1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 43 #include <net/tls.h> 44 45 MODULE_AUTHOR("Mellanox Technologies"); 46 MODULE_DESCRIPTION("Transport Layer Security Support"); 47 MODULE_LICENSE("Dual BSD/GPL"); 48 49 enum { 50 TLSV4, 51 TLSV6, 52 TLS_NUM_PROTS, 53 }; 54 enum { 55 TLS_BASE, 56 TLS_SW, 57 #ifdef CONFIG_TLS_DEVICE 58 TLS_HW, 59 #endif 60 TLS_HW_RECORD, 61 TLS_NUM_CONFIG, 62 }; 63 64 static struct proto *saved_tcpv6_prot; 65 static DEFINE_MUTEX(tcpv6_prot_mutex); 66 static LIST_HEAD(device_list); 67 static DEFINE_MUTEX(device_mutex); 68 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 69 static struct proto_ops tls_sw_proto_ops; 70 71 static void update_sk_prot(struct sock *sk, struct tls_context *ctx) 72 { 73 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 74 75 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]; 76 } 77 78 int wait_on_pending_writer(struct sock *sk, long *timeo) 79 { 80 int rc = 0; 81 DEFINE_WAIT_FUNC(wait, woken_wake_function); 82 83 add_wait_queue(sk_sleep(sk), &wait); 84 while (1) { 85 if (!*timeo) { 86 rc = -EAGAIN; 87 break; 88 } 89 90 if (signal_pending(current)) { 91 rc = sock_intr_errno(*timeo); 92 break; 93 } 94 95 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 96 break; 97 } 98 remove_wait_queue(sk_sleep(sk), &wait); 99 return rc; 100 } 101 102 int tls_push_sg(struct sock *sk, 103 struct tls_context *ctx, 104 struct scatterlist *sg, 105 u16 first_offset, 106 int flags) 107 { 108 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 109 int ret = 0; 110 struct page *p; 111 size_t size; 112 int offset = first_offset; 113 114 size = sg->length - offset; 115 offset += sg->offset; 116 117 ctx->in_tcp_sendpages = true; 118 while (1) { 119 if (sg_is_last(sg)) 120 sendpage_flags = flags; 121 122 /* is sending application-limited? */ 123 tcp_rate_check_app_limited(sk); 124 p = sg_page(sg); 125 retry: 126 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 127 128 if (ret != size) { 129 if (ret > 0) { 130 offset += ret; 131 size -= ret; 132 goto retry; 133 } 134 135 offset -= sg->offset; 136 ctx->partially_sent_offset = offset; 137 ctx->partially_sent_record = (void *)sg; 138 ctx->in_tcp_sendpages = false; 139 return ret; 140 } 141 142 put_page(p); 143 sk_mem_uncharge(sk, sg->length); 144 sg = sg_next(sg); 145 if (!sg) 146 break; 147 148 offset = sg->offset; 149 size = sg->length; 150 } 151 152 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags); 153 ctx->in_tcp_sendpages = false; 154 ctx->sk_write_space(sk); 155 156 return 0; 157 } 158 159 static int tls_handle_open_record(struct sock *sk, int flags) 160 { 161 struct tls_context *ctx = tls_get_ctx(sk); 162 163 if (tls_is_pending_open_record(ctx)) 164 return ctx->push_pending_record(sk, flags); 165 166 return 0; 167 } 168 169 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 170 unsigned char *record_type) 171 { 172 struct cmsghdr *cmsg; 173 int rc = -EINVAL; 174 175 for_each_cmsghdr(cmsg, msg) { 176 if (!CMSG_OK(msg, cmsg)) 177 return -EINVAL; 178 if (cmsg->cmsg_level != SOL_TLS) 179 continue; 180 181 switch (cmsg->cmsg_type) { 182 case TLS_SET_RECORD_TYPE: 183 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 184 return -EINVAL; 185 186 if (msg->msg_flags & MSG_MORE) 187 return -EINVAL; 188 189 rc = tls_handle_open_record(sk, msg->msg_flags); 190 if (rc) 191 return rc; 192 193 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 194 rc = 0; 195 break; 196 default: 197 return -EINVAL; 198 } 199 } 200 201 return rc; 202 } 203 204 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx, 205 int flags, long *timeo) 206 { 207 struct scatterlist *sg; 208 u16 offset; 209 210 if (!tls_is_partially_sent_record(ctx)) 211 return ctx->push_pending_record(sk, flags); 212 213 sg = ctx->partially_sent_record; 214 offset = ctx->partially_sent_offset; 215 216 ctx->partially_sent_record = NULL; 217 return tls_push_sg(sk, ctx, sg, offset, flags); 218 } 219 220 static void tls_write_space(struct sock *sk) 221 { 222 struct tls_context *ctx = tls_get_ctx(sk); 223 224 /* We are already sending pages, ignore notification */ 225 if (ctx->in_tcp_sendpages) 226 return; 227 228 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) { 229 gfp_t sk_allocation = sk->sk_allocation; 230 int rc; 231 long timeo = 0; 232 233 sk->sk_allocation = GFP_ATOMIC; 234 rc = tls_push_pending_closed_record(sk, ctx, 235 MSG_DONTWAIT | 236 MSG_NOSIGNAL, 237 &timeo); 238 sk->sk_allocation = sk_allocation; 239 240 if (rc < 0) 241 return; 242 } 243 244 ctx->sk_write_space(sk); 245 } 246 247 static void tls_sk_proto_close(struct sock *sk, long timeout) 248 { 249 struct tls_context *ctx = tls_get_ctx(sk); 250 long timeo = sock_sndtimeo(sk, 0); 251 void (*sk_proto_close)(struct sock *sk, long timeout); 252 bool free_ctx = false; 253 254 lock_sock(sk); 255 sk_proto_close = ctx->sk_proto_close; 256 257 if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) || 258 (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) { 259 free_ctx = true; 260 goto skip_tx_cleanup; 261 } 262 263 if (!tls_complete_pending_work(sk, ctx, 0, &timeo)) 264 tls_handle_open_record(sk, 0); 265 266 if (ctx->partially_sent_record) { 267 struct scatterlist *sg = ctx->partially_sent_record; 268 269 while (1) { 270 put_page(sg_page(sg)); 271 sk_mem_uncharge(sk, sg->length); 272 273 if (sg_is_last(sg)) 274 break; 275 sg++; 276 } 277 } 278 279 /* We need these for tls_sw_fallback handling of other packets */ 280 if (ctx->tx_conf == TLS_SW) { 281 kfree(ctx->tx.rec_seq); 282 kfree(ctx->tx.iv); 283 tls_sw_free_resources_tx(sk); 284 } 285 286 if (ctx->rx_conf == TLS_SW) { 287 kfree(ctx->rx.rec_seq); 288 kfree(ctx->rx.iv); 289 tls_sw_free_resources_rx(sk); 290 } 291 292 #ifdef CONFIG_TLS_DEVICE 293 if (ctx->tx_conf != TLS_HW) { 294 #else 295 { 296 #endif 297 kfree(ctx); 298 ctx = NULL; 299 } 300 301 skip_tx_cleanup: 302 release_sock(sk); 303 sk_proto_close(sk, timeout); 304 /* free ctx for TLS_HW_RECORD, used by tcp_set_state 305 * for sk->sk_prot->unhash [tls_hw_unhash] 306 */ 307 if (free_ctx) 308 kfree(ctx); 309 } 310 311 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, 312 int __user *optlen) 313 { 314 int rc = 0; 315 struct tls_context *ctx = tls_get_ctx(sk); 316 struct tls_crypto_info *crypto_info; 317 int len; 318 319 if (get_user(len, optlen)) 320 return -EFAULT; 321 322 if (!optval || (len < sizeof(*crypto_info))) { 323 rc = -EINVAL; 324 goto out; 325 } 326 327 if (!ctx) { 328 rc = -EBUSY; 329 goto out; 330 } 331 332 /* get user crypto info */ 333 crypto_info = &ctx->crypto_send; 334 335 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 336 rc = -EBUSY; 337 goto out; 338 } 339 340 if (len == sizeof(*crypto_info)) { 341 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 342 rc = -EFAULT; 343 goto out; 344 } 345 346 switch (crypto_info->cipher_type) { 347 case TLS_CIPHER_AES_GCM_128: { 348 struct tls12_crypto_info_aes_gcm_128 * 349 crypto_info_aes_gcm_128 = 350 container_of(crypto_info, 351 struct tls12_crypto_info_aes_gcm_128, 352 info); 353 354 if (len != sizeof(*crypto_info_aes_gcm_128)) { 355 rc = -EINVAL; 356 goto out; 357 } 358 lock_sock(sk); 359 memcpy(crypto_info_aes_gcm_128->iv, 360 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 361 TLS_CIPHER_AES_GCM_128_IV_SIZE); 362 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, 363 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 364 release_sock(sk); 365 if (copy_to_user(optval, 366 crypto_info_aes_gcm_128, 367 sizeof(*crypto_info_aes_gcm_128))) 368 rc = -EFAULT; 369 break; 370 } 371 default: 372 rc = -EINVAL; 373 } 374 375 out: 376 return rc; 377 } 378 379 static int do_tls_getsockopt(struct sock *sk, int optname, 380 char __user *optval, int __user *optlen) 381 { 382 int rc = 0; 383 384 switch (optname) { 385 case TLS_TX: 386 rc = do_tls_getsockopt_tx(sk, optval, optlen); 387 break; 388 default: 389 rc = -ENOPROTOOPT; 390 break; 391 } 392 return rc; 393 } 394 395 static int tls_getsockopt(struct sock *sk, int level, int optname, 396 char __user *optval, int __user *optlen) 397 { 398 struct tls_context *ctx = tls_get_ctx(sk); 399 400 if (level != SOL_TLS) 401 return ctx->getsockopt(sk, level, optname, optval, optlen); 402 403 return do_tls_getsockopt(sk, optname, optval, optlen); 404 } 405 406 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval, 407 unsigned int optlen, int tx) 408 { 409 struct tls_crypto_info *crypto_info; 410 struct tls_context *ctx = tls_get_ctx(sk); 411 int rc = 0; 412 int conf; 413 414 if (!optval || (optlen < sizeof(*crypto_info))) { 415 rc = -EINVAL; 416 goto out; 417 } 418 419 if (tx) 420 crypto_info = &ctx->crypto_send; 421 else 422 crypto_info = &ctx->crypto_recv; 423 424 /* Currently we don't support set crypto info more than one time */ 425 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 426 rc = -EBUSY; 427 goto out; 428 } 429 430 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); 431 if (rc) { 432 rc = -EFAULT; 433 goto err_crypto_info; 434 } 435 436 /* check version */ 437 if (crypto_info->version != TLS_1_2_VERSION) { 438 rc = -ENOTSUPP; 439 goto err_crypto_info; 440 } 441 442 switch (crypto_info->cipher_type) { 443 case TLS_CIPHER_AES_GCM_128: { 444 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) { 445 rc = -EINVAL; 446 goto err_crypto_info; 447 } 448 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), 449 optlen - sizeof(*crypto_info)); 450 if (rc) { 451 rc = -EFAULT; 452 goto err_crypto_info; 453 } 454 break; 455 } 456 default: 457 rc = -EINVAL; 458 goto err_crypto_info; 459 } 460 461 if (tx) { 462 #ifdef CONFIG_TLS_DEVICE 463 rc = tls_set_device_offload(sk, ctx); 464 conf = TLS_HW; 465 if (rc) { 466 #else 467 { 468 #endif 469 rc = tls_set_sw_offload(sk, ctx, 1); 470 conf = TLS_SW; 471 } 472 } else { 473 rc = tls_set_sw_offload(sk, ctx, 0); 474 conf = TLS_SW; 475 } 476 477 if (rc) 478 goto err_crypto_info; 479 480 if (tx) 481 ctx->tx_conf = conf; 482 else 483 ctx->rx_conf = conf; 484 update_sk_prot(sk, ctx); 485 if (tx) { 486 ctx->sk_write_space = sk->sk_write_space; 487 sk->sk_write_space = tls_write_space; 488 } else { 489 sk->sk_socket->ops = &tls_sw_proto_ops; 490 } 491 goto out; 492 493 err_crypto_info: 494 memset(crypto_info, 0, sizeof(*crypto_info)); 495 out: 496 return rc; 497 } 498 499 static int do_tls_setsockopt(struct sock *sk, int optname, 500 char __user *optval, unsigned int optlen) 501 { 502 int rc = 0; 503 504 switch (optname) { 505 case TLS_TX: 506 case TLS_RX: 507 lock_sock(sk); 508 rc = do_tls_setsockopt_conf(sk, optval, optlen, 509 optname == TLS_TX); 510 release_sock(sk); 511 break; 512 default: 513 rc = -ENOPROTOOPT; 514 break; 515 } 516 return rc; 517 } 518 519 static int tls_setsockopt(struct sock *sk, int level, int optname, 520 char __user *optval, unsigned int optlen) 521 { 522 struct tls_context *ctx = tls_get_ctx(sk); 523 524 if (level != SOL_TLS) 525 return ctx->setsockopt(sk, level, optname, optval, optlen); 526 527 return do_tls_setsockopt(sk, optname, optval, optlen); 528 } 529 530 static struct tls_context *create_ctx(struct sock *sk) 531 { 532 struct inet_connection_sock *icsk = inet_csk(sk); 533 struct tls_context *ctx; 534 535 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 536 if (!ctx) 537 return NULL; 538 539 icsk->icsk_ulp_data = ctx; 540 return ctx; 541 } 542 543 static int tls_hw_prot(struct sock *sk) 544 { 545 struct tls_context *ctx; 546 struct tls_device *dev; 547 int rc = 0; 548 549 mutex_lock(&device_mutex); 550 list_for_each_entry(dev, &device_list, dev_list) { 551 if (dev->feature && dev->feature(dev)) { 552 ctx = create_ctx(sk); 553 if (!ctx) 554 goto out; 555 556 ctx->hash = sk->sk_prot->hash; 557 ctx->unhash = sk->sk_prot->unhash; 558 ctx->sk_proto_close = sk->sk_prot->close; 559 ctx->rx_conf = TLS_HW_RECORD; 560 ctx->tx_conf = TLS_HW_RECORD; 561 update_sk_prot(sk, ctx); 562 rc = 1; 563 break; 564 } 565 } 566 out: 567 mutex_unlock(&device_mutex); 568 return rc; 569 } 570 571 static void tls_hw_unhash(struct sock *sk) 572 { 573 struct tls_context *ctx = tls_get_ctx(sk); 574 struct tls_device *dev; 575 576 mutex_lock(&device_mutex); 577 list_for_each_entry(dev, &device_list, dev_list) { 578 if (dev->unhash) 579 dev->unhash(dev, sk); 580 } 581 mutex_unlock(&device_mutex); 582 ctx->unhash(sk); 583 } 584 585 static int tls_hw_hash(struct sock *sk) 586 { 587 struct tls_context *ctx = tls_get_ctx(sk); 588 struct tls_device *dev; 589 int err; 590 591 err = ctx->hash(sk); 592 mutex_lock(&device_mutex); 593 list_for_each_entry(dev, &device_list, dev_list) { 594 if (dev->hash) 595 err |= dev->hash(dev, sk); 596 } 597 mutex_unlock(&device_mutex); 598 599 if (err) 600 tls_hw_unhash(sk); 601 return err; 602 } 603 604 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 605 struct proto *base) 606 { 607 prot[TLS_BASE][TLS_BASE] = *base; 608 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 609 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 610 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 611 612 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 613 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 614 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 615 616 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 617 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 618 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 619 620 