1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 43 #include <net/tls.h> 44 45 MODULE_AUTHOR("Mellanox Technologies"); 46 MODULE_DESCRIPTION("Transport Layer Security Support"); 47 MODULE_LICENSE("Dual BSD/GPL"); 48 MODULE_ALIAS_TCP_ULP("tls"); 49 50 enum { 51 TLSV4, 52 TLSV6, 53 TLS_NUM_PROTS, 54 }; 55 56 static struct proto *saved_tcpv6_prot; 57 static DEFINE_MUTEX(tcpv6_prot_mutex); 58 static LIST_HEAD(device_list); 59 static DEFINE_MUTEX(device_mutex); 60 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 61 static struct proto_ops tls_sw_proto_ops; 62 63 static void update_sk_prot(struct sock *sk, struct tls_context *ctx) 64 { 65 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 66 67 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]; 68 } 69 70 int wait_on_pending_writer(struct sock *sk, long *timeo) 71 { 72 int rc = 0; 73 DEFINE_WAIT_FUNC(wait, woken_wake_function); 74 75 add_wait_queue(sk_sleep(sk), &wait); 76 while (1) { 77 if (!*timeo) { 78 rc = -EAGAIN; 79 break; 80 } 81 82 if (signal_pending(current)) { 83 rc = sock_intr_errno(*timeo); 84 break; 85 } 86 87 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 88 break; 89 } 90 remove_wait_queue(sk_sleep(sk), &wait); 91 return rc; 92 } 93 94 int tls_push_sg(struct sock *sk, 95 struct tls_context *ctx, 96 struct scatterlist *sg, 97 u16 first_offset, 98 int flags) 99 { 100 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 101 int ret = 0; 102 struct page *p; 103 size_t size; 104 int offset = first_offset; 105 106 size = sg->length - offset; 107 offset += sg->offset; 108 109 ctx->in_tcp_sendpages = true; 110 while (1) { 111 if (sg_is_last(sg)) 112 sendpage_flags = flags; 113 114 /* is sending application-limited? */ 115 tcp_rate_check_app_limited(sk); 116 p = sg_page(sg); 117 retry: 118 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 119 120 if (ret != size) { 121 if (ret > 0) { 122 offset += ret; 123 size -= ret; 124 goto retry; 125 } 126 127 offset -= sg->offset; 128 ctx->partially_sent_offset = offset; 129 ctx->partially_sent_record = (void *)sg; 130 ctx->in_tcp_sendpages = false; 131 return ret; 132 } 133 134 put_page(p); 135 sk_mem_uncharge(sk, sg->length); 136 sg = sg_next(sg); 137 if (!sg) 138 break; 139 140 offset = sg->offset; 141 size = sg->length; 142 } 143 144 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags); 145 ctx->in_tcp_sendpages = false; 146 ctx->sk_write_space(sk); 147 148 return 0; 149 } 150 151 static int tls_handle_open_record(struct sock *sk, int flags) 152 { 153 struct tls_context *ctx = tls_get_ctx(sk); 154 155 if (tls_is_pending_open_record(ctx)) 156 return ctx->push_pending_record(sk, flags); 157 158 return 0; 159 } 160 161 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 162 unsigned char *record_type) 163 { 164 struct cmsghdr *cmsg; 165 int rc = -EINVAL; 166 167 for_each_cmsghdr(cmsg, msg) { 168 if (!CMSG_OK(msg, cmsg)) 169 return -EINVAL; 170 if (cmsg->cmsg_level != SOL_TLS) 171 continue; 172 173 switch (cmsg->cmsg_type) { 174 case TLS_SET_RECORD_TYPE: 175 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 176 return -EINVAL; 177 178 if (msg->msg_flags & MSG_MORE) 179 return -EINVAL; 180 181 rc = tls_handle_open_record(sk, msg->msg_flags); 182 if (rc) 183 return rc; 184 185 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 186 rc = 0; 187 break; 188 default: 189 return -EINVAL; 190 } 191 } 192 193 return rc; 194 } 195 196 