sk_proto_close = sk->sk_prot->close;
667 
668 	/* Build IPv6 TLS whenever the address of tcpv6	_prot changes */
669 	if (ip_ver == TLSV6 &&
670 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
671 		mutex_lock(&tcpv6_prot_mutex);
672 		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
673 			build_protos(tls_prots[TLSV6], sk->sk_prot);
674 			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
675 		}
676 		mutex_unlock(&tcpv6_prot_mutex);
677 	}
678 
679 	ctx->tx_conf = TLS_BASE;
680 	ctx->rx_conf = TLS_BASE;
681 	update_sk_prot(sk, ctx);
682 out:
683 	return rc;
684 }
685 
686 void tls_register_device(struct tls_device *device)
687 {
688 	mutex_lock(&device_mutex);
689 	list_add_tail(&device->dev_list, &device_list);
690 	mutex_unlock(&device_mutex);
691 }
692 EXPORT_SYMBOL(tls_register_device);
693 
694 void tls_unregister_device(struct tls_device *device)
695 {
696 	mutex_lock(&device_mutex);
697 	list_del(&device->dev_list);
698 	mutex_unlock(&device_mutex);
699 }
700 EXPORT_SYMBOL(tls_unregister_device);
701 
702 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
703 	.name			= "tls",
704 	.uid			= TCP_ULP_TLS,
705 	.user_visible		= true,
706 	.owner			= THIS_MODULE,
707 	.init			= tls_init,
708 };
709 
710 static int __init tls_register(void)
711 {
712 	build_protos(tls_prots[TLSV4], &tcp_prot);
713 
714 	tls_sw_proto_ops = inet_stream_ops;
715 	tls_sw_proto_ops.poll_mask = tls_sw_poll_mask;
716 	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
717 
718 #ifdef CONFIG_TLS_DEVICE
719 	tls_device_init();
720 #endif
721 	tcp_register_ulp(&tcp_tls_ulp_ops);
722 
723 	return 0;
724 }
725 
726 static void __exit tls_unregister(void)
727 {
728 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
729 #ifdef CONFIG_TLS_DEVICE
730 	tls_device_cleanup();
731 #endif
732 }
733 
734 module_init(tls_register);
735 module_exit(tls_unregister);
736