1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 #include <linux/inet_diag.h> 43 44 #include <net/snmp.h> 45 #include <net/tls.h> 46 #include <net/tls_toe.h> 47 48 #include "tls.h" 49 50 MODULE_AUTHOR("Mellanox Technologies"); 51 MODULE_DESCRIPTION("Transport Layer Security Support"); 52 MODULE_LICENSE("Dual BSD/GPL"); 53 MODULE_ALIAS_TCP_ULP("tls"); 54 55 enum { 56 TLSV4, 57 TLSV6, 58 TLS_NUM_PROTS, 59 }; 60 61 #define CIPHER_SIZE_DESC(cipher) [cipher] = { \ 62 .iv = cipher ## _IV_SIZE, \ 63 .key = cipher ## _KEY_SIZE, \ 64 .salt = cipher ## _SALT_SIZE, \ 65 .tag = cipher ## _TAG_SIZE, \ 66 .rec_seq = cipher ## _REC_SEQ_SIZE, \ 67 } 68 69 const struct tls_cipher_size_desc tls_cipher_size_desc[] = { 70 CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128), 71 CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256), 72 CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128), 73 CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305), 74 CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM), 75 CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM), 76 }; 77 78 static const struct proto *saved_tcpv6_prot; 79 static DEFINE_MUTEX(tcpv6_prot_mutex); 80 static const struct proto *saved_tcpv4_prot; 81 static DEFINE_MUTEX(tcpv4_prot_mutex); 82 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 83 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 84 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 85 const struct proto *base); 86 87 void update_sk_prot(struct sock *sk, struct tls_context *ctx) 88 { 89 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 90 91 WRITE_ONCE(sk->sk_prot, 92 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); 93 WRITE_ONCE(sk->sk_socket->ops, 94 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]); 95 } 96 97 int wait_on_pending_writer(struct sock *sk, long *timeo) 98 { 99 int rc = 0; 100 DEFINE_WAIT_FUNC(wait, woken_wake_function); 101 102 add_wait_queue(sk_sleep(sk), &wait); 103 while (1) { 104 if (!*timeo) { 105 rc = -EAGAIN; 106 break; 107 } 108 109 if (signal_pending(current)) { 110 rc = sock_intr_errno(*timeo); 111 break; 112 } 113 114 if (sk_wait_event(sk, timeo, 115 !READ_ONCE(sk->sk_write_pending), &wait)) 116 break; 117 } 118 remove_wait_queue(sk_sleep(sk), &wait); 119 return rc; 120 } 121 122 int tls_push_sg(struct sock *sk, 123 struct tls_context *ctx, 124 struct scatterlist *sg, 125 u16 first_offset, 126 int flags) 127 { 128 struct bio_vec bvec; 129 struct msghdr msg = { 130 .msg_flags = MSG_SENDPAGE_NOTLAST | MSG_SPLICE_PAGES | flags, 131 }; 132 int ret = 0; 133 struct page *p; 134 size_t size; 135 int offset = first_offset; 136 137 size = sg->length - offset; 138 offset += sg->offset; 139 140 ctx->splicing_pages = true; 141 while (1) { 142 if (sg_is_last(sg)) 143 msg.msg_flags = flags; 144 145 /* is sending application-limited? */ 146 tcp_rate_check_app_limited(sk); 147 p = sg_page(sg); 148 retry: 149 bvec_set_page(&bvec, p, size, offset); 150 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); 151 152 ret = tcp_sendmsg_locked(sk, &msg, size); 153 154 if (ret != size) { 155 if (ret > 0) { 156 offset += ret; 157 size -= ret; 158 goto retry; 159 } 160 161 offset -= sg->offset; 162 ctx->partially_sent_offset = offset; 163 ctx->partially_sent_record = (void *)sg; 164 ctx->splicing_pages = false; 165 return ret; 166 } 167 168 put_page(p); 169 sk_mem_uncharge(sk, sg->length); 170 sg = sg_next(sg); 171 if (!sg) 172 break; 173 174 offset = sg->offset; 175 size = sg->length; 176 } 177 178 ctx->splicing_pages = false; 179 180 return 0; 181 } 182 183 static int tls_handle_open_record(struct sock *sk, int flags) 184 { 185 struct tls_context *ctx = tls_get_ctx(sk); 186 187 if (tls_is_pending_open_record(ctx)) 188 return ctx->push_pending_record(sk, flags); 189 190 return 0; 191 } 192 193 int tls_process_cmsg(struct sock *sk, struct msghdr *msg, 194 unsigned char *record_type) 195 { 196 struct cmsghdr *cmsg; 197 int rc = -EINVAL; 198 199 for_each_cmsghdr(cmsg, msg) { 200 if (!CMSG_OK(msg, cmsg)) 201 return -EINVAL; 202 if (cmsg->cmsg_level != SOL_TLS) 203 continue; 204 205 switch (cmsg->cmsg_type) { 206 case TLS_SET_RECORD_TYPE: 207 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 208 return -EINVAL; 209 210 if (msg->msg_flags & MSG_MORE) 211 return -EINVAL; 212 213 rc = tls_handle_open_record(sk, msg->msg_flags); 214 if (rc) 215 return rc; 216 217 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 218 rc = 0; 219 break; 220 default: 221 return -EINVAL; 222 } 223 } 224 225 return rc; 226 } 227 228 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 229 int flags) 230 { 231 struct scatterlist *sg; 232 u16 offset; 233 234 sg = ctx->partially_sent_record; 235 offset = ctx->partially_sent_offset; 236 237 ctx->partially_sent_record = NULL; 238 return tls_push_sg(sk, ctx, sg, offset, flags); 239 } 240 241 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 242 { 243 struct scatterlist *sg; 244 245 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { 246 put_page(sg_page(sg)); 247 sk_mem_uncharge(sk, sg->length); 248 } 249 ctx->partially_sent_record = NULL; 250 } 251 252 static void tls_write_space(struct sock *sk) 253 { 254 struct tls_context *ctx = tls_get_ctx(sk); 255 256 /* If splicing_pages call lower protocol write space handler 257 * to ensure we wake up any waiting operations there. For example 258 * if splicing pages where to call sk_wait_event. 259 */ 260 if (ctx->splicing_pages) { 261 ctx->sk_write_space(sk); 262 return; 263 } 264 265 #ifdef CONFIG_TLS_DEVICE 266 if (ctx->tx_conf == TLS_HW) 267 tls_device_write_space(sk, ctx); 268 else 269 #endif 270 tls_sw_write_space(sk, ctx); 271 272 ctx->sk_write_space(sk); 273 } 274 275 /** 276 * tls_ctx_free() - free TLS ULP context 277 * @sk: socket to with @ctx is attached 278 * @ctx: TLS context structure 279 * 280 * Free TLS context. If @sk is %NULL caller guarantees that the socket 281 * to which @ctx was attached has no outstanding references. 282 */ 283 void tls_ctx_free(struct sock *sk, struct tls_context *ctx) 284 { 285 if (!ctx) 286 return; 287 288 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 289 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 290 mutex_destroy(&ctx->tx_lock); 291 292 if (sk) 293 kfree_rcu(ctx, rcu); 294 else 295 kfree(ctx); 296 } 297 298 static void tls_sk_proto_cleanup(struct sock *sk, 299 struct tls_context *ctx, long timeo) 300 { 301 if (unlikely(sk->sk_write_pending) && 302 !wait_on_pending_writer(sk, &timeo)) 303 tls_handle_open_record(sk, 0); 304 305 /* We need these for tls_sw_fallback handling of other packets */ 306 if (ctx->tx_conf == TLS_SW) { 307 kfree(ctx->tx.rec_seq); 308 kfree(ctx->tx.iv); 309 tls_sw_release_resources_tx(sk); 310 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 311 } else if (ctx->tx_conf == TLS_HW) { 312 tls_device_free_resources_tx(sk); 313 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 314 } 315 316 if (ctx->rx_conf == TLS_SW) { 317 tls_sw_release_resources_rx(sk); 318 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 319 } else if (ctx->rx_conf == TLS_HW) { 320 tls_device_offload_cleanup_rx(sk); 321 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 322 } 323 } 324 325 static void tls_sk_proto_close(struct sock *sk, long timeout) 326 { 327 struct inet_connection_sock *icsk = inet_csk(sk); 328 struct tls_context *ctx = tls_get_ctx(sk); 329 long timeo = sock_sndtimeo(sk, 0); 330 bool free_ctx; 331 332 if (ctx->tx_conf == TLS_SW) 333 tls_sw_cancel_work_tx(ctx); 334 335 lock_sock(sk); 336 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 337 338 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 339 tls_sk_proto_cleanup(sk, ctx, timeo); 340 341 write_lock_bh(&sk->sk_callback_lock); 342 if (free_ctx) 343 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 344 WRITE_ONCE(sk->sk_prot, ctx->sk_proto); 345 if (sk->sk_write_space == tls_write_space) 346 sk->sk_write_space = ctx->sk_write_space; 347 write_unlock_bh(&sk->sk_callback_lock); 348 release_sock(sk); 349 if (ctx->tx_conf == TLS_SW) 350 tls_sw_free_ctx_tx(ctx); 351 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 352 