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx, 197 int flags, long *timeo) 198 { 199 struct scatterlist *sg; 200 u16 offset; 201 202 if (!tls_is_partially_sent_record(ctx)) 203 return ctx->push_pending_record(sk, flags); 204 205 sg = ctx->partially_sent_record; 206 offset = ctx->partially_sent_offset; 207 208 ctx->partially_sent_record = NULL; 209 return tls_push_sg(sk, ctx, sg, offset, flags); 210 } 211 212 static void tls_write_space(struct sock *sk) 213 { 214 struct tls_context *ctx = tls_get_ctx(sk); 215 216 /* If in_tcp_sendpages call lower protocol write space handler 217 * to ensure we wake up any waiting operations there. For example 218 * if do_tcp_sendpages where to call sk_wait_event. 219 */ 220 if (ctx->in_tcp_sendpages) { 221 ctx->sk_write_space(sk); 222 return; 223 } 224 225 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) { 226 gfp_t sk_allocation = sk->sk_allocation; 227 int rc; 228 long timeo = 0; 229 230 sk->sk_allocation = GFP_ATOMIC; 231 rc = tls_push_pending_closed_record(sk, ctx, 232 MSG_DONTWAIT | 233 MSG_NOSIGNAL, 234 &timeo); 235 sk->sk_allocation = sk_allocation; 236 237 if (rc < 0) 238 return; 239 } 240 241 ctx->sk_write_space(sk); 242 } 243 244 static void tls_sk_proto_close(struct sock *sk, long timeout) 245 { 246 struct tls_context *ctx = tls_get_ctx(sk); 247 long timeo = sock_sndtimeo(sk, 0); 248 void (*sk_proto_close)(struct sock *sk, long timeout); 249 bool free_ctx = false; 250 251 lock_sock(sk); 252 sk_proto_close = ctx->sk_proto_close; 253 254 if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) || 255 (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) { 256 free_ctx = true; 257 goto skip_tx_cleanup; 258 } 259 260 if (!tls_complete_pending_work(sk, ctx, 0, &timeo)) 261 tls_handle_open_record(sk, 0); 262 263 if (ctx->partially_sent_record) { 264 struct scatterlist *sg = ctx->partially_sent_record; 265 266 while (1) { 267 put_page(sg_page(sg)); 268 sk_mem_uncharge(sk, sg->length); 269 270 if (sg_is_last(sg)) 271 break; 272 sg++; 273 } 274 } 275 276 /* We need these for tls_sw_fallback handling of other packets */ 277 if (ctx->tx_conf == TLS_SW) { 278 kfree(ctx->tx.rec_seq); 279 kfree(ctx->tx.iv); 280 tls_sw_free_resources_tx(sk); 281 } 282 283 if (ctx->rx_conf == TLS_SW) { 284 kfree(ctx->rx.rec_seq); 285 kfree(ctx->rx.iv); 286 tls_sw_free_resources_rx(sk); 287 } 288 289 #ifdef CONFIG_TLS_DEVICE 290 if (ctx->rx_conf == TLS_HW) 291 tls_device_offload_cleanup_rx(sk); 292 293 if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) { 294 #else 295 { 296 #endif 297 kfree(ctx); 298 ctx = NULL; 299 } 300 301 skip_tx_cleanup: 302 release_sock(sk); 303 sk_proto_close(sk, timeout); 304 /* free ctx for TLS_HW_RECORD, used by tcp_set_state 305 * for sk->sk_prot->unhash [tls_hw_unhash] 306 */ 307 if (free_ctx) 308 kfree(ctx); 309 } 310 311 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, 312 int __user *optlen) 313 { 314 int rc = 0; 315 struct tls_context *ctx = tls_get_ctx(sk); 316 struct tls_crypto_info *crypto_info; 317 int len; 318 319 if (get_user(len, optlen)) 320 return -EFAULT; 321 322 if (!optval || (len < sizeof(*crypto_info))) { 323 rc = -EINVAL; 324 goto out; 325 } 326 327 if (!ctx) { 328 rc = -EBUSY; 329 goto out; 330 } 331 332 /* get user crypto info */ 333 crypto_info = &ctx->crypto_send; 334 335 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 336 rc = -EBUSY; 337 goto out; 338 } 339 340 if (len == sizeof(*crypto_info)) { 