xref: /openbmc/linux/net/tls/tls_main.c (revision 7fc38225363dd8f19e667ad7c77b63bc4a5c065d)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 
43 #include <net/tls.h>
44 
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49 
50 enum {
51 	TLSV4,
52 	TLSV6,
53 	TLS_NUM_PROTS,
54 };
55 
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_SPINLOCK(device_spinlock);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
65 			 struct proto *base);
66 
67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
68 {
69 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
70 
71 	sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
72 }
73 
74 int wait_on_pending_writer(struct sock *sk, long *timeo)
75 {
76 	int rc = 0;
77 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
78 
79 	add_wait_queue(sk_sleep(sk), &wait);
80 	while (1) {
81 		if (!*timeo) {
82 			rc = -EAGAIN;
83 			break;
84 		}
85 
86 		if (signal_pending(current)) {
87 			rc = sock_intr_errno(*timeo);
88 			break;
89 		}
90 
91 		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
92 			break;
93 	}
94 	remove_wait_queue(sk_sleep(sk), &wait);
95 	return rc;
96 }
97 
98 int tls_push_sg(struct sock *sk,
99 		struct tls_context *ctx,
100 		struct scatterlist *sg,
101 		u16 first_offset,
102 		int flags)
103 {
104 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
105 	int ret = 0;
106 	struct page *p;
107 	size_t size;
108 	int offset = first_offset;
109 
110 	size = sg->length - offset;
111 	offset += sg->offset;
112 
113 	ctx->in_tcp_sendpages = true;
114 	while (1) {
115 		if (sg_is_last(sg))
116 			sendpage_flags = flags;
117 
118 		/* is sending application-limited? */
119 		tcp_rate_check_app_limited(sk);
120 		p = sg_page(sg);
121 retry:
122 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
123 
124 		if (ret != size) {
125 			if (ret > 0) {
126 				offset += ret;
127 				size -= ret;
128 				goto retry;
129 			}
130 
131 			offset -= sg->offset;
132 			ctx->partially_sent_offset = offset;
133 			ctx->partially_sent_record = (void *)sg;
134 			ctx->in_tcp_sendpages = false;
135 			return ret;
136 		}
137 
138 		put_page(p);
139 		sk_mem_uncharge(sk, sg->length);
140 		sg = sg_next(sg);
141 		if (!sg)
142 			break;
143 
144 		offset = sg->offset;
145 		size = sg->length;
146 	}
147 
148 	ctx->in_tcp_sendpages = false;
149 	ctx->sk_write_space(sk);
150 
151 	return 0;
152 }
153 
154 static int tls_handle_open_record(struct sock *sk, int flags)
155 {
156 	struct tls_context *ctx = tls_get_ctx(sk);
157 
158 	if (tls_is_pending_open_record(ctx))
159 		return ctx->push_pending_record(sk, flags);
160 
161 	return 0;
162 }
163 
164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165 		      unsigned char *record_type)
166 {
167 	struct cmsghdr *cmsg;
168 	int rc = -EINVAL;
169 
170 	for_each_cmsghdr(cmsg, msg) {
171 		if (!CMSG_OK(msg, cmsg))
172 			return -EINVAL;
173 		if (cmsg->cmsg_level != SOL_TLS)
174 			continue;
175 
176 		switch (cmsg->cmsg_type) {
177 		case TLS_SET_RECORD_TYPE:
178 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179 				return -EINVAL;
180 
181 			if (msg->msg_flags & MSG_MORE)
182 				return -EINVAL;
183 
184 			rc = tls_handle_open_record(sk, msg->msg_flags);
185 			if (rc)
186 				return rc;
187 
188 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
189 			rc = 0;
190 			break;
191 		default:
192 			return -EINVAL;
193 		}
194 	}
195 
196 	return rc;
197 }
198 
199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200 			    int flags)
201 {
202 	struct scatterlist *sg;
203 	u16 offset;
204 
205 	sg = ctx->partially_sent_record;
206 	offset = ctx->partially_sent_offset;
207 
208 	ctx->partially_sent_record = NULL;
209 	return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211 
212 int tls_push_pending_closed_record(struct sock *sk,
213 				   struct tls_context *tls_ctx,
214 				   int flags, long *timeo)
215 {
216 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
217 
218 	if (tls_is_partially_sent_record(tls_ctx) ||
219 	    !list_empty(&ctx->tx_list))
220 		return tls_tx_records(sk, flags);
221 	else
222 		return tls_ctx->push_pending_record(sk, flags);
223 }
224 
225 static void tls_write_space(struct sock *sk)
226 {
227 	struct tls_context *ctx = tls_get_ctx(sk);
228 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
229 
230 	/* If in_tcp_sendpages call lower protocol write space handler
231 	 * to ensure we wake up any waiting operations there. For example
232 	 * if do_tcp_sendpages where to call sk_wait_event.
