xref: /openbmc/linux/net/tls/tls_main.c (revision 63f59b73e80a0f7431f6f91383fcc3f5fac49bb8)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 
43 #include <net/tls.h>
44 
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49 
50 enum {
51 	TLSV4,
52 	TLSV6,
53 	TLS_NUM_PROTS,
54 };
55 
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static LIST_HEAD(device_list);
59 static DEFINE_MUTEX(device_mutex);
60 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
61 static struct proto_ops tls_sw_proto_ops;
62 
63 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
64 {
65 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
66 
67 	sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
68 }
69 
70 int wait_on_pending_writer(struct sock *sk, long *timeo)
71 {
72 	int rc = 0;
73 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
74 
75 	add_wait_queue(sk_sleep(sk), &wait);
76 	while (1) {
77 		if (!*timeo) {
78 			rc = -EAGAIN;
79 			break;
80 		}
81 
82 		if (signal_pending(current)) {
83 			rc = sock_intr_errno(*timeo);
84 			break;
85 		}
86 
87 		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
88 			break;
89 	}
90 	remove_wait_queue(sk_sleep(sk), &wait);
91 	return rc;
92 }
93 
94 int tls_push_sg(struct sock *sk,
95 		struct tls_context *ctx,
96 		struct scatterlist *sg,
97 		u16 first_offset,
98 		int flags)
99 {
100 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
101 	int ret = 0;
102 	struct page *p;
103 	size_t size;
104 	int offset = first_offset;
105 
106 	size = sg->length - offset;
107 	offset += sg->offset;
108 
109 	ctx->in_tcp_sendpages = true;
110 	while (1) {
111 		if (sg_is_last(sg))
112 			sendpage_flags = flags;
113 
114 		/* is sending application-limited? */
115 		tcp_rate_check_app_limited(sk);
116 		p = sg_page(sg);
117 retry:
118 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
119 
120 		if (ret != size) {
121 			if (ret > 0) {
122 				offset += ret;
123 				size -= ret;
124 				goto retry;
125 			}
126 
127 			offset -= sg->offset;
128 			ctx->partially_sent_offset = offset;
129 			ctx->partially_sent_record = (void *)sg;
130 			ctx->in_tcp_sendpages = false;
131 			return ret;
132 		}
133 
134 		put_page(p);
135 		sk_mem_uncharge(sk, sg->length);
136 		sg = sg_next(sg);
137 		if (!sg)
138 			break;
139 
140 		offset = sg->offset;
141 		size = sg->length;
142 	}
143 
144 	clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
145 	ctx->in_tcp_sendpages = false;
146 	ctx->sk_write_space(sk);
147 
148 	return 0;
149 }
150 
151 static int tls_handle_open_record(struct sock *sk, int flags)
152 {
153 	struct tls_context *ctx = tls_get_ctx(sk);
154 
155 	if (tls_is_pending_open_record(ctx))
156 		return ctx->push_pending_record(sk, flags);
157 
158 	return 0;
159 }
160 
161 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
162 		      unsigned char *record_type)
163 {
164 	struct cmsghdr *cmsg;
165 	int rc = -EINVAL;
166 
167 	for_each_cmsghdr(cmsg, msg) {
168 		if (!CMSG_OK(msg, cmsg))
169 			return -EINVAL;
170 		if (cmsg->cmsg_level != SOL_TLS)
171 			continue;
172 
173 		switch (cmsg->cmsg_type) {
174 		case TLS_SET_RECORD_TYPE:
175 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
176 				return -EINVAL;
177 
178 			if (msg->msg_flags & MSG_MORE)
179 				return -EINVAL;
180 
181 			rc = tls_handle_open_record(sk, msg->msg_flags);
182 			if (rc)
183 				return rc;
184 
185 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
186 			rc = 0;
187 			break;
188 		default:
189 			return -EINVAL;
190 		}
191 	}
192 
193 	return rc;
194 }
195 
196 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
197 				   int flags, long *timeo)
198 {
199 	struct scatterlist *sg;
200 	u16 offset;
201 
202 	if (!tls_is_partially_sent_record(ctx))
203 		return ctx->push_pending_record(sk, flags);
204 
205 	sg = ctx->partially_sent_record;
206 	offset = ctx->partially_sent_offset;
207 
208 	ctx->partially_sent_record = NULL;
209 	return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211 
212 static void tls_write_space(struct sock *sk)
213 {
214 	struct tls_context *ctx = tls_get_ctx(sk);
215 
216 	/* If in_tcp_sendpages call lower protocol write space handler
217 	 * to ensure we wake up any waiting operations there. For example
218 	 * if do_tcp_sendpages where to call sk_wait_event.
