xref: /openbmc/linux/net/tls/tls_main.c (revision 930c429a)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 
42 #include <net/tls.h>
43 
44 MODULE_AUTHOR("Mellanox Technologies");
45 MODULE_DESCRIPTION("Transport Layer Security Support");
46 MODULE_LICENSE("Dual BSD/GPL");
47 
48 enum {
49 	TLSV4,
50 	TLSV6,
51 	TLS_NUM_PROTS,
52 };
53 
54 enum {
55 	TLS_BASE_TX,
56 	TLS_SW_TX,
57 	TLS_NUM_CONFIG,
58 };
59 
60 static struct proto *saved_tcpv6_prot;
61 static DEFINE_MUTEX(tcpv6_prot_mutex);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG];
63 
64 static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx)
65 {
66 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
67 
68 	sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf];
69 }
70 
71 int wait_on_pending_writer(struct sock *sk, long *timeo)
72 {
73 	int rc = 0;
74 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
75 
76 	add_wait_queue(sk_sleep(sk), &wait);
77 	while (1) {
78 		if (!*timeo) {
79 			rc = -EAGAIN;
80 			break;
81 		}
82 
83 		if (signal_pending(current)) {
84 			rc = sock_intr_errno(*timeo);
85 			break;
86 		}
87 
88 		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
89 			break;
90 	}
91 	remove_wait_queue(sk_sleep(sk), &wait);
92 	return rc;
93 }
94 
95 int tls_push_sg(struct sock *sk,
96 		struct tls_context *ctx,
97 		struct scatterlist *sg,
98 		u16 first_offset,
99 		int flags)
100 {
101 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
102 	int ret = 0;
103 	struct page *p;
104 	size_t size;
105 	int offset = first_offset;
106 
107 	size = sg->length - offset;
108 	offset += sg->offset;
109 
110 	while (1) {
111 		if (sg_is_last(sg))
112 			sendpage_flags = flags;
113 
114 		/* is sending application-limited? */
115 		tcp_rate_check_app_limited(sk);
116 		p = sg_page(sg);
117 retry:
118 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
119 
120 		if (ret != size) {
121 			if (ret > 0) {
122 				offset += ret;
123 				size -= ret;
124 				goto retry;
125 			}
126 
127 			offset -= sg->offset;
128 			ctx->partially_sent_offset = offset;
129 			ctx->partially_sent_record = (void *)sg;
130 			return ret;
131 		}
132 
133 		put_page(p);
134 		sk_mem_uncharge(sk, sg->length);
135 		sg = sg_next(sg);
136 		if (!sg)
137 			break;
138 
139 		offset = sg->offset;
140 		size = sg->length;
141 	}
142 
143 	clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
144 
145 	return 0;
146 }
147 
148 static int tls_handle_open_record(struct sock *sk, int flags)
149 {
150 	struct tls_context *ctx = tls_get_ctx(sk);
151 
152 	if (tls_is_pending_open_record(ctx))
153 		return ctx->push_pending_record(sk, flags);
154 
155 	return 0;
156 }
157 
158 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
159 		      unsigned char *record_type)
160 {
161 	struct cmsghdr *cmsg;
162 	int rc = -EINVAL;
163 
164 	for_each_cmsghdr(cmsg, msg) {
165 		if (!CMSG_OK(msg, cmsg))
166 			return -EINVAL;
167 		if (cmsg->cmsg_level != SOL_TLS)
168 			continue;
169 
170 		switch (cmsg->cmsg_type) {
171 		case TLS_SET_RECORD_TYPE:
172 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
173 				return -EINVAL;
174 
175 			if (msg->msg_flags & MSG_MORE)
176 				return -EINVAL;
177 
178 			rc = tls_handle_open_record(sk, msg->msg_flags);
179 			if (rc)
180 				return rc;
181 
182 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
183 			rc = 0;
184 			break;
185 		default:
186 			return -EINVAL;
187 		}
188 	}
189 
190 	return rc;
191 }
192 
193 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
194 				   int flags, long *timeo)
195 {
196 	struct scatterlist *sg;
197 	u16 offset;
198 
199 	if (!tls_is_partially_sent_record(ctx))
200 		return ctx->push_pending_record(sk, flags);
201 
202 	sg = ctx->partially_sent_record;
203 	offset = ctx->partially_sent_offset;
204 
205 	ctx->partially_sent_record = NULL;
206 	return tls_push_sg(sk, ctx, sg, offset, flags);
207 }
208 
209 static void tls_write_space(struct sock *sk)
210 {
211 	struct tls_context *ctx = tls_get_ctx(sk);
212 
213 	if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
214 		gfp_t sk_allocation = sk->sk_allocation;
215 		int rc;
216 		long timeo = 0;
217 
218 		sk->sk_allocation = GFP_ATOMIC;
219 		rc = tls_push_pending_closed_record(sk, ctx,