233 	 */
234 	if (ctx->in_tcp_sendpages) {
235 		ctx->sk_write_space(sk);
236 		return;
237 	}
238 
239 	/* Schedule the transmission if tx list is ready */
240 	if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) {
241 		/* Schedule the transmission */
242 		if (!test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
243 			schedule_delayed_work(&tx_ctx->tx_work.work, 0);
244 	}
245 
246 	ctx->sk_write_space(sk);
247 }
248 
249 static void tls_ctx_free(struct tls_context *ctx)
250 {
251 	if (!ctx)
252 		return;
253 
254 	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
255 	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
256 	kfree(ctx);
257 }
258 
259 static void tls_sk_proto_close(struct sock *sk, long timeout)
260 {
261 	struct tls_context *ctx = tls_get_ctx(sk);
262 	long timeo = sock_sndtimeo(sk, 0);
263 	void (*sk_proto_close)(struct sock *sk, long timeout);
264 	bool free_ctx = false;
265 
266 	lock_sock(sk);
267 	sk_proto_close = ctx->sk_proto_close;
268 
269 	if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD)
270 		goto skip_tx_cleanup;
271 
272 	if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) {
273 		free_ctx = true;
274 		goto skip_tx_cleanup;
275 	}
276 
277 	if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
278 		tls_handle_open_record(sk, 0);
279 
280 	/* We need these for tls_sw_fallback handling of other packets */
281 	if (ctx->tx_conf == TLS_SW) {
282 		kfree(ctx->tx.rec_seq);
283 		kfree(ctx->tx.iv);
284 		tls_sw_free_resources_tx(sk);
285 	}
286 
287 	if (ctx->rx_conf == TLS_SW) {
288 		kfree(ctx->rx.rec_seq);
289 		kfree(ctx->rx.iv);
290 		tls_sw_free_resources_rx(sk);
291 	}
292 
293 #ifdef CONFIG_TLS_DEVICE
294 	if (ctx->rx_conf == TLS_HW)
295 		tls_device_offload_cleanup_rx(sk);
296 
297 	if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
298 #else
299 	{
300 #endif
301 		tls_ctx_free(ctx);
302 		ctx = NULL;
303 	}
304 
305 skip_tx_cleanup:
306 	release_sock(sk);
307 	sk_proto_close(sk, timeout);
308 	/* free ctx for TLS_HW_RECORD, used by tcp_set_state
309 	 * for sk->sk_prot->unhash [tls_hw_unhash]
310 	 */
311 	if (free_ctx)
312 		tls_ctx_free(ctx);
313 }
314 
315 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
316 				int __user *optlen)
317 {
318 	int rc = 0;
319 	struct tls_context *ctx = tls_get_ctx(sk);
320 	struct tls_crypto_info *crypto_info;
321 	int len;
322 
323 	if (get_user(len, optlen))
324 		return -EFAULT;
325 
326 	if (!optval || (len < sizeof(*crypto_info))) {
327 		rc = -EINVAL;
328 		goto out;
329 	}
330 
331 	if (!ctx) {
332 		rc = -EBUSY;
333 		goto out;
334 	}
335 
336 	/* get user crypto info */
337 	crypto_info = &ctx->crypto_send.info;
338 
339 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
340 		rc = -EBUSY;
341 		goto out;
342 	}
343 
344 	if (len == sizeof(*crypto_info)) {
345 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
346 			rc = -EFAULT;
347 		goto out;
348 	}
349 
350 	switch (crypto_info->cipher_type) {
351 	case TLS_CIPHER_AES_GCM_128: {
352 		struct tls12_crypto_info_aes_gcm_128 *
353 		  crypto_info_aes_gcm_128 =
354 		  container_of(crypto_info,
355 			       struct tls12_crypto_info_aes_gcm_128,
356 			       info);
357 
358 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
359 			rc = -EINVAL;
360 			goto out;
361 		}
362 		lock_sock(sk);
363 		memcpy(crypto_info_aes_gcm_128->iv,
364 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
365 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
366 		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
367 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
368 		release_sock(sk);
369 		if (copy_to_user(optval,
370 				 crypto_info_aes_gcm_128,
371 				 sizeof(*crypto_info_aes_gcm_128)))
372 			rc = -EFAULT;
