1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 43 #include <net/tls.h> 44 45 MODULE_AUTHOR("Mellanox Technologies"); 46 MODULE_DESCRIPTION("Transport Layer Security Support"); 47 MODULE_LICENSE("Dual BSD/GPL"); 48 MODULE_ALIAS_TCP_ULP("tls"); 49 50 enum { 51 TLSV4, 52 TLSV6, 53 TLS_NUM_PROTS, 54 }; 55 56 static struct proto *saved_tcpv6_prot; 57 static DEFINE_MUTEX(tcpv6_prot_mutex); 58 static struct proto *saved_tcpv4_prot; 59 static DEFINE_MUTEX(tcpv4_prot_mutex); 60 static LIST_HEAD(device_list); 61 static DEFINE_SPINLOCK(device_spinlock); 62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 63 static struct proto_ops tls_sw_proto_ops; 64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 65 struct proto *base); 66 67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx) 68 { 69 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 70 71 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]; 72 } 73 74 int wait_on_pending_writer(struct sock *sk, long *timeo) 75 { 76 int rc = 0; 77 DEFINE_WAIT_FUNC(wait, woken_wake_function); 78 79 add_wait_queue(sk_sleep(sk), &wait); 80 while (1) { 81 if (!*timeo) { 82 rc = -EAGAIN; 83 break; 84 } 85 86 if (signal_pending(current)) { 87 rc = sock_intr_errno(*timeo); 88 break; 89 } 90 91 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 92 break; 93 } 94 remove_wait_queue(sk_sleep(sk), &wait); 95 return rc; 96 } 97 98 int tls_push_sg(struct sock *sk, 99 struct tls_context *ctx, 100 struct scatterlist *sg, 101 u16 first_offset, 102 int flags) 103 { 104 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 105 int ret = 0; 106 struct page *p; 107 size_t size; 108 int offset = first_offset; 109 110 size = sg->length - offset; 111 offset += sg->offset; 112 113 ctx->in_tcp_sendpages = true; 114 while (1) { 115 if (sg_is_last(sg)) 116 sendpage_flags = flags; 117 118 /* is sending application-limited? */ 119 tcp_rate_check_app_limited(sk); 120 p = sg_page(sg); 121 retry: 122 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 123 124 if (ret != size) { 125 if (ret > 0) { 126 offset += ret; 127 size -= ret; 128 goto retry; 129 } 130 131 offset -= sg->offset; 132 ctx->partially_sent_offset = offset; 133 ctx->partially_sent_record = (void *)sg; 134 ctx->in_tcp_sendpages = false; 135 return ret; 136 } 137 138 put_page(p); 139 sk_mem_uncharge(sk, sg->length); 140 sg = sg_next(sg); 141 if (!sg) 142 break; 143 144 offset = sg->offset; 145 size = sg->length; 146 } 147 148 ctx->in_tcp_sendpages = false; 149 150 return 0; 151 } 152 153 static int tls_handle_open_record(struct sock *sk, int flags) 154 { 155 struct tls_context *ctx = tls_get_ctx(sk); 156 157 if (tls_is_pending_open_record(ctx)) 158 return ctx->push_pending_record(sk, flags); 159 160 return 0; 161 } 162 163 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 164 unsigned char *record_type) 165 { 166 struct cmsghdr *cmsg; 167 int rc = -EINVAL; 168 169 for_each_cmsghdr(cmsg, msg) { 170 if (!CMSG_OK(msg, cmsg)) 171 return -EINVAL; 172 if (cmsg->cmsg_level != SOL_TLS) 173 continue; 174 175 switch (cmsg->cmsg_type) { 176 case TLS_SET_RECORD_TYPE: 177 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 178 return -EINVAL; 179 180 if (msg->msg_flags & MSG_MORE) 181 return -EINVAL; 182 183 rc = tls_handle_open_record(sk, msg->msg_flags); 184 if (rc) 185 return rc; 186 187 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 188 rc = 0; 189 break; 190 default: 191 return -EINVAL; 192 } 193 } 194 195 return rc; 196 } 197 198 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 199 int flags) 200 { 201 struct scatterlist *sg; 202 u16 offset; 203 204 sg = ctx->partially_sent_record; 205 offset = ctx->partially_sent_offset; 206 207 ctx->partially_sent_record = NULL; 208 return tls_push_sg(sk, ctx, sg, offset, flags); 209 } 210 211 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 212 { 213 struct scatterlist *sg; 214 215 sg = ctx->partially_sent_record; 216 if (!sg) 217 return false; 218 219 while (1) { 220 put_page(sg_page(sg)); 221 sk_mem_uncharge(sk, sg->length); 222 223 if (sg_is_last(sg)) 224 break; 225 sg++; 226 } 227 ctx->partially_sent_record = NULL; 228 return true; 229 } 230 231 static void tls_write_space(struct sock *sk) 232 { 233 struct tls_context *ctx = tls_get_ctx(sk); 234 235 /* If in_tcp_sendpages call lower protocol write space handler 236 * to ensure we wake up any waiting operations there. For example 237 * if do_tcp_sendpages where to call sk_wait_event. 