xref: /openbmc/linux/net/tls/tls_main.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 
43 #include <net/tls.h>
44 
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 
49 enum {
50 	TLSV4,
51 	TLSV6,
52 	TLS_NUM_PROTS,
53 };
54 
55 enum {
56 	TLS_BASE,
57 	TLS_SW_TX,
58 	TLS_SW_RX,
59 	TLS_SW_RXTX,
60 	TLS_HW_RECORD,
61 	TLS_NUM_CONFIG,
62 };
63 
64 static struct proto *saved_tcpv6_prot;
65 static DEFINE_MUTEX(tcpv6_prot_mutex);
66 static LIST_HEAD(device_list);
67 static DEFINE_MUTEX(device_mutex);
68 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG];
69 static struct proto_ops tls_sw_proto_ops;
70 
71 static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx)
72 {
73 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
74 
75 	sk->sk_prot = &tls_prots[ip_ver][ctx->conf];
76 }
77 
78 int wait_on_pending_writer(struct sock *sk, long *timeo)
79 {
80 	int rc = 0;
81 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
82 
83 	add_wait_queue(sk_sleep(sk), &wait);
84 	while (1) {
85 		if (!*timeo) {
86 			rc = -EAGAIN;
87 			break;
88 		}
89 
90 		if (signal_pending(current)) {
91 			rc = sock_intr_errno(*timeo);
92 			break;
93 		}
94 
95 		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
96 			break;
97 	}
98 	remove_wait_queue(sk_sleep(sk), &wait);
99 	return rc;
100 }
101 
102 int tls_push_sg(struct sock *sk,
103 		struct tls_context *ctx,
104 		struct scatterlist *sg,
105 		u16 first_offset,
106 		int flags)
107 {
108 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109 	int ret = 0;
110 	struct page *p;
111 	size_t size;
112 	int offset = first_offset;
113 
114 	size = sg->length - offset;
115 	offset += sg->offset;
116 
117 	ctx->in_tcp_sendpages = true;
118 	while (1) {
119 		if (sg_is_last(sg))
120 			sendpage_flags = flags;
121 
122 		/* is sending application-limited? */
123 		tcp_rate_check_app_limited(sk);
124 		p = sg_page(sg);
125 retry:
126 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
127 
128 		if (ret != size) {
129 			if (ret > 0) {
130 				offset += ret;
131 				size -= ret;
132 				goto retry;
133 			}
134 
135 			offset -= sg->offset;
136 			ctx->partially_sent_offset = offset;
137 			ctx->partially_sent_record = (void *)sg;
138 			ctx->in_tcp_sendpages = false;
139 			return ret;
140 		}
141 
142 		put_page(p);
143 		sk_mem_uncharge(sk, sg->length);
144 		sg = sg_next(sg);
145 		if (!sg)
146 			break;
147 
148 		offset = sg->offset;
149 		size = sg->length;
150 	}
151 
152 	clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
153 	ctx->in_tcp_sendpages = false;
154 	ctx->sk_write_space(sk);
155 
156 	return 0;
157 }
158 
159 static int tls_handle_open_record(struct sock *sk, int flags)
160 {
161 	struct tls_context *ctx = tls_get_ctx(sk);
162 
163 	if (tls_is_pending_open_record(ctx))
164 		return ctx->push_pending_record(sk, flags);
165 
166 	return 0;
167 }
168 
169 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
170 		      unsigned char *record_type)
171 {
172 	struct cmsghdr *cmsg;
173 	int rc = -EINVAL;
174 
175 	for_each_cmsghdr(cmsg, msg) {
176 		if (!CMSG_OK(msg, cmsg))
177 			return -EINVAL;
178 		if (cmsg->cmsg_level != SOL_TLS)
179 			continue;
180 
181 		switch (cmsg->cmsg_type) {
182 		case TLS_SET_RECORD_TYPE:
183 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