373 		break;
374 	}
375 	default:
376 		rc = -EINVAL;
377 	}
378 
379 out:
380 	return rc;
381 }
382 
383 static int do_tls_getsockopt(struct sock *sk, int optname,
384 			     char __user *optval, int __user *optlen)
385 {
386 	int rc = 0;
387 
388 	switch (optname) {
389 	case TLS_TX:
390 		rc = do_tls_getsockopt_tx(sk, optval, optlen);
391 		break;
392 	default:
393 		rc = -ENOPROTOOPT;
394 		break;
395 	}
396 	return rc;
397 }
398 
399 static int tls_getsockopt(struct sock *sk, int level, int optname,
400 			  char __user *optval, int __user *optlen)
401 {
402 	struct tls_context *ctx = tls_get_ctx(sk);
403 
404 	if (level != SOL_TLS)
405 		return ctx->getsockopt(sk, level, optname, optval, optlen);
406 
407 	return do_tls_getsockopt(sk, optname, optval, optlen);
408 }
409 
410 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
411 				  unsigned int optlen, int tx)
412 {
413 	struct tls_crypto_info *crypto_info;
414 	struct tls_context *ctx = tls_get_ctx(sk);
415 	int rc = 0;
416 	int conf;
417 
418 	if (!optval || (optlen < sizeof(*crypto_info))) {
419 		rc = -EINVAL;
420 		goto out;
421 	}
422 
423 	if (tx)
424 		crypto_info = &ctx->crypto_send.info;
425 	else
426 		crypto_info = &ctx->crypto_recv.info;
427 
428 	/* Currently we don't support set crypto info more than one time */
429 	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
430 		rc = -EBUSY;
431 		goto out;
432 	}
433 
434 	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
435 	if (rc) {
436 		rc = -EFAULT;
437 		goto err_crypto_info;
438 	}
439 
440 	/* check version */
441 	if (crypto_info->version != TLS_1_2_VERSION) {
442 		rc = -ENOTSUPP;
443 		goto err_crypto_info;
444 	}
445 
446 	switch (crypto_info->cipher_type) {
447 	case TLS_CIPHER_AES_GCM_128: {
448 		if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
449 			rc = -EINVAL;
450 			goto err_crypto_info;
451 		}
452 		rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
453 				    optlen - sizeof(*crypto_info));
454 		if (rc) {
455 			rc = -EFAULT;
456 			goto err_crypto_info;
457 		}
458 		break;
459 	}
460 	default:
461 		rc = -EINVAL;
462 		goto err_crypto_info;
463 	}
464 
465 	if (tx) {
466 #ifdef CONFIG_TLS_DEVICE
467 		rc = tls_set_device_offload(sk, ctx);
468 		conf = TLS_HW;
469 		if (rc) {
470 #else
471 		{
472 #endif
473 			rc = tls_set_sw_offload(sk, ctx, 1);
474 			conf = TLS_SW;
475 		}
476 	} else {
477 #ifdef CONFIG_TLS_DEVICE
478 		rc = tls_set_device_offload_rx(sk, ctx);
479 		conf = TLS_HW;
480 		if (rc) {
481 #else
482 		{
483 #endif
484 			rc = tls_set_sw_offload(sk, ctx, 0);
485 			conf = TLS_SW;
486 		}
487 	}
488 
489 	if (rc)
490 		goto err_crypto_info;
491 
492 	if (tx)
493 		ctx->tx_conf = conf;
494 	else
495 		ctx->rx_conf = conf;
496 	update_sk_prot(sk, ctx);
497 	if (tx) {
498 		ctx->sk_write_space = sk->sk_write_space;
499 		sk->sk_write_space = tls_write_space;
500 	} else {
501 		sk->sk_socket->ops = &tls_sw_proto_ops;
502 	}
503 	goto out;
504 
505 err_crypto_info:
506 	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
507 out:
508 	return rc;
509 }
510 
511 static int do_tls_setsockopt(struct sock *sk, int optname,
512 			     char __user *optval, unsigned int optlen)
513 {
514 	int rc = 0;
515 
516 	switch (optname) {
517 	case TLS_TX:
518 	case TLS_RX:
519 		lock_sock(sk);
520 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
521 					    optname == TLS_TX);
522 		release_sock(sk);
523 		break;
524 	default:
525 		rc = -ENOPROTOOPT;
526 		break;
527 	}
528 	return rc;
529 }
530 
531 static int tls_setsockopt(struct sock *sk, int level, int optname,
532 			  char __user *optval, unsigned int optlen)
533 {
534 	struct tls_context *ctx = tls_get_ctx(sk);
535 
536 	if (level != SOL_TLS)