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 621 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 622 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 623 624 #ifdef CONFIG_TLS_DEVICE 625 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 626 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 627 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 628 629 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 630 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 631 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 632 #endif 633 634 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 635 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash; 636 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash; 637 prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close; 638 } 639 640 static int tls_init(struct sock *sk) 641 { 642 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 643 struct tls_context *ctx; 644 int rc = 0; 645 646 if (tls_hw_prot(sk)) 647 goto out; 648 649 /* The TLS ulp is currently supported only for TCP sockets 650 * in ESTABLISHED state. 651 * Supporting sockets in LISTEN state will require us 652 * to modify the accept implementation to clone rather then 653 * share the ulp context. 654 */ 655 if (sk->sk_state != TCP_ESTABLISHED) 656 return -ENOTSUPP; 657 658 /* allocate tls context */ 659 ctx = create_ctx(sk); 660 if (!ctx) { 661 rc = -ENOMEM; 662 goto out; 663 } 664 ctx->setsockopt = sk->sk_prot->setsockopt; 665 ctx->getsockopt = sk->sk_prot->getsockopt; 666 ctx->sk_proto_close = sk->sk_prot->close; 667 668 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 669 if (ip_ver == TLSV6 && 670 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { 671 mutex_lock(&tcpv6_prot_mutex); 672 if (likely(sk->sk_prot != saved_tcpv6_prot)) { 673 build_protos(tls_prots[TLSV6], sk->sk_prot); 674 smp_store_release(&saved_tcpv6_prot, sk->sk_prot); 675 } 676 mutex_unlock(&tcpv6_prot_mutex); 677 } 678 679 ctx->tx_conf = TLS_BASE; 680 ctx->rx_conf = TLS_BASE; 681 update_sk_prot(sk, ctx); 682 out: 683 return rc; 684 } 685 686 void tls_register_device(struct tls_device *device) 687 { 688 mutex_lock(&device_mutex); 689 list_add_tail(&device->dev_list, &device_list); 690 mutex_unlock(&device_mutex); 691 } 692 EXPORT_SYMBOL(tls_register_device); 693 694 void tls_unregister_device(struct tls_device *device) 695 { 696 mutex_lock(&device_mutex); 697 list_del(&device->dev_list); 698 mutex_unlock(&device_mutex); 699 } 700 EXPORT_SYMBOL(tls_unregister_device); 701 702 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 703 .name = "tls", 704 .uid = TCP_ULP_TLS, 705 .user_visible = true, 706 .owner = THIS_MODULE, 707 .init = tls_init, 708 }; 709 710 static int __init tls_register(void) 711 { 712 build_protos(tls_prots[TLSV4], &tcp_prot); 713 714 tls_sw_proto_ops = inet_stream_ops; 715 tls_sw_proto_ops.poll_mask = tls_sw_poll_mask; 716 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 717 718 #ifdef CONFIG_TLS_DEVICE 719 tls_device_init(); 720 #endif 721 tcp_register_ulp(&tcp_tls_ulp_ops); 722 723 return 0; 724 } 725 726 static void __exit tls_unregister(void) 727 { 728 tcp_unregister_ulp(&tcp_tls_ulp_ops); 729 #ifdef CONFIG_TLS_DEVICE 730 tls_device_cleanup(); 731 #endif 732 } 733 734 module_init(tls_register); 735 module_exit(tls_unregister); 736