184 				return -EINVAL;
185 
186 			if (msg->msg_flags & MSG_MORE)
187 				return -EINVAL;
188 
189 			rc = tls_handle_open_record(sk, msg->msg_flags);
190 			if (rc)
191 				return rc;
192 
193 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
194 			rc = 0;
195 			break;
196 		default:
197 			return -EINVAL;
198 		}
199 	}
200 
201 	return rc;
202 }
203 
204 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
205 				   int flags, long *timeo)
206 {
207 	struct scatterlist *sg;
208 	u16 offset;
209 
210 	if (!tls_is_partially_sent_record(ctx))
211 		return ctx->push_pending_record(sk, flags);
212 
213 	sg = ctx->partially_sent_record;
214 	offset = ctx->partially_sent_offset;
215 
216 	ctx->partially_sent_record = NULL;
217 	return tls_push_sg(sk, ctx, sg, offset, flags);
218 }
219 
220 static void tls_write_space(struct sock *sk)
221 {
222 	struct tls_context *ctx = tls_get_ctx(sk);
223 
224 	/* We are already sending pages, ignore notification */
225 	if (ctx->in_tcp_sendpages)
226 		return;
227 
228 	if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
229 		gfp_t sk_allocation = sk->sk_allocation;
230 		int rc;
231 		long timeo = 0;
232 
233 		sk->sk_allocation = GFP_ATOMIC;
234 		rc = tls_push_pending_closed_record(sk, ctx,
235 						    MSG_DONTWAIT |
236 						    MSG_NOSIGNAL,
237 						    &timeo);
238 		sk->sk_allocation = sk_allocation;
239 
240 		if (rc < 0)
241 			return;
242 	}
243 
244 	ctx->sk_write_space(sk);
245 }
246 
247 static void tls_sk_proto_close(struct sock *sk, long timeout)
248 {
249 	struct tls_context *ctx = tls_get_ctx(sk);
250 	long timeo = sock_sndtimeo(sk, 0);
251 	void (*sk_proto_close)(struct sock *sk, long timeout);
252 	bool free_ctx = false;
253 
254 	lock_sock(sk);
255 	sk_proto_close = ctx->sk_proto_close;
256 
257 	if (ctx->conf == TLS_BASE || ctx->conf == TLS_HW_RECORD) {
258 		free_ctx = true;
259 		goto skip_tx_cleanup;
260 	}
261 
262 	if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
263 		tls_handle_open_record(sk, 0);
264 
265 	if (ctx->partially_sent_record) {
266 		struct scatterlist *sg = ctx->partially_sent_record;
267 
268 		while (1) {
269 			put_page(sg_page(sg));
270 			sk_mem_uncharge(sk, sg->length);
271 
272 			if (sg_is_last(sg))
273 				break;
274 			sg++;
275 		}
276 	}
277 
278 	kfree(ctx->tx.rec_seq);
279 	kfree(ctx->tx.iv);
280 	kfree(ctx->rx.rec_seq);
281 	kfree(ctx->rx.iv);
282 
283 	if (ctx->conf == TLS_SW_TX ||
284 	    ctx->conf == TLS_SW_RX ||
285 	    ctx->conf == TLS_SW_RXTX) {
286 		tls_sw_free_resources(sk);
287 	}
288 
289 skip_tx_cleanup:
290 	release_sock(sk);
291 	sk_proto_close(sk, timeout);
292 	/* free ctx for TLS_HW_RECORD, used by tcp_set_state
293 	 * for sk->sk_prot->unhash [tls_hw_unhash]
294 	 */
295 	if (free_ctx)
296 		kfree(ctx);
297 }
298 
299 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
300 				int __user *optlen)
301 {
302 	int rc = 0;
303 	struct tls_context *ctx = tls_get_ctx(sk);
304 	struct tls_crypto_info *crypto_info;
305 	int len;
306 
307 	if (get_user(len, optlen))
308 		return -EFAULT;
309 
310 	if (!optval || (len < sizeof(*crypto_info))) {
311 		rc = -EINVAL;
312 		goto out;
313 	}
314 
315 	if (!ctx) {
316 		rc = -EBUSY;
317 		goto out;
318 	}
319 
320 	/* get user crypto info */
321 	crypto_info = &ctx->crypto_send;