238 */ 239 if (ctx->in_tcp_sendpages) { 240 ctx->sk_write_space(sk); 241 return; 242 } 243 244 #ifdef CONFIG_TLS_DEVICE 245 if (ctx->tx_conf == TLS_HW) 246 tls_device_write_space(sk, ctx); 247 else 248 #endif 249 tls_sw_write_space(sk, ctx); 250 251 ctx->sk_write_space(sk); 252 } 253 254 static void tls_ctx_free(struct tls_context *ctx) 255 { 256 if (!ctx) 257 return; 258 259 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 260 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 261 kfree(ctx); 262 } 263 264 static void tls_sk_proto_close(struct sock *sk, long timeout) 265 { 266 struct tls_context *ctx = tls_get_ctx(sk); 267 long timeo = sock_sndtimeo(sk, 0); 268 void (*sk_proto_close)(struct sock *sk, long timeout); 269 bool free_ctx = false; 270 271 lock_sock(sk); 272 sk_proto_close = ctx->sk_proto_close; 273 274 if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) 275 goto skip_tx_cleanup; 276 277 if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) { 278 free_ctx = true; 279 goto skip_tx_cleanup; 280 } 281 282 if (!tls_complete_pending_work(sk, ctx, 0, &timeo)) 283 tls_handle_open_record(sk, 0); 284 285 /* We need these for tls_sw_fallback handling of other packets */ 286 if (ctx->tx_conf == TLS_SW) { 287 kfree(ctx->tx.rec_seq); 288 kfree(ctx->tx.iv); 289 tls_sw_free_resources_tx(sk); 290 #ifdef CONFIG_TLS_DEVICE 291 } else if (ctx->tx_conf == TLS_HW) { 292 tls_device_free_resources_tx(sk); 293 #endif 294 } 295 296 if (ctx->rx_conf == TLS_SW) 297 tls_sw_free_resources_rx(sk); 298 299 #ifdef CONFIG_TLS_DEVICE 300 if (ctx->rx_conf == TLS_HW) 301 tls_device_offload_cleanup_rx(sk); 302 303 if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) { 304 #else 305 { 306 #endif 307 tls_ctx_free(ctx); 308 ctx = NULL; 309 } 310 311 skip_tx_cleanup: 312 release_sock(sk); 313 sk_proto_close(sk, timeout); 314 /* free ctx for TLS_HW_RECORD, used by tcp_set_state 315 * for sk->sk_prot->unhash [tls_hw_unhash] 316 */ 317 if (free_ctx) 318 tls_ctx_free(ctx); 319 } 320 321 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, 322 int __user *optlen) 323 { 324 int rc = 0; 325 struct tls_context *ctx = tls_get_ctx(sk); 326 struct tls_crypto_info *crypto_info; 327 int len; 328 329 if (get_user(len, optlen)) 330 return -EFAULT; 331 332 if (!optval || (len < sizeof(*crypto_info))) { 333 rc = -EINVAL; 334 goto out; 335 } 336 337 if (!ctx) { 338 rc = -EBUSY; 339 goto out; 340 } 341 342 /* get user crypto info */ 343 crypto_info = &ctx->crypto_send.info; 344 345 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 346 rc = -EBUSY; 347 goto out; 348 } 349 350 if (len == sizeof(*crypto_info)) { 351 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 352 rc = -EFAULT; 353 goto out; 354 } 355 356 switch (crypto_info->cipher_type) { 357 case TLS_CIPHER_AES_GCM_128: { 358 struct tls12_crypto_info_aes_gcm_128 * 359 crypto_info_aes_gcm_128 = 360 container_of(crypto_info, 361 struct tls12_crypto_info_aes_gcm_128, 362 info); 363 364 if (len != sizeof(*crypto_info_aes_gcm_128)) { 365 rc = -EINVAL; 366 goto out; 367 } 368 lock_sock(sk); 369 memcpy(crypto_info_aes_gcm_128->iv, 370 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 371 TLS_CIPHER_AES_GCM_128_IV_SIZE); 372 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, 373 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 374 release_sock(sk); 375 if (copy_to_user(optval, 376 crypto_info_aes_gcm_128, 377 sizeof(*crypto_info_aes_gcm_128))) 378 rc = -EFAULT; 379 break; 380 } 381 case TLS_CIPHER_AES_GCM_256: { 382 struct tls12_crypto_info_aes_gcm_256 * 383 crypto_info_aes_gcm_256 = 384 container_of(crypto_info, 385 struct tls12_crypto_info_aes_gcm_256, 386 info); 387 388 if (len != sizeof(*crypto_info_aes_gcm_256)) { 389 rc = -EINVAL; 390 goto out; 391 } 392 lock_sock(sk); 393 memcpy(crypto_info_aes_gcm_256->iv, 394 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 395 TLS_CIPHER_AES_GCM_256_IV_SIZE); 396 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq, 397 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 398 release_sock(sk); 399 if (copy_to_user(optval, 400 crypto_info_aes_gcm_256, 401 sizeof(*crypto_info_aes_gcm_256))) 402 rc = -EFAULT; 403 break; 404 } 405 default: 406 rc = -EINVAL; 407 } 408 409 out: 410 return rc; 411 } 412 413 static int do_tls_getsockopt(struct sock *sk, int optname, 414 char __user *optval, int __user *optlen) 415 { 416 int rc = 0; 417 418 switch (optname) { 419 case TLS_TX: 420 rc = do_tls_getsockopt_tx(sk, optval, optlen); 421 break; 422 default: 423 rc = -ENOPROTOOPT; 424 break; 425 } 426 return rc; 427 } 428 429 static int tls_getsockopt(struct sock *sk, int level, int optname, 430 char __user *optval, int __user *optlen) 431 { 432 struct tls_context *ctx = tls_get_ctx(sk); 433 434 if (level != SOL_TLS) 435 return ctx->getsockopt(sk, level, optname, optval, optlen); 436 437 return do_tls_getsockopt(sk, optname, optval, optlen); 438 } 439 440 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval, 441 unsigned int optlen, int tx) 442 { 443 struct tls_crypto_info *crypto_info; 444 struct tls_crypto_info *alt_crypto_info; 445 struct tls_context *ctx = tls_get_ctx(sk); 446 size_t optsize; 447 int rc = 0; 448 int conf; 449 450 if (!optval || (optlen < sizeof(*crypto_info))) { 451 rc = -EINVAL; 452 goto out; 453 } 454 455 if (tx) { 456 crypto_info = &ctx->crypto_send.info; 457 alt_crypto_info = &ctx->crypto_recv.info; 458 } else { 459 crypto_info = &ctx->crypto_recv.info; 460 alt_crypto_info = &ctx->crypto_send.info; 461 } 462 463 /* Currently we don't support set crypto info more than one time */ 464 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 465 rc = -EBUSY; 466 goto out; 467 } 468 469 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); 470 if (rc) { 471 rc = -EFAULT; 472 goto err_crypto_info; 473 } 474 475 /* check version */ 476 if (crypto_info->version != TLS_1_2_VERSION && 477 crypto_info->version != TLS_1_3_VERSION) { 478 rc = -ENOTSUPP; 479 goto err_crypto_info; 480 } 481 482 /* Ensure that TLS version and ciphers are same in both directions */ 483 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 484 if (alt_crypto_info->version != crypto_info->version || 485 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 486 rc = -EINVAL; 487 goto err_crypto_info; 488 } 489 } 490 491 switch (crypto_info->cipher_type) { 492 case TLS_CIPHER_AES_GCM_128: 493 case TLS_CIPHER_AES_GCM_256: { 494 optsize = crypto_info->cipher_type == TLS_CIPHER_AES_GCM_128 ? 495 sizeof(struct tls12_crypto_info_aes_gcm_128) : 496 sizeof(struct tls12_crypto_info_aes_gcm_256); 497 if (optlen != optsize) { 498 rc = -EINVAL; 499 goto err_crypto_info; 500 } 501 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), 502 optlen - sizeof(*crypto_info)); 503 if (rc) { 504 rc = -EFAULT; 505 goto err_crypto_info; 506 } 507 break; 508 } 509 default: 510 rc = -EINVAL; 511 goto err_crypto_info; 512 } 513 514 if (tx) { 515 #ifdef CONFIG_TLS_DEVICE 516 rc = tls_set_device_offload(sk, ctx); 517 conf = TLS_HW; 518 if (rc) { 519 #else 520 { 521 #endif 522 rc = tls_set_sw_offload(sk, ctx, 1); 523 conf = TLS_SW; 524 } 525 } else { 526 #ifdef CONFIG_TLS_DEVICE 527 rc = tls_set_device_offload_rx(sk, ctx); 528 conf = TLS_HW; 529 if (rc) { 530 #else 531 { 532 #endif 533 rc = tls_set_sw_offload(sk, ctx, 0); 534 conf = TLS_SW; 535 } 536 } 537 538 if (rc) 539 goto err_crypto_info; 540 541 if (tx) 542 ctx->tx_conf = conf; 543 else 544 ctx->rx_conf = conf; 545 update_sk_prot(sk, ctx); 546 if (tx) { 547 ctx->sk_write_space = sk->sk_write_space; 548 sk->sk_write_space = tls_write_space; 549 } else { 550 sk->sk_socket->ops = &tls_sw_proto_ops; 551 } 552 goto out; 553 554 err_crypto_info: 555 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 556 out: 557 return rc; 558 } 559 560 static int do_tls_setsockopt(struct sock *sk, int optname, 561 char __user *optval, unsigned int optlen) 562 { 563 int rc = 0; 564 565 switch (optname) { 566 case TLS_TX: 567 case TLS_RX: 568 lock_sock(sk); 569 rc = do_tls_setsockopt_conf(sk, optval, optlen, 570 optname == TLS_TX); 571 release_sock(sk); 572 break; 573 default: 574 rc = -ENOPROTOOPT; 575 break; 576 } 577 return rc; 578 } 579 580 static int tls_setsockopt(struct sock *sk, int level, int optname, 581 char __user *optval, unsigned int optlen) 582 { 583 struct tls_context *ctx = tls_get_ctx(sk); 584 585 if (level != SOL_TLS) 586 return ctx->setsockopt(sk, level, optname, optval, optlen); 587 588 return do_tls_setsockopt(sk, optname, optval, optlen); 589 } 590 591 static struct tls_context *create_ctx(struct sock *sk) 592 { 593 struct inet_connection_sock *icsk = inet_csk(sk); 594 struct tls_context *ctx; 595 596 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 597 if (!ctx) 598 return NULL; 599 600 icsk->icsk_ulp_data = ctx; 601 ctx->setsockopt = sk->sk_prot->setsockopt; 602 ctx->getsockopt = sk->sk_prot->getsockopt; 603 ctx->sk_proto_close = sk->sk_prot->close; 604 return ctx; 605 } 606 607 static void tls_build_proto(struct sock *sk) 608 { 609 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 610 611 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 612 if (ip_ver == TLSV6 && 613 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { 614 mutex_lock(&tcpv6_prot_mutex); 615 if (likely(sk->sk_prot != saved_tcpv6_prot)) { 616 build_protos(tls_prots[TLSV6], sk->sk_prot); 617 smp_store_release(&saved_tcpv6_prot, sk->sk_prot); 618 } 619 mutex_unlock(&tcpv6_prot_mutex); 620 } 621 622 if (ip_ver == TLSV4 && 623 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) { 624 mutex_lock(&tcpv4_prot_mutex); 625 if (likely(sk->sk_prot != saved_tcpv4_prot)) { 626 build_protos(tls_prots[TLSV4], sk->sk_prot); 627 smp_store_release(&saved_tcpv4_prot, sk->sk_prot); 628 } 629 mutex_unlock(&tcpv4_prot_mutex); 630 } 631 } 632 633 static void tls_hw_sk_destruct(struct sock *sk) 634 { 635 struct tls_context *ctx = tls_get_ctx(sk); 636 struct inet_connection_sock *icsk = inet_csk(sk); 637 638 ctx->sk_destruct(sk); 639 /* Free ctx */ 640 kfree(ctx); 641 icsk->icsk_ulp_data = NULL; 642 } 643 644 static int tls_hw_prot(struct sock *sk) 645 { 646 struct tls_context *ctx; 647 struct tls_device *dev; 648 int rc = 0; 649 650 spin_lock_bh(&device_spinlock); 651 list_for_each_entry(dev, &device_list, dev_list) { 652 if (dev->feature && dev->feature(dev)) { 653 ctx = create_ctx(sk); 654 if (!ctx) 655 goto out; 656 657 spin_unlock_bh(&device_spinlock); 658 tls_build_proto(sk); 659 ctx->hash = sk->sk_prot->hash; 660 ctx->unhash = sk->sk_prot->unhash; 661 ctx->sk_proto_close = sk->sk_prot->close; 662 ctx->sk_destruct = sk->sk_destruct; 663 sk->sk_destruct = tls_hw_sk_destruct; 664 ctx->rx_conf = TLS_HW_RECORD; 665 ctx->tx_conf = TLS_HW_RECORD; 666 update_sk_prot(sk, ctx); 667 spin_lock_bh(&device_spinlock); 668 rc = 1; 669 break; 670 } 671 } 672 out: 673 spin_unlock_bh(&device_spinlock); 674 return rc; 675 } 676 677 static void tls_hw_unhash(struct sock *sk) 678 { 679 struct tls_context *ctx = tls_get_ctx(sk); 680 struct tls_device *dev; 681 682 spin_lock_bh(&device_spinlock); 683 list_for_each_entry(dev, &device_list, dev_list) { 684 if (dev->unhash) { 685 kref_get(&dev->kref); 686 spin_unlock_bh(&device_spinlock); 687 dev->unhash(dev, sk); 688 kref_put(&dev->kref, dev->release); 689 spin_lock_bh(&device_spinlock); 690 } 691 } 692 spin_unlock_bh(&device_spinlock); 693 ctx->unhash(sk); 694 } 695 696 static int tls_hw_hash(struct sock *sk) 697 { 698 struct tls_context *ctx = tls_get_ctx(sk); 699 struct tls_device *dev; 700 int err; 701 702 err = ctx->hash(sk); 703 spin_lock_bh(&device_spinlock); 