537 		return ctx->setsockopt(sk, level, optname, optval, optlen);
538 
539 	return do_tls_setsockopt(sk, optname, optval, optlen);
540 }
541 
542 static struct tls_context *create_ctx(struct sock *sk)
543 {
544 	struct inet_connection_sock *icsk = inet_csk(sk);
545 	struct tls_context *ctx;
546 
547 	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
548 	if (!ctx)
549 		return NULL;
550 
551 	icsk->icsk_ulp_data = ctx;
552 	ctx->setsockopt = sk->sk_prot->setsockopt;
553 	ctx->getsockopt = sk->sk_prot->getsockopt;
554 	ctx->sk_proto_close = sk->sk_prot->close;
555 	return ctx;
556 }
557 
558 static void tls_build_proto(struct sock *sk)
559 {
560 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
561 
562 	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
563 	if (ip_ver == TLSV6 &&
564 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
565 		mutex_lock(&tcpv6_prot_mutex);
566 		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
567 			build_protos(tls_prots[TLSV6], sk->sk_prot);
568 			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
569 		}
570 		mutex_unlock(&tcpv6_prot_mutex);
571 	}
572 
573 	if (ip_ver == TLSV4 &&
574 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
575 		mutex_lock(&tcpv4_prot_mutex);
576 		if (likely(sk->sk_prot != saved_tcpv4_prot)) {
577 			build_protos(tls_prots[TLSV4], sk->sk_prot);
578 			smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
579 		}
580 		mutex_unlock(&tcpv4_prot_mutex);
581 	}
582 }
583 
584 static void tls_hw_sk_destruct(struct sock *sk)
585 {
586 	struct tls_context *ctx = tls_get_ctx(sk);
587 	struct inet_connection_sock *icsk = inet_csk(sk);
588 
589 	ctx->sk_destruct(sk);
590 	/* Free ctx */
591 	kfree(ctx);
592 	icsk->icsk_ulp_data = NULL;
593 }
594 
595 static int tls_hw_prot(struct sock *sk)
596 {
597 	struct tls_context *ctx;
598 	struct tls_device *dev;
599 	int rc = 0;
600 
601 	spin_lock_bh(&device_spinlock);
602 	list_for_each_entry(dev, &device_list, dev_list) {
603 		if (dev->feature && dev->feature(dev)) {
604 			ctx = create_ctx(sk);
605 			if (!ctx)
606 				goto out;
607 
608 			spin_unlock_bh(&device_spinlock);
609 			tls_build_proto(sk);
610 			ctx->hash = sk->sk_prot->hash;
611 			ctx->unhash = sk->sk_prot->unhash;
612 			ctx->sk_proto_close = sk->sk_prot->close;
613 			ctx->sk_destruct = sk->sk_destruct;
614 			sk->sk_destruct = tls_hw_sk_destruct;
615 			ctx->rx_conf = TLS_HW_RECORD;
616 			ctx->tx_conf = TLS_HW_RECORD;
617 			update_sk_prot(sk, ctx);
618 			spin_lock_bh(&device_spinlock);
619 			rc = 1;
620 			break;
621 		}
622 	}
623 out:
624 	spin_unlock_bh(&device_spinlock);
625 	return rc;
626 }
627 
628 static void tls_hw_unhash(struct sock *sk)
629 {
630 	struct tls_context *ctx = tls_get_ctx(sk);
631 	struct tls_device *dev;
632 
633 	spin_lock_bh(&device_spinlock);
634 	list_for_each_entry(dev, &device_list, dev_list) {
635 		if (dev->unhash) {
636 			kref_get(&dev->kref);
637 			spin_unlock_bh(&device_spinlock);
638 			dev->unhash(dev, sk);
639 			kref_put(&dev->kref, dev->release);
640 			spin_lock_bh(&device_spinlock);
641 		}
642 	}
643 	spin_unlock_bh(&device_spinlock);
644 	ctx->unhash(sk);
645 }
646 
647 static int tls_hw_hash(struct sock *sk)
648 {
649 	struct tls_context *ctx = tls_get_ctx(sk);
650 	struct tls_device *dev;
651 	int err;
652 
653 	err = ctx->hash(sk);
654 	spin_lock_bh(&device_spinlock);
655 	list_for_each_entry(dev, &device_list, dev_list) {
656 		if (dev->hash) {
657 			kref_get(&dev->kref);
658 			spin_unlock_bh(&device_spinlock);
659 			err |= dev->hash(dev, sk);
660 			kref_put(&dev->kref, dev->release);
661 			spin_lock_bh(&device_spinlock);
662 		}
663 	}
664 	spin_unlock_bh(&device_spinlock);
665 
666 	if (err)
667 		tls_hw_unhash(sk);
668 	return err;
669 }
