1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 #include <linux/inet_diag.h> 43 44 #include <net/tls.h> 45 46 MODULE_AUTHOR("Mellanox Technologies"); 47 MODULE_DESCRIPTION("Transport Layer Security Support"); 48 MODULE_LICENSE("Dual BSD/GPL"); 49 MODULE_ALIAS_TCP_ULP("tls"); 50 51 enum { 52 TLSV4, 53 TLSV6, 54 TLS_NUM_PROTS, 55 }; 56 57 static struct proto *saved_tcpv6_prot; 58 static DEFINE_MUTEX(tcpv6_prot_mutex); 59 static struct proto *saved_tcpv4_prot; 60 static DEFINE_MUTEX(tcpv4_prot_mutex); 61 static LIST_HEAD(device_list); 62 static DEFINE_SPINLOCK(device_spinlock); 63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 64 static struct proto_ops tls_sw_proto_ops; 65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 66 struct proto *base); 67 68 static void update_sk_prot(struct sock *sk, struct tls_context *ctx) 69 { 70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 71 72 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]; 73 } 74 75 int wait_on_pending_writer(struct sock *sk, long *timeo) 76 { 77 int rc = 0; 78 DEFINE_WAIT_FUNC(wait, woken_wake_function); 79 80 add_wait_queue(sk_sleep(sk), &wait); 81 while (1) { 82 if (!*timeo) { 83 rc = -EAGAIN; 84 break; 85 } 86 87 if (signal_pending(current)) { 88 rc = sock_intr_errno(*timeo); 89 break; 90 } 91 92 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 93 break; 94 } 95 remove_wait_queue(sk_sleep(sk), &wait); 96 return rc; 97 } 98 99 int tls_push_sg(struct sock *sk, 100 struct tls_context *ctx, 101 struct scatterlist *sg, 102 u16 first_offset, 103 int flags) 104 { 105 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 106 int ret = 0; 107 struct page *p; 108 size_t size; 109 int offset = first_offset; 110 111 size = sg->length - offset; 112 offset += sg->offset; 113 114 ctx->in_tcp_sendpages = true; 115 while (1) { 116 if (sg_is_last(sg)) 117 sendpage_flags = flags; 118 119 /* is sending application-limited? */ 120 tcp_rate_check_app_limited(sk); 121 p = sg_page(sg); 122 retry: 123 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 124 125 if (ret != size) { 126 if (ret > 0) { 127 offset += ret; 128 size -= ret; 129 goto retry; 130 } 131 132 offset -= sg->offset; 133 ctx->partially_sent_offset = offset; 134 ctx->partially_sent_record = (void *)sg; 135 ctx->in_tcp_sendpages = false; 136 return ret; 137 } 138 139 put_page(p); 140 sk_mem_uncharge(sk, sg->length); 141 sg = sg_next(sg); 142 if (!sg) 143 break; 144 145 offset = sg->offset; 146 size = sg->length; 147 } 148 149 ctx->in_tcp_sendpages = false; 150 151 return 0; 152 } 153 154 static int tls_handle_open_record(struct sock *sk, int flags) 155 { 156 struct tls_context *ctx = tls_get_ctx(sk); 157 158 if (tls_is_pending_open_record(ctx)) 159 return ctx->push_pending_record(sk, flags); 160 161 return 0; 162 } 163 164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 165 unsigned char *record_type) 166 { 167 struct cmsghdr *cmsg; 168 int rc = -EINVAL; 169 170 for_each_cmsghdr(cmsg, msg) { 171 if (!CMSG_OK(msg, cmsg)) 172 return -EINVAL; 173 if (cmsg->cmsg_level != SOL_TLS) 174 continue; 175 176 switch (cmsg->cmsg_type) { 177 case TLS_SET_RECORD_TYPE: 178 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 179 return -EINVAL; 180 181 if (msg->msg_flags & MSG_MORE) 182 return -EINVAL; 183 184 rc = tls_handle_open_record(sk, msg->msg_flags); 185 if (rc) 186 return rc; 187 188 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 189 rc = 0; 190 break; 191 default: 192 return -EINVAL; 193 } 194 } 195 196 return rc; 197 } 198 199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 200 int flags) 201 { 202 struct scatterlist *sg; 203 u16 offset; 204 205 sg = ctx->partially_sent_record; 206 offset = ctx->partially_sent_offset; 207 208 ctx->partially_sent_record = NULL; 209 return tls_push_sg(sk, ctx, sg, offset, flags); 