341 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 342 rc = -EFAULT; 343 goto out; 344 } 345 346 switch (crypto_info->cipher_type) { 347 case TLS_CIPHER_AES_GCM_128: { 348 struct tls12_crypto_info_aes_gcm_128 * 349 crypto_info_aes_gcm_128 = 350 container_of(crypto_info, 351 struct tls12_crypto_info_aes_gcm_128, 352 info); 353 354 if (len != sizeof(*crypto_info_aes_gcm_128)) { 355 rc = -EINVAL; 356 goto out; 357 } 358 lock_sock(sk); 359 memcpy(crypto_info_aes_gcm_128->iv, 360 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 361 TLS_CIPHER_AES_GCM_128_IV_SIZE); 362 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, 363 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 364 release_sock(sk); 365 if (copy_to_user(optval, 366 crypto_info_aes_gcm_128, 367 sizeof(*crypto_info_aes_gcm_128))) 368 rc = -EFAULT; 369 break; 370 } 371 default: 372 rc = -EINVAL; 373 } 374 375 out: 376 return rc; 377 } 378 379 static int do_tls_getsockopt(struct sock *sk, int optname, 380 char __user *optval, int __user *optlen) 381 { 382 int rc = 0; 383 384 switch (optname) { 385 case TLS_TX: 386 rc = do_tls_getsockopt_tx(sk, optval, optlen); 387 break; 388 default: 389 rc = -ENOPROTOOPT; 390 break; 391 } 392 return rc; 393 } 394 395 static int tls_getsockopt(struct sock *sk, int level, int optname, 396 char __user *optval, int __user *optlen) 397 { 398 struct tls_context *ctx = tls_get_ctx(sk); 399 400 if (level != SOL_TLS) 401 return ctx->getsockopt(sk, level, optname, optval, optlen); 402 403 return do_tls_getsockopt(sk, optname, optval, optlen); 404 } 405 406 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval, 407 unsigned int optlen, int tx) 408 { 409 struct tls_crypto_info *crypto_info; 410 struct tls_context *ctx = tls_get_ctx(sk); 411 int rc = 0; 412 int conf; 413 414 if (!optval || (optlen < sizeof(*crypto_info))) { 415 rc = -EINVAL; 416 goto out; 417 } 418 419 if (tx) 420 crypto_info = &ctx->crypto_send; 421 else 422 crypto_info = &ctx->crypto_recv; 423 424 /* Currently we don't support set crypto info more than one time */ 425 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 426 rc = -EBUSY; 427 goto out; 428 } 429 430 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); 431 if (rc) { 432 rc = -EFAULT; 433 goto err_crypto_info; 434 } 435 436 /* check version */ 437 if (crypto_info->version != TLS_1_2_VERSION) { 438 rc = -ENOTSUPP; 439 goto err_crypto_info; 440 } 441 442 switch (crypto_info->cipher_type) { 443 case TLS_CIPHER_AES_GCM_128: { 444 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) { 445 rc = -EINVAL; 446 goto err_crypto_info; 447 } 448 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), 449 optlen - sizeof(*crypto_info)); 450 if (rc) { 451 rc = -EFAULT; 452 goto err_crypto_info; 453 } 454 break; 455 } 456 default: 457 rc = -EINVAL; 458 goto err_crypto_info; 459 } 460 461 if (tx) { 462 #ifdef CONFIG_TLS_DEVICE 463 rc = tls_set_device_offload(sk, ctx); 464 conf = TLS_HW; 465 if (rc) { 466 #else 467 { 468 #endif 469 rc = tls_set_sw_offload(sk, ctx, 1); 470 conf = TLS_SW; 471 } 472 } else { 473 #ifdef CONFIG_TLS_DEVICE 474 rc = tls_set_device_offload_rx(sk, ctx); 475 conf = TLS_HW; 476 if (rc) { 477 #else 478 { 479 #endif 480 rc = tls_set_sw_offload(sk, ctx, 0); 481 conf = TLS_SW; 482 } 483 } 484 485 if (rc) 486 goto err_crypto_info; 487 488 if (tx) 489 ctx->tx_conf = conf; 490 else 491 ctx->rx_conf = conf; 492 update_sk_prot(sk, ctx); 493 if (tx) { 