322 
323 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
324 		rc = -EBUSY;
325 		goto out;
326 	}
327 
328 	if (len == sizeof(*crypto_info)) {
329 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
330 			rc = -EFAULT;
331 		goto out;
332 	}
333 
334 	switch (crypto_info->cipher_type) {
335 	case TLS_CIPHER_AES_GCM_128: {
336 		struct tls12_crypto_info_aes_gcm_128 *
337 		  crypto_info_aes_gcm_128 =
338 		  container_of(crypto_info,
339 			       struct tls12_crypto_info_aes_gcm_128,
340 			       info);
341 
342 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
343 			rc = -EINVAL;
344 			goto out;
345 		}
346 		lock_sock(sk);
347 		memcpy(crypto_info_aes_gcm_128->iv,
348 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
349 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
350 		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
351 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
352 		release_sock(sk);
353 		if (copy_to_user(optval,
354 				 crypto_info_aes_gcm_128,
355 				 sizeof(*crypto_info_aes_gcm_128)))
356 			rc = -EFAULT;
357 		break;
358 	}
359 	default:
360 		rc = -EINVAL;
361 	}
362 
363 out:
364 	return rc;
365 }
366 
367 static int do_tls_getsockopt(struct sock *sk, int optname,
368 			     char __user *optval, int __user *optlen)
369 {
370 	int rc = 0;
371 
372 	switch (optname) {
373 	case TLS_TX:
374 		rc = do_tls_getsockopt_tx(sk, optval, optlen);
375 		break;
376 	default:
377 		rc = -ENOPROTOOPT;
378 		break;
379 	}
380 	return rc;
381 }
382 
383 static int tls_getsockopt(struct sock *sk, int level, int optname,
384 			  char __user *optval, int __user *optlen)
385 {
386 	struct tls_context *ctx = tls_get_ctx(sk);
387 
388 	if (level != SOL_TLS)
389 		return ctx->getsockopt(sk, level, optname, optval, optlen);
390 
391 	return do_tls_getsockopt(sk, optname, optval, optlen);
392 }
393 
394 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
395 				  unsigned int optlen, int tx)
396 {
397 	struct tls_crypto_info *crypto_info;
398 	struct tls_context *ctx = tls_get_ctx(sk);
399 	int rc = 0;
400 	int conf;
401 
402 	if (!optval || (optlen < sizeof(*crypto_info))) {
403 		rc = -EINVAL;
404 		goto out;
405 	}
406 
407 	if (tx)
408 		crypto_info = &ctx->crypto_send;
409 	else
410 		crypto_info = &ctx->crypto_recv;
411 
412 	/* Currently we don't support set crypto info more than one time */
413 	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
414 		rc = -EBUSY;
415 		goto out;
416 	}
417 
418 	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
419 	if (rc) {
420 		rc = -EFAULT;
421 		goto err_crypto_info;
422 	}
423 
424 	/* check version */
425 	if (crypto_info->version != TLS_1_2_VERSION) {
426 		rc = -ENOTSUPP;
427 		goto err_crypto_info;
428 	}
429 
430 	switch (crypto_info->cipher_type) {
431 	case TLS_CIPHER_AES_GCM_128: {
432 		if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
433 			rc = -EINVAL;
434 			goto err_crypto_info;
435 		}
436 		rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
437 				    optlen - sizeof(*crypto_info));
438 		if (rc) {
439 			rc = -EFAULT;
440 			goto err_crypto_info;
441 		}
442 		break;
443 	}
444 	default:
445 		rc = -EINVAL;
446 		goto err_crypto_info;
447 	}
448 
449 	/* currently SW is default, we will have ethtool in future */