210 } 211 212 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 213 { 214 struct scatterlist *sg; 215 216 sg = ctx->partially_sent_record; 217 if (!sg) 218 return false; 219 220 while (1) { 221 put_page(sg_page(sg)); 222 sk_mem_uncharge(sk, sg->length); 223 224 if (sg_is_last(sg)) 225 break; 226 sg++; 227 } 228 ctx->partially_sent_record = NULL; 229 return true; 230 } 231 232 static void tls_write_space(struct sock *sk) 233 { 234 struct tls_context *ctx = tls_get_ctx(sk); 235 236 /* If in_tcp_sendpages call lower protocol write space handler 237 * to ensure we wake up any waiting operations there. For example 238 * if do_tcp_sendpages where to call sk_wait_event. 239 */ 240 if (ctx->in_tcp_sendpages) { 241 ctx->sk_write_space(sk); 242 return; 243 } 244 245 #ifdef CONFIG_TLS_DEVICE 246 if (ctx->tx_conf == TLS_HW) 247 tls_device_write_space(sk, ctx); 248 else 249 #endif 250 tls_sw_write_space(sk, ctx); 251 252 ctx->sk_write_space(sk); 253 } 254 255 /** 256 * tls_ctx_free() - free TLS ULP context 257 * @sk: socket to with @ctx is attached 258 * @ctx: TLS context structure 259 * 260 * Free TLS context. If @sk is %NULL caller guarantees that the socket 261 * to which @ctx was attached has no outstanding references. 262 */ 263 void tls_ctx_free(struct sock *sk, struct tls_context *ctx) 264 { 265 if (!ctx) 266 return; 267 268 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 269 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 270 271 if (sk) 272 kfree_rcu(ctx, rcu); 273 else 274 kfree(ctx); 275 } 276 277 static void tls_sk_proto_cleanup(struct sock *sk, 278 struct tls_context *ctx, long timeo) 279 { 280 if (unlikely(sk->sk_write_pending) && 281 !wait_on_pending_writer(sk, &timeo)) 282 tls_handle_open_record(sk, 0); 283 284 /* We need these for tls_sw_fallback handling of other packets */ 285 if (ctx->tx_conf == TLS_SW) { 286 kfree(ctx->tx.rec_seq); 287 kfree(ctx->tx.iv); 288 tls_sw_release_resources_tx(sk); 289 #ifdef CONFIG_TLS_DEVICE 290 } else if (ctx->tx_conf == TLS_HW) { 291 tls_device_free_resources_tx(sk); 292 #endif 293 } 294 295 if (ctx->rx_conf == TLS_SW) 296 tls_sw_release_resources_rx(sk); 297 298 #ifdef CONFIG_TLS_DEVICE 299 if (ctx->rx_conf == TLS_HW) 300 tls_device_offload_cleanup_rx(sk); 301 #endif 302 } 303 304 static void tls_sk_proto_close(struct sock *sk, long timeout) 305 { 306 struct inet_connection_sock *icsk = inet_csk(sk); 307 struct tls_context *ctx = tls_get_ctx(sk); 308 long timeo = sock_sndtimeo(sk, 0); 309 bool free_ctx; 310 311 if (ctx->tx_conf == TLS_SW) 312 tls_sw_cancel_work_tx(ctx); 313 314 lock_sock(sk); 315 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 316 317 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 318 tls_sk_proto_cleanup(sk, ctx, timeo); 319 320 write_lock_bh(&sk->sk_callback_lock); 321 if (free_ctx) 322 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 323 sk->sk_prot = ctx->sk_proto; 324 if (sk->sk_write_space == tls_write_space) 325 sk->sk_write_space = ctx->sk_write_space; 326 write_unlock_bh(&sk->sk_callback_lock); 327 release_sock(sk); 328 if (ctx->tx_conf == TLS_SW) 329 tls_sw_free_ctx_tx(ctx); 330 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 331 tls_sw_strparser_done(ctx); 332 if (ctx->rx_conf == TLS_SW) 333 tls_sw_free_ctx_rx(ctx); 334 ctx->sk_proto_close(sk, timeout); 335 336 if (free_ctx) 337 tls_ctx_free(sk, ctx); 338 } 339 340 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, 341 int __user *optlen) 342 { 343 int rc = 0; 344 struct tls_context *ctx = tls_get_ctx(sk); 345 struct tls_crypto_info *crypto_info; 346 int len; 347 348 if (get_user(len, optlen)) 349 return -EFAULT; 350 351 if (!optval || (len < sizeof(*crypto_info))) { 352 rc = -EINVAL; 353 goto out; 354 } 355 356 if (!ctx) { 357 rc = -EBUSY; 358 goto out; 359 } 360 361 /* get user crypto info */ 362 crypto_info = &ctx->crypto_send.info; 363 364 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 365 rc = -EBUSY; 366 goto out; 367 } 368 369 if (len == sizeof(*crypto_info)) { 370 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 371 rc = -EFAULT; 372 goto out; 373 } 374 375 switch (crypto_info->cipher_type) { 376 case TLS_CIPHER_AES_GCM_128: { 377 struct tls12_crypto_info_aes_gcm_128 * 378 crypto_info_aes_gcm_128 = 379 container_of(crypto_info, 380 struct tls12_crypto_info_aes_gcm_128, 381 info); 382 383 if (len != sizeof(*crypto_info_aes_gcm_128)) { 384 rc = -EINVAL; 385 goto out; 386 } 387 lock_sock(sk); 388 memcpy(crypto_info_aes_gcm_128->iv, 389 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 390 TLS_CIPHER_AES_GCM_128_IV_SIZE); 391 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, 392 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 393 release_sock(sk); 394 if (copy_to_user(optval, 395 crypto_info_aes_gcm_128, 396 sizeof(*crypto_info_aes_gcm_128))) 397 rc = -EFAULT; 398 break; 399 } 400 case TLS_CIPHER_AES_GCM_256: { 401 struct tls12_crypto_info_aes_gcm_256 * 402 crypto_info_aes_gcm_256 = 403 container_of(crypto_info, 404 struct tls12_crypto_info_aes_gcm_256, 405 info); 406 407 if (len != sizeof(*crypto_info_aes_gcm_256)) { 408 rc = -EINVAL; 409 goto out; 410 } 411 lock_sock(sk); 412 memcpy(crypto_info_aes_gcm_256->iv, 413 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 414 TLS_CIPHER_AES_GCM_256_IV_SIZE); 415 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq, 416 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 417 release_sock(sk); 418 if (copy_to_user(optval, 419 crypto_info_aes_gcm_256, 420 sizeof(*crypto_info_aes_gcm_256))) 421 rc = -EFAULT; 422 break; 423 } 424 default: 425 rc = -EINVAL; 426 } 427 428 out: 429 return rc; 430 } 431 432 static int do_tls_getsockopt(struct sock *sk, int optname, 433 char __user *optval, int __user *optlen) 434 { 435 int rc = 0; 436 437 switch (optname) { 438 case TLS_TX: 439 rc = do_tls_getsockopt_tx(sk, optval, optlen); 440 break; 441 default: 442 rc = -ENOPROTOOPT; 443 break; 444 } 445 return rc; 446 } 447 448 static int tls_getsockopt(struct sock *sk, int level, int optname, 449 char __user *optval, int __user *optlen) 450 { 451 struct tls_context *ctx = tls_get_ctx(sk); 452 453 if (level != SOL_TLS) 454 return ctx->getsockopt(sk, level, optname, optval, optlen); 455 456 return do_tls_getsockopt(sk, optname, optval, optlen); 457 } 458 459 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval, 460 unsigned int optlen, int tx) 461 { 462 struct tls_crypto_info *crypto_info; 463 struct tls_crypto_info *alt_crypto_info; 464 struct tls_context *ctx = tls_get_ctx(sk); 465 size_t optsize; 466 int rc = 0; 467 int conf; 468 469 if (!optval || (optlen < sizeof(*crypto_info))) { 470 rc = -EINVAL; 471 goto out; 472 } 473 474 if (tx) { 475 crypto_info = &ctx->crypto_send.info; 476 alt_crypto_info = &ctx->crypto_recv.info; 477 } else { 478 crypto_info = &ctx->crypto_recv.info; 479 alt_crypto_info = &ctx->crypto_send.info; 480 } 481 482 /* Currently we don't support set crypto info more than one time */ 483 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 484 rc = -EBUSY; 485 goto out; 486 } 487 488 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); 489 if (rc) { 490 rc = -EFAULT; 491 goto err_crypto_info; 492 } 493 494 /* check version */ 495 if (crypto_info->version != TLS_1_2_VERSION && 496 crypto_info->version != TLS_1_3_VERSION) { 497 rc = -ENOTSUPP; 498 goto err_crypto_info; 499 } 500 501 /* Ensure that TLS version and ciphers are same in both directions */ 502 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 503 if (alt_crypto_info->version != crypto_info->version || 504 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 505 rc = -EINVAL; 506 goto