tls_sw_strparser_done(ctx); 353 if (ctx->rx_conf == TLS_SW) 354 tls_sw_free_ctx_rx(ctx); 355 ctx->sk_proto->close(sk, timeout); 356 357 if (free_ctx) 358 tls_ctx_free(sk, ctx); 359 } 360 361 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval, 362 int __user *optlen, int tx) 363 { 364 int rc = 0; 365 struct tls_context *ctx = tls_get_ctx(sk); 366 struct tls_crypto_info *crypto_info; 367 struct cipher_context *cctx; 368 int len; 369 370 if (get_user(len, optlen)) 371 return -EFAULT; 372 373 if (!optval || (len < sizeof(*crypto_info))) { 374 rc = -EINVAL; 375 goto out; 376 } 377 378 if (!ctx) { 379 rc = -EBUSY; 380 goto out; 381 } 382 383 /* get user crypto info */ 384 if (tx) { 385 crypto_info = &ctx->crypto_send.info; 386 cctx = &ctx->tx; 387 } else { 388 crypto_info = &ctx->crypto_recv.info; 389 cctx = &ctx->rx; 390 } 391 392 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 393 rc = -EBUSY; 394 goto out; 395 } 396 397 if (len == sizeof(*crypto_info)) { 398 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 399 rc = -EFAULT; 400 goto out; 401 } 402 403 switch (crypto_info->cipher_type) { 404 case TLS_CIPHER_AES_GCM_128: { 405 struct tls12_crypto_info_aes_gcm_128 * 406 crypto_info_aes_gcm_128 = 407 container_of(crypto_info, 408 struct tls12_crypto_info_aes_gcm_128, 409 info); 410 411 if (len != sizeof(*crypto_info_aes_gcm_128)) { 412 rc = -EINVAL; 413 goto out; 414 } 415 memcpy(crypto_info_aes_gcm_128->iv, 416 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 417 TLS_CIPHER_AES_GCM_128_IV_SIZE); 418 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq, 419 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 420 if (copy_to_user(optval, 421 crypto_info_aes_gcm_128, 422 sizeof(*crypto_info_aes_gcm_128))) 423 rc = -EFAULT; 424 break; 425 } 426 case TLS_CIPHER_AES_GCM_256: { 427 struct tls12_crypto_info_aes_gcm_256 * 428 crypto_info_aes_gcm_256 = 429 container_of(crypto_info, 430 struct tls12_crypto_info_aes_gcm_256, 431 info); 432 433 if (len != sizeof(*crypto_info_aes_gcm_256)) { 434 rc = -EINVAL; 435 goto out; 436 } 437 memcpy(crypto_info_aes_gcm_256->iv, 438 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 439 TLS_CIPHER_AES_GCM_256_IV_SIZE); 440 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq, 441 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 442 if (copy_to_user(optval, 443 crypto_info_aes_gcm_256, 444 sizeof(*crypto_info_aes_gcm_256))) 445 rc = -EFAULT; 446 break; 447 } 448 case TLS_CIPHER_AES_CCM_128: { 449 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 = 450 container_of(crypto_info, 451 struct tls12_crypto_info_aes_ccm_128, info); 452 453 if (len != sizeof(*aes_ccm_128)) { 454 rc = -EINVAL; 455 goto out; 456 } 457 memcpy(aes_ccm_128->iv, 458 cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE, 459 TLS_CIPHER_AES_CCM_128_IV_SIZE); 460 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq, 461 TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE); 462 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128))) 463 rc = -EFAULT; 464 break; 465 } 466 case TLS_CIPHER_CHACHA20_POLY1305: { 467 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 = 468 container_of(crypto_info, 469 struct tls12_crypto_info_chacha20_poly1305, 470 info); 471 472 if (len != sizeof(*chacha20_poly1305)) { 473 rc = -EINVAL; 474 goto out; 475 } 476 memcpy(chacha20_poly1305->iv, 477 cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE, 478 TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE); 479 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq, 480 TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE); 481 if (copy_to_user(optval, chacha20_poly1305, 482 sizeof(*chacha20_poly1305))) 483 rc = -EFAULT; 484 break; 485 } 486 case TLS_CIPHER_SM4_GCM: { 487 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info = 488 container_of(crypto_info, 489 struct tls12_crypto_info_sm4_gcm, info); 490 491 if (len != sizeof(*sm4_gcm_info)) { 492 rc = -EINVAL; 493 goto out; 494 } 495 memcpy(sm4_gcm_info->iv, 496 cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE, 497 