219 	 */
220 	if (ctx->in_tcp_sendpages) {
221 		ctx->sk_write_space(sk);
222 		return;
223 	}
224 
225 	if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
226 		gfp_t sk_allocation = sk->sk_allocation;
227 		int rc;
228 		long timeo = 0;
229 
230 		sk->sk_allocation = GFP_ATOMIC;
231 		rc = tls_push_pending_closed_record(sk, ctx,
232 						    MSG_DONTWAIT |
233 						    MSG_NOSIGNAL,
234 						    &timeo);
235 		sk->sk_allocation = sk_allocation;
236 
237 		if (rc < 0)
238 			return;
239 	}
240 
241 	ctx->sk_write_space(sk);
242 }
243 
244 static void tls_sk_proto_close(struct sock *sk, long timeout)
245 {
246 	struct tls_context *ctx = tls_get_ctx(sk);
247 	long timeo = sock_sndtimeo(sk, 0);
248 	void (*sk_proto_close)(struct sock *sk, long timeout);
249 	bool free_ctx = false;
250 
251 	lock_sock(sk);
252 	sk_proto_close = ctx->sk_proto_close;
253 
254 	if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
255 	    (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
256 		free_ctx = true;
257 		goto skip_tx_cleanup;
258 	}
259 
260 	if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
261 		tls_handle_open_record(sk, 0);
262 
263 	if (ctx->partially_sent_record) {
264 		struct scatterlist *sg = ctx->partially_sent_record;
265 
266 		while (1) {
267 			put_page(sg_page(sg));
268 			sk_mem_uncharge(sk, sg->length);
269 
270 			if (sg_is_last(sg))
271 				break;
272 			sg++;
273 		}
274 	}
275 
276 	/* We need these for tls_sw_fallback handling of other packets */
277 	if (ctx->tx_conf == TLS_SW) {
278 		kfree(ctx->tx.rec_seq);
279 		kfree(ctx->tx.iv);
280 		tls_sw_free_resources_tx(sk);
281 	}
282 
283 	if (ctx->rx_conf == TLS_SW) {
284 		kfree(ctx->rx.rec_seq);
285 		kfree(ctx->rx.iv);
286 		tls_sw_free_resources_rx(sk);
287 	}
288 
289 #ifdef CONFIG_TLS_DEVICE
290 	if (ctx->rx_conf == TLS_HW)
291 		tls_device_offload_cleanup_rx(sk);
292 
293 	if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
294 #else
295 	{
296 #endif
297 		kfree(ctx);
298 		ctx = NULL;
299 	}
300 
301 skip_tx_cleanup:
302 	release_sock(sk);
303 	sk_proto_close(sk, timeout);
304 	/* free ctx for TLS_HW_RECORD, used by tcp_set_state
305 	 * for sk->sk_prot->unhash [tls_hw_unhash]
306 	 */
307 	if (free_ctx)
308 		kfree(ctx);
309 }
310 
311 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
312 				int __user *optlen)
313 {
314 	int rc = 0;
315 	struct tls_context *ctx = tls_get_ctx(sk);
316 	struct tls_crypto_info *crypto_info;
317 	int len;
318 
319 	if (get_user(len, optlen))
320 		return -EFAULT;
321 
322 	if (!optval || (len < sizeof(*crypto_info))) {
323 		rc = -EINVAL;
324 		goto out;
325 	}
326 
327 	if (!ctx) {
328 		rc = -EBUSY;
329 		goto out;
330 	}
331 
332 	/* get user crypto info */
333 	crypto_info = &ctx->crypto_send;
334 
335 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
336 		rc = -EBUSY;
337 		goto out;
338 	}
339 
340 	if (len == sizeof(*crypto_info)) {
341 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
342 			rc = -EFAULT;
343 		goto out;
344 	}
345 
346 	switch (crypto_info->cipher_type) {
347 	case TLS_CIPHER_AES_GCM_128: {
348 		struct tls12_crypto_info_aes_gcm_128 *
349 		  crypto_info_aes_gcm_128 =
350 		  container_of(crypto_info,
351 			       struct tls12_crypto_info_aes_gcm_128,
352 			       info);
353 
354 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
355 			rc = -EINVAL;
356 			goto out;
357 		}
358 		lock_sock(sk);
359 		memcpy(crypto_info_aes_gcm_128->iv,