450 	if (tx) {
451 		rc = tls_set_sw_offload(sk, ctx, 1);
452 		if (ctx->conf == TLS_SW_RX)
453 			conf = TLS_SW_RXTX;
454 		else
455 			conf = TLS_SW_TX;
456 	} else {
457 		rc = tls_set_sw_offload(sk, ctx, 0);
458 		if (ctx->conf == TLS_SW_TX)
459 			conf = TLS_SW_RXTX;
460 		else
461 			conf = TLS_SW_RX;
462 	}
463 
464 	if (rc)
465 		goto err_crypto_info;
466 
467 	ctx->conf = conf;
468 	update_sk_prot(sk, ctx);
469 	if (tx) {
470 		ctx->sk_write_space = sk->sk_write_space;
471 		sk->sk_write_space = tls_write_space;
472 	} else {
473 		sk->sk_socket->ops = &tls_sw_proto_ops;
474 	}
475 	goto out;
476 
477 err_crypto_info:
478 	memset(crypto_info, 0, sizeof(*crypto_info));
479 out:
480 	return rc;
481 }
482 
483 static int do_tls_setsockopt(struct sock *sk, int optname,
484 			     char __user *optval, unsigned int optlen)
485 {
486 	int rc = 0;
487 
488 	switch (optname) {
489 	case TLS_TX:
490 	case TLS_RX:
491 		lock_sock(sk);
492 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
493 					    optname == TLS_TX);
494 		release_sock(sk);
495 		break;
496 	default:
497 		rc = -ENOPROTOOPT;
498 		break;
499 	}
500 	return rc;
501 }
502 
503 static int tls_setsockopt(struct sock *sk, int level, int optname,
504 			  char __user *optval, unsigned int optlen)
505 {
506 	struct tls_context *ctx = tls_get_ctx(sk);
507 
508 	if (level != SOL_TLS)
509 		return ctx->setsockopt(sk, level, optname, optval, optlen);
510 
511 	return do_tls_setsockopt(sk, optname, optval, optlen);
512 }
513 
514 static struct tls_context *create_ctx(struct sock *sk)
515 {
516 	struct inet_connection_sock *icsk = inet_csk(sk);
517 	struct tls_context *ctx;
518 
519 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
520 	if (!ctx)
521 		return NULL;
522 
523 	icsk->icsk_ulp_data = ctx;
524 	return ctx;
525 }
526 
527 static int tls_hw_prot(struct sock *sk)
528 {
529 	struct tls_context *ctx;
530 	struct tls_device *dev;
531 	int rc = 0;
532 
533 	mutex_lock(&device_mutex);
534 	list_for_each_entry(dev, &device_list, dev_list) {
535 		if (dev->feature && dev->feature(dev)) {
536 			ctx = create_ctx(sk);
537 			if (!ctx)
538 				goto out;
539 
540 			ctx->hash = sk->sk_prot->hash;
541 			ctx->unhash = sk->sk_prot->unhash;
542 			ctx->sk_proto_close = sk->sk_prot->close;
543 			ctx->conf = TLS_HW_RECORD;
544 			update_sk_prot(sk, ctx);
545 			rc = 1;
546 			break;
547 		}
548 	}
549 out:
550 	mutex_unlock(&device_mutex);
551 	return rc;
552 }
553 
554 static void tls_hw_unhash(struct sock *sk)
555 {
556 	struct tls_context *ctx = tls_get_ctx(sk);
557 	struct tls_device *dev;
558 
559 	mutex_lock(&device_mutex);
560 	list_for_each_entry(dev, &device_list, dev_list) {
561 		if (dev->unhash)
562 			dev->unhash(dev, sk);
563 	}
564 	mutex_unlock(&device_mutex);
565 	ctx->unhash(sk);
566 }
567 
568 static int tls_hw_hash(struct sock *sk)
569 {
570 	struct tls_context *ctx = tls_get_ctx(sk);
571 	struct tls_device *dev;
572 	int err;
573 
574 	err = ctx->hash(sk);
575 	mutex_lock(&device_mutex);
576 	list_for_each_entry(dev, &device_list, dev_list) {
577 		if (dev->hash)
578 			err |= dev->hash(dev, sk);
579 	}
580 	mutex_unlock(&device_mutex);
581 
582 	if (err)
583 		tls_hw_unhash(sk);
584 	return err;
585 }
586 
587 static void build_protos(struct proto *prot, struct proto *base)