220 						    MSG_DONTWAIT |
221 						    MSG_NOSIGNAL,
222 						    &timeo);
223 		sk->sk_allocation = sk_allocation;
224 
225 		if (rc < 0)
226 			return;
227 	}
228 
229 	ctx->sk_write_space(sk);
230 }
231 
232 static void tls_sk_proto_close(struct sock *sk, long timeout)
233 {
234 	struct tls_context *ctx = tls_get_ctx(sk);
235 	long timeo = sock_sndtimeo(sk, 0);
236 	void (*sk_proto_close)(struct sock *sk, long timeout);
237 
238 	lock_sock(sk);
239 	sk_proto_close = ctx->sk_proto_close;
240 
241 	if (ctx->tx_conf == TLS_BASE_TX) {
242 		kfree(ctx);
243 		goto skip_tx_cleanup;
244 	}
245 
246 	if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
247 		tls_handle_open_record(sk, 0);
248 
249 	if (ctx->partially_sent_record) {
250 		struct scatterlist *sg = ctx->partially_sent_record;
251 
252 		while (1) {
253 			put_page(sg_page(sg));
254 			sk_mem_uncharge(sk, sg->length);
255 
256 			if (sg_is_last(sg))
257 				break;
258 			sg++;
259 		}
260 	}
261 
262 	kfree(ctx->rec_seq);
263 	kfree(ctx->iv);
264 
265 	if (ctx->tx_conf == TLS_SW_TX)
266 		tls_sw_free_tx_resources(sk);
267 
268 skip_tx_cleanup:
269 	release_sock(sk);
270 	sk_proto_close(sk, timeout);
271 }
272 
273 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
274 				int __user *optlen)
275 {
276 	int rc = 0;
277 	struct tls_context *ctx = tls_get_ctx(sk);
278 	struct tls_crypto_info *crypto_info;
279 	int len;
280 
281 	if (get_user(len, optlen))
282 		return -EFAULT;
283 
284 	if (!optval || (len < sizeof(*crypto_info))) {
285 		rc = -EINVAL;
286 		goto out;
287 	}
288 
289 	if (!ctx) {
290 		rc = -EBUSY;
291 		goto out;
292 	}
293 
294 	/* get user crypto info */
295 	crypto_info = &ctx->crypto_send;
296 
297 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
298 		rc = -EBUSY;
299 		goto out;
300 	}
301 
302 	if (len == sizeof(*crypto_info)) {
303 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
304 			rc = -EFAULT;
305 		goto out;
306 	}
307 
308 	switch (crypto_info->cipher_type) {
309 	case TLS_CIPHER_AES_GCM_128: {
310 		struct tls12_crypto_info_aes_gcm_128 *
311 		  crypto_info_aes_gcm_128 =
312 		  container_of(crypto_info,
313 			       struct tls12_crypto_info_aes_gcm_128,
314 			       info);
315 
316 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
317 			rc = -EINVAL;
318 			goto out;
319 		}
320 		lock_sock(sk);
321 		memcpy(crypto_info_aes_gcm_128->iv,
322 		       ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
323 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
324 		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->rec_seq,
325 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
326 		release_sock(sk);
327 		if (copy_to_user(optval,
328 				 crypto_info_aes_gcm_128,
329 				 sizeof(*crypto_info_aes_gcm_128)))
330 			rc = -EFAULT;
331 		break;
332 	}
333 	default:
334 		rc = -EINVAL;
335 	}
336 
337 out:
338 	return rc;
339 }
340 
341 static int do_tls_getsockopt(struct sock *sk, int optname,
342 			     char __user *optval, int __user *optlen)
343 {
344 	int rc = 0;
345 
346 	switch (optname) {
347 	case TLS_TX:
348 		rc = do_tls_getsockopt_tx(sk, optval, optlen);
349 		break;
350 	default:
351 		rc = -ENOPROTOOPT;
352 		break;
353 	}
354 	return rc;
355 }
356 
357 static int tls_getsockopt(struct sock *sk, int level, int optname,
358 			  char __user *optval, int __user *optlen)
359 {
360 	struct tls_context *ctx = tls_get_ctx(sk);
361 
362 	if (level != SOL_TLS)
363 		return ctx->getsockopt(sk, level, optname, optval, optlen);
364 
365 	return do_tls_getsockopt(sk, optname, optval, optlen);
366 }
367 
368 static int do_tls_setsockopt_tx(struct sock *sk, char __user *optval,
369 				unsigned int optlen)
370 {
371 	struct tls_crypto_info *crypto_info;
372 	struct tls_context *ctx = tls_get_ctx(sk);
373 	int rc = 0;
374 	int tx_conf;
375 
376 	if (!optval || (optlen < sizeof(*crypto_info))) {
377 		rc = -EINVAL;
378 		goto out;
379 	}
380 
381 	crypto_info = &ctx->crypto_send;
382 	/* Currently we don't support set crypto info more than one time */
383 	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
384 		rc = -EBUSY;
385 		goto out;
386 	}
387 
388 	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