360 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
361 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
362 		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
363 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
364 		release_sock(sk);
365 		if (copy_to_user(optval,
366 				 crypto_info_aes_gcm_128,
367 				 sizeof(*crypto_info_aes_gcm_128)))
368 			rc = -EFAULT;
369 		break;
370 	}
371 	default:
372 		rc = -EINVAL;
373 	}
374 
375 out:
376 	return rc;
377 }
378 
379 static int do_tls_getsockopt(struct sock *sk, int optname,
380 			     char __user *optval, int __user *optlen)
381 {
382 	int rc = 0;
383 
384 	switch (optname) {
385 	case TLS_TX:
386 		rc = do_tls_getsockopt_tx(sk, optval, optlen);
387 		break;
388 	default:
389 		rc = -ENOPROTOOPT;
390 		break;
391 	}
392 	return rc;
393 }
394 
395 static int tls_getsockopt(struct sock *sk, int level, int optname,
396 			  char __user *optval, int __user *optlen)
397 {
398 	struct tls_context *ctx = tls_get_ctx(sk);
399 
400 	if (level != SOL_TLS)
401 		return ctx->getsockopt(sk, level, optname, optval, optlen);
402 
403 	return do_tls_getsockopt(sk, optname, optval, optlen);
404 }
405 
406 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
407 				  unsigned int optlen, int tx)
408 {
409 	struct tls_crypto_info *crypto_info;
410 	struct tls_context *ctx = tls_get_ctx(sk);
411 	int rc = 0;
412 	int conf;
413 
414 	if (!optval || (optlen < sizeof(*crypto_info))) {
415 		rc = -EINVAL;
416 		goto out;
417 	}
418 
419 	if (tx)
420 		crypto_info = &ctx->crypto_send;
421 	else
422 		crypto_info = &ctx->crypto_recv;
423 
424 	/* Currently we don't support set crypto info more than one time */
425 	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
426 		rc = -EBUSY;
427 		goto out;
428 	}
429 
430 	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
431 	if (rc) {
432 		rc = -EFAULT;
433 		goto err_crypto_info;
434 	}
435 
436 	/* check version */
437 	if (crypto_info->version != TLS_1_2_VERSION) {
438 		rc = -ENOTSUPP;
439 		goto err_crypto_info;
440 	}
441 
442 	switch (crypto_info->cipher_type) {
443 	case TLS_CIPHER_AES_GCM_128: {
444 		if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
445 			rc = -EINVAL;
446 			goto err_crypto_info;
447 		}
448 		rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
449 				    optlen - sizeof(*crypto_info));
450 		if (rc) {
451 			rc = -EFAULT;
452 			goto err_crypto_info;
453 		}
454 		break;
455 	}
456 	default:
457 		rc = -EINVAL;
458 		goto err_crypto_info;
459 	}
460 
461 	if (tx) {
462 #ifdef CONFIG_TLS_DEVICE
463 		rc = tls_set_device_offload(sk, ctx);
464 		conf = TLS_HW;
465 		if (rc) {
466 #else
467 		{
468 #endif
469 			rc = tls_set_sw_offload(sk, ctx, 1);
470 			conf = TLS_SW;
471 		}
472 	} else {
473 #ifdef CONFIG_TLS_DEVICE
474 		rc = tls_set_device_offload_rx(sk, ctx);
475 		conf = TLS_HW;
476 		if (rc) {
477 #else
478 		{
479 #endif
480 			rc = tls_set_sw_offload(sk, ctx, 0);
481 			conf = TLS_SW;
482 		}
483 	}
484 
485 	if (rc)
486 		goto err_crypto_info;
487 
488 	if (tx)
489 		ctx->tx_conf = conf;
490 	else
491 		ctx->rx_conf = conf;
492 	update_sk_prot(sk, ctx);
493 	if (tx) {
494 		ctx->sk_write_space = sk->sk_write_space;
495 		sk->sk_write_space = tls_write_space;
496 	} else {
497 		sk->sk_socket->ops = &tls_sw_proto_ops;
498 	}
499 	goto out;
500 
501 err_crypto_info:
502 	memset(crypto_info, 0, sizeof(*crypto_info));
503 out:
504 	return rc;