TLS_CIPHER_SM4_GCM_IV_SIZE); 498 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq, 499 TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE); 500 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info))) 501 rc = -EFAULT; 502 break; 503 } 504 case TLS_CIPHER_SM4_CCM: { 505 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info = 506 container_of(crypto_info, 507 struct tls12_crypto_info_sm4_ccm, info); 508 509 if (len != sizeof(*sm4_ccm_info)) { 510 rc = -EINVAL; 511 goto out; 512 } 513 memcpy(sm4_ccm_info->iv, 514 cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE, 515 TLS_CIPHER_SM4_CCM_IV_SIZE); 516 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq, 517 TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE); 518 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info))) 519 rc = -EFAULT; 520 break; 521 } 522 case TLS_CIPHER_ARIA_GCM_128: { 523 struct tls12_crypto_info_aria_gcm_128 * 524 crypto_info_aria_gcm_128 = 525 container_of(crypto_info, 526 struct tls12_crypto_info_aria_gcm_128, 527 info); 528 529 if (len != sizeof(*crypto_info_aria_gcm_128)) { 530 rc = -EINVAL; 531 goto out; 532 } 533 memcpy(crypto_info_aria_gcm_128->iv, 534 cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE, 535 TLS_CIPHER_ARIA_GCM_128_IV_SIZE); 536 memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq, 537 TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE); 538 if (copy_to_user(optval, 539 crypto_info_aria_gcm_128, 540 sizeof(*crypto_info_aria_gcm_128))) 541 rc = -EFAULT; 542 break; 543 } 544 case TLS_CIPHER_ARIA_GCM_256: { 545 struct tls12_crypto_info_aria_gcm_256 * 546 crypto_info_aria_gcm_256 = 547 container_of(crypto_info, 548 struct tls12_crypto_info_aria_gcm_256, 549 info); 550 551 if (len != sizeof(*crypto_info_aria_gcm_256)) { 552 rc = -EINVAL; 553 goto out; 554 } 555 memcpy(crypto_info_aria_gcm_256->iv, 556 cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE, 557 TLS_CIPHER_ARIA_GCM_256_IV_SIZE); 558 memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq, 559 TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE); 560 if (copy_to_user(optval, 561 crypto_info_aria_gcm_256, 562 sizeof(*crypto_info_aria_gcm_256))) 563 rc = -EFAULT; 564 break; 565 } 566 default: 567 rc = -EINVAL; 568 } 569 570 out: 571 return rc; 572 } 573 574 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval, 575 int __user *optlen) 576 { 577 struct tls_context *ctx = tls_get_ctx(sk); 578 unsigned int value; 579 int len; 580 581 if (get_user(len, optlen)) 582 return -EFAULT; 583 584 if (len != sizeof(value)) 585 return -EINVAL; 586 587 value = ctx->zerocopy_sendfile; 588 if (copy_to_user(optval, &value, sizeof(value))) 589 return -EFAULT; 590 591 return 0; 592 } 593 594 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval, 595 int __user *optlen) 596 { 597 struct tls_context *ctx = tls_get_ctx(sk); 598 int value, len; 599 600 if (ctx->prot_info.version != TLS_1_3_VERSION) 601 return -EINVAL; 602 603 if (get_user(len, optlen)) 604 return -EFAULT; 605 if (len < sizeof(value)) 606 return -EINVAL; 607 608 value = -EINVAL; 609 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 610 value = ctx->rx_no_pad; 611 if (value < 0) 612 return value; 613 614 if (put_user(sizeof(value), optlen)) 615 return -EFAULT; 616 if (copy_to_user(optval, &value, sizeof(value))) 617 return -EFAULT; 618 619 return 0; 620 } 621 622 static int do_tls_getsockopt(struct sock *sk, int optname, 623 char __user *optval, int __user *optlen) 624 { 625 int rc = 0; 626 627 lock_sock(sk); 628 629 switch (optname) { 630 case TLS_TX: 631 case TLS_RX: 632 rc = do_tls_getsockopt_conf(sk, optval, optlen, 633 optname == TLS_TX); 634 break; 635 case TLS_TX_ZEROCOPY_RO: 636 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen); 637 break; 638 case TLS_RX_EXPECT_NO_PAD: 639 rc = do_tls_getsockopt_no_pad(sk, optval, optlen); 640 break; 641 default: 642 rc = -ENOPROTOOPT; 643 break; 644 } 645 646 release_sock(sk); 647 648 return rc; 649 } 650 651 static int tls_getsockopt(struct sock *sk, int level, int optname, 652 char __user *optval, int __user *optlen) 653 { 654 struct tls_context *ctx = tls_get_ctx(sk); 655 656 if (level != SOL_TLS) 657 return ctx->sk_proto->getsockopt(sk, level, 658 optname, optval, optlen); 659 660 return do_tls_getsockopt(sk, optname, optval, optlen); 661 } 662 663 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, 664 unsigned int optlen, int tx) 665 { 666 struct tls_crypto_info *crypto_info; 667 struct tls_crypto_info *alt_crypto_info; 668 struct tls_context *ctx = tls_get_ctx(sk); 669 size_t optsize; 670 int rc = 0; 671 int conf; 672 673 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) 674 return -EINVAL; 675 676 if (tx) { 677 crypto_info = &ctx->crypto_send.info; 678 alt_crypto_info = &ctx->crypto_recv.info; 679 } else { 680 crypto_info = &ctx->crypto_recv.info; 681 alt_crypto_info = &ctx->crypto_send.info; 682 } 683 684 /* Currently we don't support set crypto info more than one time */ 685 if (TLS_CRYPTO_INFO_READY(crypto_info)) 686 return -EBUSY; 687 688 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info)); 689 if (rc) { 690 rc = -EFAULT; 691 goto err_crypto_info; 692 } 693 694 /* check version */ 695 if (crypto_info->version != TLS_1_2_VERSION && 696 crypto_info->version != TLS_1_3_VERSION) { 697 rc = -EINVAL; 698 goto err_crypto_info; 699 } 700 701 /* Ensure that TLS version and ciphers are same in both directions */ 702 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 703 if (alt_crypto_info->version != crypto_info->version || 704 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 705 rc = -EINVAL; 706 goto err_crypto_info; 707 } 708 } 709 710 switch (crypto_info->cipher_type) { 711 case TLS_CIPHER_AES_GCM_128: 712 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 713 break; 714 case TLS_CIPHER_AES_GCM_256: { 715 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 716 break; 717 } 718 case TLS_CIPHER_AES_CCM_128: 719 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 720 break; 721 case TLS_CIPHER_CHACHA20_POLY1305: 722 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305); 723 break; 724 case TLS_CIPHER_SM4_GCM: 725 optsize = sizeof(struct tls12_crypto_info_sm4_gcm); 726 break; 727 case TLS_CIPHER_SM4_CCM: 728 optsize = sizeof(struct tls12_crypto_info_sm4_ccm); 729 break; 730 case TLS_CIPHER_ARIA_GCM_128: 731 if (crypto_info->version != TLS_1_2_VERSION) { 732 rc = -EINVAL; 733 goto err_crypto_info; 734 } 735 optsize = sizeof(struct tls12_crypto_info_aria_gcm_128); 736 break; 737 case TLS_CIPHER_ARIA_GCM_256: 738 if (crypto_info->version != TLS_1_2_VERSION) { 739 rc = -EINVAL; 740 goto err_crypto_info; 741 } 742 optsize = sizeof(struct tls12_crypto_info_aria_gcm_256); 743 break; 744 default: 745 rc = -EINVAL; 746 goto err_crypto_info; 747 } 748 749 if (optlen != optsize) { 750 rc = -EINVAL; 751 goto err_crypto_info; 752 } 753 754 rc = copy_from_sockptr_offset(crypto_info + 1, optval, 755 sizeof(*crypto_info), 756 optlen - sizeof(*crypto_info)); 757 if (rc) { 758 rc = -EFAULT; 759 goto err_crypto_info; 760 } 761 762 if (tx) { 763 rc = tls_set_device_offload(sk, ctx); 764 conf = TLS_HW; 765 if (!rc) { 766 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); 767 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 768 } else { 769 rc = tls_set_sw_offload(sk, ctx, 1); 770 if (rc) 771 goto err_crypto_info; 772 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); 773 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 774 conf = TLS_SW; 775 } 776 } else { 777 rc = tls_set_device_offload_rx(sk, ctx); 778 conf = TLS_HW; 779 if (!rc) { 780 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); 781 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 782 } else { 783 rc = tls_set_sw_offload(sk, ctx, 0); 784 if (rc) 785 goto err_crypto_info; 786 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); 787 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 788 conf = TLS_SW; 789 } 790 tls_sw_strparser_arm(sk, ctx); 791 } 792 793 if (tx) 794 ctx->tx_conf = conf; 795 else 796 ctx->rx_conf = conf; 797 update_sk_prot(sk, ctx); 798 if (tx) { 799 ctx->sk_write_space = sk->sk_write_space; 800 sk->sk_write_space = tls_write_space; 801 } else { 802 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx); 803 804 tls_strp_check_rcv(&rx_ctx->strp); 805 } 806 return 0; 807 808 err_crypto_info: 809 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 810 return rc; 811 } 812 813 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval, 814 unsigned int optlen) 815 { 816 struct tls_context *ctx = tls_get_ctx(sk); 817 unsigned int value; 818 819 if (sockptr_is_null(optval) || optlen != sizeof(value)) 820 return -EINVAL; 821 822 if (copy_from_sockptr(&value, optval, sizeof(value))) 823 return -EFAULT; 824 825 if (value > 1) 826 return -EINVAL; 827 828 ctx->zerocopy_sendfile = value; 829 830 return 0; 831 } 832 833 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval, 834 unsigned int optlen) 835 { 836 struct tls_context *ctx = tls_get_ctx(sk); 837 u32 val; 838 int rc; 839 840 if (ctx->prot_info.version != TLS_1_3_VERSION || 841 sockptr_is_null(optval) || optlen < sizeof(val)) 842 return -EINVAL; 843 844 rc = copy_from_sockptr(&val, optval, sizeof(val)); 845 if (rc) 846 return -EFAULT; 847 if (val > 1) 848 return -EINVAL; 849 rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val)); 850 if (rc < 1) 851 return rc == 0 ? -EINVAL : rc; 852 853 lock_sock(sk); 854 rc = -EINVAL; 855 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) { 856 ctx->rx_no_pad = val; 857 tls_update_rx_zc_capable(ctx); 858 rc = 0; 859 } 860 release_sock(sk); 861 862 return rc; 863 } 864 865 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, 866 unsigned int optlen) 867 { 868 int rc = 0; 869 870 switch (optname) { 871 case TLS_TX: 872 case TLS_RX: 873 lock_sock(sk); 874 rc = do_tls_setsockopt_conf(sk, optval, optlen, 875 optname == TLS_TX); 876 release_sock(sk); 877 break; 878 case TLS_TX_ZEROCOPY_RO: 879 lock_sock(sk); 880 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen); 881 release_sock(sk); 882 break; 883 case TLS_RX_EXPECT_NO_PAD: 884 rc = do_tls_setsockopt_no_pad(sk, optval, optlen); 885 break; 886 default: 887 rc = -ENOPROTOOPT; 888 break; 889 } 890 return rc; 891 } 892 893 static int tls_setsockopt(struct sock *sk, int level, int optname, 894 sockptr_t optval, unsigned int optlen) 895 { 896 struct tls_context *ctx = tls_get_ctx(sk); 897 898 if (level != SOL_TLS) 899 return ctx->sk_proto->setsockopt(sk, level, optname, optval, 900 optlen); 901 902 return do_tls_setsockopt(sk, optname, optval, optlen); 903 } 904 905 struct tls_context *tls_ctx_create(struct sock *sk) 906 { 907 struct inet_connection_sock *icsk = inet_csk(sk); 908 struct tls_context *ctx; 909 910 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 911 if (!ctx) 912 return NULL; 913 914 mutex_init(&ctx->tx_lock); 915 rcu_assign_pointer(icsk->icsk_ulp_data, ctx); 916 ctx->sk_proto = READ_ONCE(sk->sk_prot); 917 ctx->sk = sk; 918 return ctx; 919 } 920 921 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 922 const struct proto_ops *base) 923 { 924 ops[TLS_BASE][TLS_BASE] = *base; 925 926 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; 927 ops[TLS_SW ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked; 928 929 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE]; 930 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read; 931 932 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE]; 933 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read; 934 935 #ifdef CONFIG_TLS_DEVICE 936 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; 937 ops[TLS_HW ][TLS_BASE].sendpage_locked = NULL; 938 939 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ]; 940 ops[TLS_HW ][TLS_SW ].sendpage_locked = NULL; 941 942 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ]; 943 944 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ]; 945 946 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ]; 947 ops[TLS_HW ][TLS_HW ].sendpage_locked = NULL; 948 #endif 949 #ifdef CONFIG_TLS_TOE 950 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 951 #endif 952 } 953 954 static void tls_build_proto(struct