494 ctx->sk_write_space = sk->sk_write_space; 495 sk->sk_write_space = tls_write_space; 496 } else { 497 sk->sk_socket->ops = &tls_sw_proto_ops; 498 } 499 goto out; 500 501 err_crypto_info: 502 memset(crypto_info, 0, sizeof(*crypto_info)); 503 out: 504 return rc; 505 } 506 507 static int do_tls_setsockopt(struct sock *sk, int optname, 508 char __user *optval, unsigned int optlen) 509 { 510 int rc = 0; 511 512 switch (optname) { 513 case TLS_TX: 514 case TLS_RX: 515 lock_sock(sk); 516 rc = do_tls_setsockopt_conf(sk, optval, optlen, 517 optname == TLS_TX); 518 release_sock(sk); 519 break; 520 default: 521 rc = -ENOPROTOOPT; 522 break; 523 } 524 return rc; 525 } 526 527 static int tls_setsockopt(struct sock *sk, int level, int optname, 528 char __user *optval, unsigned int optlen) 529 { 530 struct tls_context *ctx = tls_get_ctx(sk); 531 532 if (level != SOL_TLS) 533 return ctx->setsockopt(sk, level, optname, optval, optlen); 534 535 return do_tls_setsockopt(sk, optname, optval, optlen); 536 } 537 538 static struct tls_context *create_ctx(struct sock *sk) 539 { 540 struct inet_connection_sock *icsk = inet_csk(sk); 541 struct tls_context *ctx; 542 543 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 544 if (!ctx) 545 return NULL; 546 547 icsk->icsk_ulp_data = ctx; 548 return ctx; 549 } 550 551 static int tls_hw_prot(struct sock *sk) 552 { 553 struct tls_context *ctx; 554 struct tls_device *dev; 555 int rc = 0; 556 557 mutex_lock(&device_mutex); 558 list_for_each_entry(dev, &device_list, dev_list) { 559 if (dev->feature && dev->feature(dev)) { 560 ctx = create_ctx(sk); 561 if (!ctx) 562 goto out; 563 564 ctx->hash = sk->sk_prot->hash; 565 ctx->unhash = sk->sk_prot->unhash; 566 ctx->sk_proto_close = sk->sk_prot->close; 567 ctx->rx_conf = TLS_HW_RECORD; 568 ctx->tx_conf = TLS_HW_RECORD; 569 update_sk_prot(sk, ctx); 570 rc = 1; 571 break; 572 } 573 } 574 out: 575 mutex_unlock(&device_mutex); 576 return rc; 577 } 578 579 static void tls_hw_unhash(struct sock *sk) 580 { 581 struct tls_context *ctx = tls_get_ctx(sk); 582 struct tls_device *dev; 583 584 mutex_lock(&device_mutex); 585 list_for_each_entry(dev, &device_list, dev_list) { 586 if (dev->unhash) 587 dev->unhash(dev, sk); 588 } 589 mutex_unlock(&device_mutex); 590 ctx->unhash(sk); 591 } 592 593 static int tls_hw_hash(struct sock *sk) 594 { 595 struct tls_context *ctx = tls_get_ctx(sk); 596 struct tls_device *dev; 597 int err; 598 599 err = ctx->hash(sk); 600 mutex_lock(&device_mutex); 601 list_for_each_entry(dev, &device_list, dev_list) { 602 if (dev->hash) 603 err |= dev->hash(dev, sk); 604 } 605 mutex_unlock(&device_mutex); 606 607 if (err) 608 tls_hw_unhash(sk); 609 return err; 610 } 611 612 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 613 struct proto *base) 614 { 615 prot[TLS_BASE][TLS_BASE] = *base; 616 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 617 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 618 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 619 620 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 621 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 622 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 623 624 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 625 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 626 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 627 628 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 629 