505 }
506 
507 static int do_tls_setsockopt(struct sock *sk, int optname,
508 			     char __user *optval, unsigned int optlen)
509 {
510 	int rc = 0;
511 
512 	switch (optname) {
513 	case TLS_TX:
514 	case TLS_RX:
515 		lock_sock(sk);
516 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
517 					    optname == TLS_TX);
518 		release_sock(sk);
519 		break;
520 	default:
521 		rc = -ENOPROTOOPT;
522 		break;
523 	}
524 	return rc;
525 }
526 
527 static int tls_setsockopt(struct sock *sk, int level, int optname,
528 			  char __user *optval, unsigned int optlen)
529 {
530 	struct tls_context *ctx = tls_get_ctx(sk);
531 
532 	if (level != SOL_TLS)
533 		return ctx->setsockopt(sk, level, optname, optval, optlen);
534 
535 	return do_tls_setsockopt(sk, optname, optval, optlen);
536 }
537 
538 static struct tls_context *create_ctx(struct sock *sk)
539 {
540 	struct inet_connection_sock *icsk = inet_csk(sk);
541 	struct tls_context *ctx;
542 
543 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
544 	if (!ctx)
545 		return NULL;
546 
547 	icsk->icsk_ulp_data = ctx;
548 	return ctx;
549 }
550 
551 static int tls_hw_prot(struct sock *sk)
552 {
553 	struct tls_context *ctx;
554 	struct tls_device *dev;
555 	int rc = 0;
556 
557 	mutex_lock(&device_mutex);
558 	list_for_each_entry(dev, &device_list, dev_list) {
559 		if (dev->feature && dev->feature(dev)) {
560 			ctx = create_ctx(sk);
561 			if (!ctx)
562 				goto out;
563 
564 			ctx->hash = sk->sk_prot->hash;
565 			ctx->unhash = sk->sk_prot->unhash;
566 			ctx->sk_proto_close = sk->sk_prot->close;
567 			ctx->rx_conf = TLS_HW_RECORD;
568 			ctx->tx_conf = TLS_HW_RECORD;
569 			update_sk_prot(sk, ctx);
570 			rc = 1;
571 			break;
572 		}
573 	}
574 out:
575 	mutex_unlock(&device_mutex);
576 	return rc;
577 }
578 
579 static void tls_hw_unhash(struct sock *sk)
580 {
581 	struct tls_context *ctx = tls_get_ctx(sk);
582 	struct tls_device *dev;
583 
584 	mutex_lock(&device_mutex);
585 	list_for_each_entry(dev, &device_list, dev_list) {
586 		if (dev->unhash)
587 			dev->unhash(dev, sk);
588 	}
589 	mutex_unlock(&device_mutex);
590 	ctx->unhash(sk);
591 }
592 
593 static int tls_hw_hash(struct sock *sk)
594 {
595 	struct tls_context *ctx = tls_get_ctx(sk);
596 	struct tls_device *dev;
597 	int err;
598 
599 	err = ctx->hash(sk);
600 	mutex_lock(&device_mutex);
601 	list_for_each_entry(dev, &device_list, dev_list) {
602 		if (dev->hash)
603 			err |= dev->hash(dev, sk);
604 	}
605 	mutex_unlock(&device_mutex);
606 
607 	if (err)
608 		tls_hw_unhash(sk);
609 	return err;
610 }
611 
612 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
613 			 struct proto *base)
614 {
615 	prot[TLS_BASE][TLS_BASE] = *base;
616 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
617 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
618 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
619 
620 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
621 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
622 	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
623 
624 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
625 	prot[TLS_BASE][TLS_SW].recvmsg		= tls_sw_recvmsg;
626 	prot[TLS_BASE][TLS_SW].close		= tls_sk_proto_close;
627 
628 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
629 	prot[TLS_SW][TLS_SW].recvmsg	= tls_sw_recvmsg;
630 	prot[TLS_SW][TLS_SW].close	= tls_sk_proto_close;
631 
632 #ifdef CONFIG_TLS_DEVICE