670 
671 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
672 			 struct proto *base)
673 {
674 	prot[TLS_BASE][TLS_BASE] = *base;
675 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
676 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
677 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
678 
679 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
680 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
681 	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
682 
683 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
684 	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
685 	prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
686 	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
687 
688 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
689 	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
690 	prot[TLS_SW][TLS_SW].stream_memory_read	= tls_sw_stream_read;
691 	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
692 
693 #ifdef CONFIG_TLS_DEVICE
694 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
695 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
696 	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
697 
698 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
699 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
700 	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
701 
702 	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
703 
704 	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
705 
706 	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
707 #endif
708 
709 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
710 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_hw_hash;
711 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_hw_unhash;
712 	prot[TLS_HW_RECORD][TLS_HW_RECORD].close	= tls_sk_proto_close;
713 }
714 
715 static int tls_init(struct sock *sk)
716 {
717 	struct tls_context *ctx;
718 	int rc = 0;
719 
720 	if (tls_hw_prot(sk))
721 		goto out;
722 
723 	/* The TLS ulp is currently supported only for TCP sockets
724 	 * in ESTABLISHED state.
725 	 * Supporting sockets in LISTEN state will require us
726 	 * to modify the accept implementation to clone rather then
727 	 * share the ulp context.
728 	 */
729 	if (sk->sk_state != TCP_ESTABLISHED)
730 		return -ENOTSUPP;
731 
732 	/* allocate tls context */
733 	ctx = create_ctx(sk);
734 	if (!ctx) {
735 		rc = -ENOMEM;
736 		goto out;
737 	}
738 
739 	tls_build_proto(sk);
740 	ctx->tx_conf = TLS_BASE;
741 	ctx->rx_conf = TLS_BASE;
742 	update_sk_prot(sk, ctx);
743 out:
744 	return rc;
745 }
746 
747 void tls_register_device(struct tls_device *device)
748 {
749 	spin_lock_bh(&device_spinlock);
750 	list_add_tail(&device->dev_list, &device_list);
751 	spin_unlock_bh(&device_spinlock);
752 }
753 EXPORT_SYMBOL(tls_register_device);
754 
755 void tls_unregister_device(struct tls_device *device)
756 {
757 	spin_lock_bh(&device_spinlock);
758 	list_del(&device->dev_list);
759 	spin_unlock_bh(&device_spinlock);
760 }
761 EXPORT_SYMBOL(tls_unregister_device);
762 
763 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
764 	.name			= "tls",
765 	.owner			= THIS_MODULE,
766 	.init			= tls_init,
767 };
768 
769 static int __init tls_register(void)
770 {
771 	tls_sw_proto_ops = inet_stream_ops;
772 	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
773 
774 #ifdef CONFIG_TLS_DEVICE
775 	tls_device_init();
776 #endif
777 	tcp_register_ulp(&tcp_tls_ulp_ops);
778 
779 	return 0;
780 }
781 
782 static void __exit tls_unregister(void)
783 {
784 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
785 #ifdef CONFIG_TLS_DEVICE
786 	tls_device_cleanup();
787 #endif
788 }
789 
790 module_init(tls_register);
791 module_exit(tls_unregister);
792