err_crypto_info; 507 } 508 } 509 510 switch (crypto_info->cipher_type) { 511 case TLS_CIPHER_AES_GCM_128: 512 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 513 break; 514 case TLS_CIPHER_AES_GCM_256: { 515 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 516 break; 517 } 518 case TLS_CIPHER_AES_CCM_128: 519 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 520 break; 521 default: 522 rc = -EINVAL; 523 goto err_crypto_info; 524 } 525 526 if (optlen != optsize) { 527 rc = -EINVAL; 528 goto err_crypto_info; 529 } 530 531 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), 532 optlen - sizeof(*crypto_info)); 533 if (rc) { 534 rc = -EFAULT; 535 goto err_crypto_info; 536 } 537 538 if (tx) { 539 #ifdef CONFIG_TLS_DEVICE 540 rc = tls_set_device_offload(sk, ctx); 541 conf = TLS_HW; 542 if (rc) { 543 #else 544 { 545 #endif 546 rc = tls_set_sw_offload(sk, ctx, 1); 547 if (rc) 548 goto err_crypto_info; 549 conf = TLS_SW; 550 } 551 } else { 552 #ifdef CONFIG_TLS_DEVICE 553 rc = tls_set_device_offload_rx(sk, ctx); 554 conf = TLS_HW; 555 if (rc) { 556 #else 557 { 558 #endif 559 rc = tls_set_sw_offload(sk, ctx, 0); 560 if (rc) 561 goto err_crypto_info; 562 conf = TLS_SW; 563 } 564 tls_sw_strparser_arm(sk, ctx); 565 } 566 567 if (tx) 568 ctx->tx_conf = conf; 569 else 570 ctx->rx_conf = conf; 571 update_sk_prot(sk, ctx); 572 if (tx) { 573 ctx->sk_write_space = sk->sk_write_space; 574 sk->sk_write_space = tls_write_space; 575 } else { 576 sk->sk_socket->ops = &tls_sw_proto_ops; 577 } 578 goto out; 579 580 err_crypto_info: 581 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 582 out: 583 return rc; 584 } 585 586 static int do_tls_setsockopt(struct sock *sk, int optname, 587 char __user *optval, unsigned int optlen) 588 { 589 int rc = 0; 590 591 switch (optname) { 592 case TLS_TX: 593 case TLS_RX: 594 lock_sock(sk); 595 rc = do_tls_setsockopt_conf(sk, optval, optlen, 596 optname == TLS_TX); 597 release_sock(sk); 598 break; 599 default: 600 rc = -ENOPROTOOPT; 601 break; 602 } 603 return rc; 604 } 605 606 static int tls_setsockopt(struct sock *sk, int level, int optname, 607 char __user *optval, unsigned int optlen) 608 { 609 struct tls_context *ctx = tls_get_ctx(sk); 610 611 if (level != SOL_TLS) 612 return ctx->setsockopt(sk, level, optname, optval, optlen); 613 614 return do_tls_setsockopt(sk, optname, optval, optlen); 615 } 616 617 static struct tls_context *create_ctx(struct sock *sk) 618 { 619 struct inet_connection_sock *icsk = inet_csk(sk); 620 struct tls_context *ctx; 621 622 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 623 if (!ctx) 624 return NULL; 625 626 rcu_assign_pointer(icsk->icsk_ulp_data, ctx); 627 ctx->setsockopt = sk->sk_prot->setsockopt; 628 ctx->getsockopt = sk->sk_prot->getsockopt; 629 ctx->sk_proto_close = sk->sk_prot->close; 630 ctx->unhash = sk->sk_prot->unhash; 631 return ctx; 632 } 633 634 static void tls_build_proto(struct sock *sk) 635 { 636 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 637 638 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 639 if (ip_ver == TLSV6 && 640 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { 641 mutex_lock(&tcpv6_prot_mutex); 642 if (likely(sk->sk_prot != saved_tcpv6_prot)) { 643 build_protos(tls_prots[TLSV6], sk->sk_prot); 644 smp_store_release(&saved_tcpv6_prot, sk->sk_prot); 645 } 646 mutex_unlock(&tcpv6_prot_mutex); 647 } 648 649 if (ip_ver == TLSV4 && 650 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) { 651 mutex_lock(&tcpv4_prot_mutex); 652 if (likely(sk->sk_prot != saved_tcpv4_prot)) { 653 build_protos(tls_prots[TLSV4], sk->sk_prot); 654 smp_store_release(&saved_tcpv4_prot, sk->sk_prot); 655 } 656 mutex_unlock(&tcpv4_prot_mutex); 657 } 658 } 659 660 static void tls_hw_sk_destruct(struct sock *sk) 661 { 662 struct tls_context *ctx = tls_get_ctx(sk); 663 