633 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
634 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
635 	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
636 
637 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
638 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
639 	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
640 
641 	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
642 
643 	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
644 
645 	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
646 #endif
647 
648 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
649 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_hw_hash;
650 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_hw_unhash;
651 	prot[TLS_HW_RECORD][TLS_HW_RECORD].close	= tls_sk_proto_close;
652 }
653 
654 static int tls_init(struct sock *sk)
655 {
656 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
657 	struct tls_context *ctx;
658 	int rc = 0;
659 
660 	if (tls_hw_prot(sk))
661 		goto out;
662 
663 	/* The TLS ulp is currently supported only for TCP sockets
664 	 * in ESTABLISHED state.
665 	 * Supporting sockets in LISTEN state will require us
666 	 * to modify the accept implementation to clone rather then
667 	 * share the ulp context.
668 	 */
669 	if (sk->sk_state != TCP_ESTABLISHED)
670 		return -ENOTSUPP;
671 
672 	/* allocate tls context */
673 	ctx = create_ctx(sk);
674 	if (!ctx) {
675 		rc = -ENOMEM;
676 		goto out;
677 	}
678 	ctx->setsockopt = sk->sk_prot->setsockopt;
679 	ctx->getsockopt = sk->sk_prot->getsockopt;
680 	ctx->sk_proto_close = sk->sk_prot->close;
681 
682 	/* Build IPv6 TLS whenever the address of tcpv6	_prot changes */
683 	if (ip_ver == TLSV6 &&
684 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
685 		mutex_lock(&tcpv6_prot_mutex);
686 		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
687 			build_protos(tls_prots[TLSV6], sk->sk_prot);
688 			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
689 		}
690 		mutex_unlock(&tcpv6_prot_mutex);
691 	}
692 
693 	ctx->tx_conf = TLS_BASE;
694 	ctx->rx_conf = TLS_BASE;
695 	update_sk_prot(sk, ctx);
696 out:
697 	return rc;
698 }
699 
700 void tls_register_device(struct tls_device *device)
701 {
702 	mutex_lock(&device_mutex);
703 	list_add_tail(&device->dev_list, &device_list);
704 	mutex_unlock(&device_mutex);
705 }
706 EXPORT_SYMBOL(tls_register_device);
707 
708 void tls_unregister_device(struct tls_device *device)
709 {
710 	mutex_lock(&device_mutex);
711 	list_del(&device->dev_list);
712 	mutex_unlock(&device_mutex);
713 }
714 EXPORT_SYMBOL(tls_unregister_device);
715 
716 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
717 	.name			= "tls",
718 	.uid			= TCP_ULP_TLS,
719 	.user_visible		= true,
720 	.owner			= THIS_MODULE,
721 	.init			= tls_init,
722 };
723 
724 static int __init tls_register(void)
725 {
726 	build_protos(tls_prots[TLSV4], &tcp_prot);
727 
728 	tls_sw_proto_ops = inet_stream_ops;
729 	tls_sw_proto_ops.poll = tls_sw_poll;
730 	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
731 
732 #ifdef CONFIG_TLS_DEVICE
733 	tls_device_init();
734 #endif
735 	tcp_register_ulp(&tcp_tls_ulp_ops);
736 
737 	return 0;
738 }
739 
740 static void __exit tls_unregister(void)
741 {
742 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
743 #ifdef CONFIG_TLS_DEVICE
744 	tls_device_cleanup();
745 #endif
746 }
747 
748 module_init(tls_register);
749 module_exit(tls_unregister);
750