sock *sk) 955 { 956 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 957 struct proto *prot = READ_ONCE(sk->sk_prot); 958 959 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 960 if (ip_ver == TLSV6 && 961 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { 962 mutex_lock(&tcpv6_prot_mutex); 963 if (likely(prot != saved_tcpv6_prot)) { 964 build_protos(tls_prots[TLSV6], prot); 965 build_proto_ops(tls_proto_ops[TLSV6], 966 sk->sk_socket->ops); 967 smp_store_release(&saved_tcpv6_prot, prot); 968 } 969 mutex_unlock(&tcpv6_prot_mutex); 970 } 971 972 if (ip_ver == TLSV4 && 973 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { 974 mutex_lock(&tcpv4_prot_mutex); 975 if (likely(prot != saved_tcpv4_prot)) { 976 build_protos(tls_prots[TLSV4], prot); 977 build_proto_ops(tls_proto_ops[TLSV4], 978 sk->sk_socket->ops); 979 smp_store_release(&saved_tcpv4_prot, prot); 980 } 981 mutex_unlock(&tcpv4_prot_mutex); 982 } 983 } 984 985 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 986 const struct proto *base) 987 { 988 prot[TLS_BASE][TLS_BASE] = *base; 989 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 990 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 991 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 992 993 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 994 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 995 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 996 997 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 998 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 999 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; 1000 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 1001 1002 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 1003 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 1004 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; 1005 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 1006 1007 #ifdef CONFIG_TLS_DEVICE 1008 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 1009 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 1010 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 1011 1012 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 1013 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 1014 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 1015 1016 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 1017 1018 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 1019 1020 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 1021 #endif 1022 #ifdef CONFIG_TLS_TOE 1023 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 1024 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; 1025 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; 1026 #endif 1027 } 1028 1029 static int tls_init(struct sock *sk) 1030 { 1031 struct tls_context *ctx; 1032 int rc = 0; 1033 1034 tls_build_proto(sk); 1035 1036 #ifdef CONFIG_TLS_TOE 1037 if (tls_toe_bypass(sk)) 1038 return 0; 1039 #endif 1040 1041 /* The TLS ulp is currently supported only for TCP sockets 1042 * in ESTABLISHED state. 1043 * Supporting sockets in LISTEN state will require us 1044 * to modify the accept implementation to clone rather then 1045 * share the ulp context. 1046 */ 1047 if (sk->sk_state != TCP_ESTABLISHED) 1048 return -ENOTCONN; 1049 1050 /* allocate tls context */ 1051 write_lock_bh(&sk->sk_callback_lock); 1052 ctx = tls_ctx_create(sk); 1053 if (!ctx) { 1054 rc = -ENOMEM; 1055 goto out; 1056 } 1057 1058 ctx->tx_conf = TLS_BASE; 1059 ctx->rx_conf = TLS_BASE; 1060 update_sk_prot(sk, ctx); 1061 out: 1062 write_unlock_bh(&sk->sk_callback_lock); 1063 return rc; 1064 } 1065 1066 static void tls_update(struct sock *sk, struct proto *p, 1067 void (*write_space)(struct sock *sk)) 1068 { 1069 struct tls_context *ctx; 1070 1071 WARN_ON_ONCE(sk->sk_prot == p); 1072 1073 ctx = tls_get_ctx(sk); 1074 if (likely(ctx)) { 1075 ctx->sk_write_space = write_space; 1076 ctx->sk_proto = p; 1077 } else { 1078 /* Pairs with lockless read in sk_clone_lock(). */ 1079 WRITE_ONCE(sk->sk_prot, p); 1080 sk->sk_write_space = write_space; 1081 } 1082 } 1083 1084 static u16 tls_user_config(struct tls_context *ctx, bool tx) 1085 { 1086 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; 1087 1088 switch (config) { 1089 case TLS_BASE: 1090 return TLS_CONF_BASE; 1091 case TLS_SW: 1092 return TLS_CONF_SW; 1093 case TLS_HW: 1094 return TLS_CONF_HW; 1095 case TLS_HW_RECORD: 1096 return TLS_CONF_HW_RECORD; 1097 } 1098 return 0; 1099 } 1100 1101 static int tls_get_info(const struct sock *sk, struct sk_buff *skb) 1102 { 1103 u16 version, cipher_type; 1104 struct tls_context *ctx; 1105 struct nlattr *start; 1106 int err; 1107 1108 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); 1109 if (!start) 1110 return -EMSGSIZE; 1111 1112 rcu_read_lock(); 1113 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); 1114 if (!ctx) { 1115 err = 0; 1116 goto nla_failure; 1117 } 1118 version = ctx->prot_info.version; 1119 if (version) { 1120 err = nla_put_u16(skb, TLS_INFO_VERSION, version); 1121 if (err) 1122 goto nla_failure; 1123 } 1124 cipher_type = ctx->prot_info.cipher_type; 1125 if (cipher_type) { 1126 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); 1127 if (err) 1128 goto nla_failure; 1129 } 1130 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); 1131 if (err) 1132 goto nla_failure; 1133 1134 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); 1135 if (err) 1136 goto nla_failure; 1137 1138 if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) { 1139 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX); 1140 if (err) 1141 goto nla_failure; 1142 } 1143 if (ctx->rx_no_pad) { 1144 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD); 1145 if (err) 1146 goto nla_failure; 1147 } 1148 1149 rcu_read_unlock(); 1150 nla_nest_end(skb, start); 1151 return 0; 1152 1153 nla_failure: 1154 rcu_read_unlock(); 1155 nla_nest_cancel(skb, start); 1156 return err; 1157 } 1158 1159 static size_t tls_get_info_size(const struct sock *sk) 1160 { 1161 size_t size = 0; 1162 1163 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ 1164 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ 1165 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ 1166 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ 1167 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 1168 nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */ 1169 nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */ 1170 0; 1171 1172 return size; 1173 } 1174 1175 static int __net_init tls_init_net(struct net *net) 1176 { 1177 int err; 1178 1179 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); 1180 if (!net->mib.tls_statistics) 1181 return -ENOMEM; 1182 1183 err = tls_proc_init(net); 1184 if (err) 1185 goto err_free_stats; 1186 1187 return 0; 1188 err_free_stats: 1189 free_percpu(net->mib.tls_statistics); 1190 return err; 1191 } 1192 1193 static void __net_exit tls_exit_net(struct net *net) 1194 { 1195 tls_proc_fini(net); 1196 free_percpu(net->mib.tls_statistics); 1197 } 1198 1199 static struct pernet_operations tls_proc_ops = { 1200 .init = tls_init_net, 1201 .exit = tls_exit_net, 1202 }; 1203 1204 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 1205 .name = "tls", 1206 .owner = THIS_MODULE, 1207 .init = tls_init, 1208 .update = tls_update, 1209 .get_info = tls_get_info, 1210 .get_info_size = tls_get_info_size, 1211 }; 1212 1213 static int __init tls_register(void) 1214 { 1215 int err; 1216 1217 err = register_pernet_subsys(&tls_proc_ops); 1218 if (err) 1219 return err; 1220 1221 err = tls_strp_dev_init(); 1222 if (err) 1223 goto err_pernet; 1224 1225 err = tls_device_init(); 1226 if (err) 1227 goto err_strp; 1228 1229 tcp_register_ulp(&tcp_tls_ulp_ops); 1230 1231 return 0; 1232 err_strp: 1233 tls_strp_dev_exit(); 1234 err_pernet: 1235 unregister_pernet_subsys(&tls_proc_ops); 1236 return err; 1237 } 1238 1239 static void __exit tls_unregister(void) 1240 { 1241 tcp_unregister_ulp(&tcp_tls_ulp_ops); 1242 tls_strp_dev_exit(); 1243 tls_device_cleanup(); 1244 unregister_pernet_subsys(&tls_proc_ops); 1245 } 1246 1247 module_init(tls_register); 1248 module_exit(tls_unregister); 1249