struct inet_connection_sock *icsk = inet_csk(sk); 664 665 ctx->sk_destruct(sk); 666 /* Free ctx */ 667 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 668 tls_ctx_free(sk, ctx); 669 } 670 671 static int tls_hw_prot(struct sock *sk) 672 { 673 struct tls_context *ctx; 674 struct tls_device *dev; 675 int rc = 0; 676 677 spin_lock_bh(&device_spinlock); 678 list_for_each_entry(dev, &device_list, dev_list) { 679 if (dev->feature && dev->feature(dev)) { 680 ctx = create_ctx(sk); 681 if (!ctx) 682 goto out; 683 684 spin_unlock_bh(&device_spinlock); 685 tls_build_proto(sk); 686 ctx->hash = sk->sk_prot->hash; 687 ctx->unhash = sk->sk_prot->unhash; 688 ctx->sk_proto_close = sk->sk_prot->close; 689 ctx->sk_destruct = sk->sk_destruct; 690 sk->sk_destruct = tls_hw_sk_destruct; 691 ctx->rx_conf = TLS_HW_RECORD; 692 ctx->tx_conf = TLS_HW_RECORD; 693 update_sk_prot(sk, ctx); 694 spin_lock_bh(&device_spinlock); 695 rc = 1; 696 break; 697 } 698 } 699 out: 700 spin_unlock_bh(&device_spinlock); 701 return rc; 702 } 703 704 static void tls_hw_unhash(struct sock *sk) 705 { 706 struct tls_context *ctx = tls_get_ctx(sk); 707 struct tls_device *dev; 708 709 spin_lock_bh(&device_spinlock); 710 list_for_each_entry(dev, &device_list, dev_list) { 711 if (dev->unhash) { 712 kref_get(&dev->kref); 713 spin_unlock_bh(&device_spinlock); 714 dev->unhash(dev, sk); 715 kref_put(&dev->kref, dev->release); 716 spin_lock_bh(&device_spinlock); 717 } 718 } 719 spin_unlock_bh(&device_spinlock); 720 ctx->unhash(sk); 721 } 722 723 static int tls_hw_hash(struct sock *sk) 724 { 725 struct tls_context *ctx = tls_get_ctx(sk); 726 struct tls_device *dev; 727 int err; 728 729 err = ctx->hash(sk); 730 spin_lock_bh(&device_spinlock); 731 list_for_each_entry(dev, &device_list, dev_list) { 732 if (dev->hash) { 733 kref_get(&dev->kref); 734 spin_unlock_bh(&device_spinlock); 735 err |= dev->hash(dev, sk); 736 kref_put(&dev->kref, dev->release); 737 spin_lock_bh(&device_spinlock); 738 } 739 } 740 spin_unlock_bh(&device_spinlock); 741 742 if (err) 743 tls_hw_unhash(sk); 744 return err; 745 } 746 747 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 748 struct proto *base) 749 { 750 prot[TLS_BASE][TLS_BASE] = *base; 751 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 752 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 753 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 754 755 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 756 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 757 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 758 759 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 760 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 761 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read; 762 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 763 764 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 765 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 766 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read; 767 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 768 769 #ifdef CONFIG_TLS_DEVICE 770 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 771 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 772 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 773 774 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 775 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 776 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 777 778 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 779 780 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 781 782 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 783 #endif 784 785 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 786 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash; 787 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash; 788 } 789 790 static int tls_init(struct sock *sk) 791 { 792 struct tls_context *ctx; 793 int rc = 0; 794 795 if (tls_hw_prot(sk)) 796 return 0; 797 798 /* The TLS ulp is currently supported only for TCP sockets 799 * in ESTABLISHED state. 