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 630 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 631 632 #ifdef CONFIG_TLS_DEVICE 633 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 634 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 635 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 636 637 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 638 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 639 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 640 641 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 642 643 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 644 645 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 646 #endif 647 648 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 649 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash; 650 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash; 651 prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close; 652 } 653 654 static int tls_init(struct sock *sk) 655 { 656 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 657 struct tls_context *ctx; 658 int rc = 0; 659 660 if (tls_hw_prot(sk)) 661 goto out; 662 663 /* The TLS ulp is currently supported only for TCP sockets 664 * in ESTABLISHED state. 665 * Supporting sockets in LISTEN state will require us 666 * to modify the accept implementation to clone rather then 667 * share the ulp context. 668 */ 669 if (sk->sk_state != TCP_ESTABLISHED) 670 return -ENOTSUPP; 671 672 /* allocate tls context */ 673 ctx = create_ctx(sk); 674 if (!ctx) { 675 rc = -ENOMEM; 676 goto out; 677 } 678 ctx->setsockopt = sk->sk_prot->setsockopt; 679 ctx->getsockopt = sk->sk_prot->getsockopt; 680 ctx->sk_proto_close = sk->sk_prot->close; 681 682 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 683 if (ip_ver == TLSV6 && 684 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { 685 mutex_lock(&tcpv6_prot_mutex); 686 if (likely(sk->sk_prot != saved_tcpv6_prot)) { 687 build_protos(tls_prots[TLSV6], sk->sk_prot); 688 smp_store_release(&saved_tcpv6_prot, sk->sk_prot); 689 } 690 mutex_unlock(&tcpv6_prot_mutex); 691 } 692 693 ctx->tx_conf = TLS_BASE; 694 ctx->rx_conf = TLS_BASE; 695 update_sk_prot(sk, ctx); 696 out: 697 return rc; 698 } 699 700 void tls_register_device(struct tls_device *device) 701 { 702 mutex_lock(&device_mutex); 703 list_add_tail(&device->dev_list, &device_list); 704 mutex_unlock(&device_mutex); 705 } 706 EXPORT_SYMBOL(tls_register_device); 707 708 void tls_unregister_device(struct tls_device *device) 709 { 710 mutex_lock(&device_mutex); 711 list_del(&device->dev_list); 712 mutex_unlock(&device_mutex); 713 } 714 EXPORT_SYMBOL(tls_unregister_device); 715 716 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 717 .name = "tls", 718 .uid = TCP_ULP_TLS, 719 .user_visible = true, 720 .owner = THIS_MODULE, 721 .init = tls_init, 722 }; 723 724 static int __init tls_register(void) 725 { 726 build_protos(tls_prots[TLSV4], &tcp_prot); 727 728 tls_sw_proto_ops = inet_stream_ops; 729 tls_sw_proto_ops.poll = tls_sw_poll; 730 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 731 732 #ifdef CONFIG_TLS_DEVICE 733 tls_device_init(); 734 #endif 735 tcp_register_ulp(&tcp_tls_ulp_ops); 736 737 return 0; 738 } 739 740 static void __exit tls_unregister(void) 741 { 742 tcp_unregister_ulp(&tcp_tls_ulp_ops); 743 #ifdef CONFIG_TLS_DEVICE 744 tls_device_cleanup(); 745 #endif 746 } 747 748 module_init(tls_register); 749 module_exit(tls_unregister); 750