389 	if (rc) {
390 		rc = -EFAULT;
391 		goto err_crypto_info;
392 	}
393 
394 	/* check version */
395 	if (crypto_info->version != TLS_1_2_VERSION) {
396 		rc = -ENOTSUPP;
397 		goto err_crypto_info;
398 	}
399 
400 	switch (crypto_info->cipher_type) {
401 	case TLS_CIPHER_AES_GCM_128: {
402 		if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
403 			rc = -EINVAL;
404 			goto err_crypto_info;
405 		}
406 		rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
407 				    optlen - sizeof(*crypto_info));
408 		if (rc) {
409 			rc = -EFAULT;
410 			goto err_crypto_info;
411 		}
412 		break;
413 	}
414 	default:
415 		rc = -EINVAL;
416 		goto err_crypto_info;
417 	}
418 
419 	/* currently SW is default, we will have ethtool in future */
420 	rc = tls_set_sw_offload(sk, ctx);
421 	tx_conf = TLS_SW_TX;
422 	if (rc)
423 		goto err_crypto_info;
424 
425 	ctx->tx_conf = tx_conf;
426 	update_sk_prot(sk, ctx);
427 	ctx->sk_write_space = sk->sk_write_space;
428 	sk->sk_write_space = tls_write_space;
429 	goto out;
430 
431 err_crypto_info:
432 	memset(crypto_info, 0, sizeof(*crypto_info));
433 out:
434 	return rc;
435 }
436 
437 static int do_tls_setsockopt(struct sock *sk, int optname,
438 			     char __user *optval, unsigned int optlen)
439 {
440 	int rc = 0;
441 
442 	switch (optname) {
443 	case TLS_TX:
444 		lock_sock(sk);
445 		rc = do_tls_setsockopt_tx(sk, optval, optlen);
446 		release_sock(sk);
447 		break;
448 	default:
449 		rc = -ENOPROTOOPT;
450 		break;
451 	}
452 	return rc;
453 }
454 
455 static int tls_setsockopt(struct sock *sk, int level, int optname,
456 			  char __user *optval, unsigned int optlen)
457 {
458 	struct tls_context *ctx = tls_get_ctx(sk);
459 
460 	if (level != SOL_TLS)
461 		return ctx->setsockopt(sk, level, optname, optval, optlen);
462 
463 	return do_tls_setsockopt(sk, optname, optval, optlen);
464 }
465 
466 static void build_protos(struct proto *prot, struct proto *base)
467 {
468 	prot[TLS_BASE_TX] = *base;
469 	prot[TLS_BASE_TX].setsockopt	= tls_setsockopt;
470 	prot[TLS_BASE_TX].getsockopt	= tls_getsockopt;
471 	prot[TLS_BASE_TX].close		= tls_sk_proto_close;
472 
473 	prot[TLS_SW_TX] = prot[TLS_BASE_TX];
474 	prot[TLS_SW_TX].sendmsg		= tls_sw_sendmsg;
475 	prot[TLS_SW_TX].sendpage	= tls_sw_sendpage;
476 }
477 
478 static int tls_init(struct sock *sk)
479 {
480 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
481 	struct inet_connection_sock *icsk = inet_csk(sk);
482 	struct tls_context *ctx;
483 	int rc = 0;
484 
485 	/* The TLS ulp is currently supported only for TCP sockets
486 	 * in ESTABLISHED state.
487 	 * Supporting sockets in LISTEN state will require us
488 	 * to modify the accept implementation to clone rather then
489 	 * share the ulp context.
490 	 */
491 	if (sk->sk_state != TCP_ESTABLISHED)
492 		return -ENOTSUPP;
493 
494 	/* allocate tls context */
495 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
496 	if (!ctx) {
497 		rc = -ENOMEM;
498 		goto out;
499 	}
500 	icsk->icsk_ulp_data = ctx;
501 	ctx->setsockopt = sk->sk_prot->setsockopt;
502 	ctx->getsockopt = sk->sk_prot->getsockopt;
503 	ctx->sk_proto_close = sk->sk_prot->close;
504 
505 	/* Build IPv6 TLS whenever the address of tcpv6_prot changes */
506 	if (ip_ver == TLSV6 &&
507 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
508 		mutex_lock(&tcpv6_prot_mutex);
509 		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
510 			build_protos(tls_prots[TLSV6], sk->sk_prot);
511 			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
512 		}
513 		mutex_unlock(&tcpv6_prot_mutex);
514 	}
515 
516 	ctx->tx_conf = TLS_BASE_TX;
517 	update_sk_prot(sk, ctx);
518 out:
519 	return rc;
520 }
521 
522 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
523 	.name			= "tls",
524 	.uid			= TCP_ULP_TLS,
525 	.user_visible		= true,
526 	.owner			= THIS_MODULE,
527 	.init			= tls_init,
528 };
529 
530 static int __init tls_register(void)
531 {
532 	build_protos(tls_prots[TLSV4], &tcp_prot);
533 
534 	tcp_register_ulp(&tcp_tls_ulp_ops);
535 
536 	return 0;
537 }
538 
539 static void __exit tls_unregister(void)
540 {
541 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
542 }
543 
544 module_init(tls_register);
545 module_exit(tls_unregister);
546