800 * Supporting sockets in LISTEN state will require us 801 * to modify the accept implementation to clone rather then 802 * share the ulp context. 803 */ 804 if (sk->sk_state != TCP_ESTABLISHED) 805 return -ENOTSUPP; 806 807 tls_build_proto(sk); 808 809 /* allocate tls context */ 810 write_lock_bh(&sk->sk_callback_lock); 811 ctx = create_ctx(sk); 812 if (!ctx) { 813 rc = -ENOMEM; 814 goto out; 815 } 816 817 ctx->tx_conf = TLS_BASE; 818 ctx->rx_conf = TLS_BASE; 819 ctx->sk_proto = sk->sk_prot; 820 update_sk_prot(sk, ctx); 821 out: 822 write_unlock_bh(&sk->sk_callback_lock); 823 return rc; 824 } 825 826 static void tls_update(struct sock *sk, struct proto *p) 827 { 828 struct tls_context *ctx; 829 830 ctx = tls_get_ctx(sk); 831 if (likely(ctx)) { 832 ctx->sk_proto_close = p->close; 833 ctx->sk_proto = p; 834 } else { 835 sk->sk_prot = p; 836 } 837 } 838 839 static int tls_get_info(const struct sock *sk, struct sk_buff *skb) 840 { 841 u16 version, cipher_type; 842 struct tls_context *ctx; 843 struct nlattr *start; 844 int err; 845 846 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); 847 if (!start) 848 return -EMSGSIZE; 849 850 rcu_read_lock(); 851 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); 852 if (!ctx) { 853 err = 0; 854 goto nla_failure; 855 } 856 version = ctx->prot_info.version; 857 if (version) { 858 err = nla_put_u16(skb, TLS_INFO_VERSION, version); 859 if (err) 860 goto nla_failure; 861 } 862 cipher_type = ctx->prot_info.cipher_type; 863 if (cipher_type) { 864 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); 865 if (err) 866 goto nla_failure; 867 } 868 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); 869 if (err) 870 goto nla_failure; 871 872 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); 873 if (err) 874 goto nla_failure; 875 876 rcu_read_unlock(); 877 nla_nest_end(skb, start); 878 return 0; 879 880 nla_failure: 881 rcu_read_unlock(); 882 nla_nest_cancel(skb, start); 883 return err; 884 } 885 886 static size_t tls_get_info_size(const struct sock *sk) 887 { 888 size_t size = 0; 889 890 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ 891 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ 892 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ 893 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ 894 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 895 0; 896 897 return size; 898 } 899 900 void tls_register_device(struct tls_device *device) 901 { 902 spin_lock_bh(&device_spinlock); 903 list_add_tail(&device->dev_list, &device_list); 904 spin_unlock_bh(&device_spinlock); 905 } 906 EXPORT_SYMBOL(tls_register_device); 907 908 void tls_unregister_device(struct tls_device *device) 909 { 910 spin_lock_bh(&device_spinlock); 911 list_del(&device->dev_list); 912 spin_unlock_bh(&device_spinlock); 913 } 914 EXPORT_SYMBOL(tls_unregister_device); 915 916 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 917 .name = "tls", 918 .owner = THIS_MODULE, 919 .init = tls_init, 920 .update = tls_update, 921 .get_info = tls_get_info, 922 .get_info_size = tls_get_info_size, 923 }; 924 925 static int __init tls_register(void) 926 { 927 tls_sw_proto_ops = inet_stream_ops; 928 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 929 930 #ifdef CONFIG_TLS_DEVICE 931 tls_device_init(); 932 #endif 933 tcp_register_ulp(&tcp_tls_ulp_ops); 934 935 return 0; 936 } 937 938 static void __exit tls_unregister(void) 939 { 940 tcp_unregister_ulp(&tcp_tls_ulp_ops); 941 #ifdef CONFIG_TLS_DEVICE 942 tls_device_cleanup(); 943 #endif 944 } 945 946 module_init(tls_register); 947 module_exit(tls_unregister); 948