588 {
589 	prot[TLS_BASE] = *base;
590 	prot[TLS_BASE].setsockopt	= tls_setsockopt;
591 	prot[TLS_BASE].getsockopt	= tls_getsockopt;
592 	prot[TLS_BASE].close		= tls_sk_proto_close;
593 
594 	prot[TLS_SW_TX] = prot[TLS_BASE];
595 	prot[TLS_SW_TX].sendmsg		= tls_sw_sendmsg;
596 	prot[TLS_SW_TX].sendpage	= tls_sw_sendpage;
597 
598 	prot[TLS_SW_RX] = prot[TLS_BASE];
599 	prot[TLS_SW_RX].recvmsg		= tls_sw_recvmsg;
600 	prot[TLS_SW_RX].close		= tls_sk_proto_close;
601 
602 	prot[TLS_SW_RXTX] = prot[TLS_SW_TX];
603 	prot[TLS_SW_RXTX].recvmsg	= tls_sw_recvmsg;
604 	prot[TLS_SW_RXTX].close		= tls_sk_proto_close;
605 
606 	prot[TLS_HW_RECORD] = *base;
607 	prot[TLS_HW_RECORD].hash	= tls_hw_hash;
608 	prot[TLS_HW_RECORD].unhash	= tls_hw_unhash;
609 	prot[TLS_HW_RECORD].close	= tls_sk_proto_close;
610 }
611 
612 static int tls_init(struct sock *sk)
613 {
614 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
615 	struct tls_context *ctx;
616 	int rc = 0;
617 
618 	if (tls_hw_prot(sk))
619 		goto out;
620 
621 	/* The TLS ulp is currently supported only for TCP sockets
622 	 * in ESTABLISHED state.
623 	 * Supporting sockets in LISTEN state will require us
624 	 * to modify the accept implementation to clone rather then
625 	 * share the ulp context.
626 	 */
627 	if (sk->sk_state != TCP_ESTABLISHED)
628 		return -ENOTSUPP;
629 
630 	/* allocate tls context */
631 	ctx = create_ctx(sk);
632 	if (!ctx) {
633 		rc = -ENOMEM;
634 		goto out;
635 	}
636 	ctx->setsockopt = sk->sk_prot->setsockopt;
637 	ctx->getsockopt = sk->sk_prot->getsockopt;
638 	ctx->sk_proto_close = sk->sk_prot->close;
639 
640 	/* Build IPv6 TLS whenever the address of tcpv6_prot changes */
641 	if (ip_ver == TLSV6 &&
642 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
643 		mutex_lock(&tcpv6_prot_mutex);
644 		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
645 			build_protos(tls_prots[TLSV6], sk->sk_prot);
646 			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
647 		}
648 		mutex_unlock(&tcpv6_prot_mutex);
649 	}
650 
651 	ctx->conf = TLS_BASE;
652 	update_sk_prot(sk, ctx);
653 out:
654 	return rc;
655 }
656 
657 void tls_register_device(struct tls_device *device)
658 {
659 	mutex_lock(&device_mutex);
660 	list_add_tail(&device->dev_list, &device_list);
661 	mutex_unlock(&device_mutex);
662 }
663 EXPORT_SYMBOL(tls_register_device);
664 
665 void tls_unregister_device(struct tls_device *device)
666 {
667 	mutex_lock(&device_mutex);
668 	list_del(&device->dev_list);
669 	mutex_unlock(&device_mutex);
670 }
671 EXPORT_SYMBOL(tls_unregister_device);
672 
673 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
674 	.name			= "tls",
675 	.uid			= TCP_ULP_TLS,
676 	.user_visible		= true,
677 	.owner			= THIS_MODULE,
678 	.init			= tls_init,
679 };
680 
681 static int __init tls_register(void)
682 {
683 	build_protos(tls_prots[TLSV4], &tcp_prot);
684 
685 	tls_sw_proto_ops = inet_stream_ops;
686 	tls_sw_proto_ops.poll = tls_sw_poll;
687 	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
688 
689 	tcp_register_ulp(&tcp_tls_ulp_ops);
690 
691 	return 0;
692 }
693 
694 static void __exit tls_unregister(void)
695 {
696 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
697 }
698 
699 module_init(tls_register);
700 module_exit(tls_unregister);
701