704 list_for_each_entry(dev, &device_list, dev_list) { 705 if (dev->hash) { 706 kref_get(&dev->kref); 707 spin_unlock_bh(&device_spinlock); 708 err |= dev->hash(dev, sk); 709 kref_put(&dev->kref, dev->release); 710 spin_lock_bh(&device_spinlock); 711 } 712 } 713 spin_unlock_bh(&device_spinlock); 714 715 if (err) 716 tls_hw_unhash(sk); 717 return err; 718 } 719 720 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 721 struct proto *base) 722 { 723 prot[TLS_BASE][TLS_BASE] = *base; 724 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 725 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 726 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 727 728 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 729 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 730 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 731 732 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 733 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 734 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read; 735 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 736 737 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 738 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 739 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read; 740 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 741 742 #ifdef CONFIG_TLS_DEVICE 743 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 744 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 745 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 746 747 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 748 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 749 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 750 751 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 752 753 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 754 755 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 756 #endif 757 758 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 759 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash; 760 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash; 761 prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close; 762 } 763 764 static int tls_init(struct sock *sk) 765 { 766 struct tls_context *ctx; 767 int rc = 0; 768 769 if (tls_hw_prot(sk)) 770 goto out; 771 772 /* The TLS ulp is currently supported only for TCP sockets 773 * in ESTABLISHED state. 774 * Supporting sockets in LISTEN state will require us 775 * to modify the accept implementation to clone rather then 776 * share the ulp context. 777 */ 778 if (sk->sk_state != TCP_ESTABLISHED) 779 return -ENOTSUPP; 780 781 /* allocate tls context */ 782 ctx = create_ctx(sk); 783 if (!ctx) { 784 rc = -ENOMEM; 785 goto out; 786 } 787 788 tls_build_proto(sk); 789 ctx->tx_conf = TLS_BASE; 790 ctx->rx_conf = TLS_BASE; 791 update_sk_prot(sk, ctx); 792 out: 793 return rc; 794 } 795 796 void tls_register_device(struct tls_device *device) 797 { 798 spin_lock_bh(&device_spinlock); 799 list_add_tail(&device->dev_list, &device_list); 800 spin_unlock_bh(&device_spinlock); 801 } 802 EXPORT_SYMBOL(tls_register_device); 803 804 void tls_unregister_device(struct tls_device *device) 805 { 806 spin_lock_bh(&device_spinlock); 807 list_del(&device->dev_list); 808 spin_unlock_bh(&device_spinlock); 809 } 810 EXPORT_SYMBOL(tls_unregister_device); 811 812 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 813 .name = "tls", 814 .owner = THIS_MODULE, 815 .init = tls_init, 816 }; 817 818 static int __init tls_register(void) 819 { 820 tls_sw_proto_ops = inet_stream_ops; 821 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 822 823 #ifdef CONFIG_TLS_DEVICE 824 tls_device_init(); 825 #endif 826 tcp_register_ulp(&tcp_tls_ulp_ops); 827 828 return 0; 829 } 830 831 static void __exit tls_unregister(void) 832 { 833 tcp_unregister_ulp(&tcp_tls_ulp_ops); 834 #ifdef CONFIG_TLS_DEVICE 835 tls_device_cleanup(); 836 #endif 837 } 838 839 module_init(tls_register); 840 module_exit(tls_unregister); 841