1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 #include <linux/inet_diag.h> 43 44 #include <net/snmp.h> 45 #include <net/tls.h> 46 #include <net/tls_toe.h> 47 48 #include "tls.h" 49 50 MODULE_AUTHOR("Mellanox Technologies"); 51 MODULE_DESCRIPTION("Transport Layer Security Support"); 52 MODULE_LICENSE("Dual BSD/GPL"); 53 MODULE_ALIAS_TCP_ULP("tls"); 54 55 enum { 56 TLSV4, 57 TLSV6, 58 TLS_NUM_PROTS, 59 }; 60 61 #define CIPHER_SIZE_DESC(cipher) [cipher] = { \ 62 .iv = cipher ## _IV_SIZE, \ 63 .key = cipher ## _KEY_SIZE, \ 64 .salt = cipher ## _SALT_SIZE, \ 65 .tag = cipher ## _TAG_SIZE, \ 66 .rec_seq = cipher ## _REC_SEQ_SIZE, \ 67 } 68 69 const struct tls_cipher_size_desc tls_cipher_size_desc[] = { 70 CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128), 71 CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256), 72 CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128), 73 CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305), 74 CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM), 75 CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM), 76 }; 77 78 static const struct proto *saved_tcpv6_prot; 79 static DEFINE_MUTEX(tcpv6_prot_mutex); 80 static const struct proto *saved_tcpv4_prot; 81 static DEFINE_MUTEX(tcpv4_prot_mutex); 82 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 83 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 84 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 85 const struct proto *base); 86 87 void update_sk_prot(struct sock *sk, struct tls_context *ctx) 88 { 89 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 90 91 WRITE_ONCE(sk->sk_prot, 92 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); 93 WRITE_ONCE(sk->sk_socket->ops, 94 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]); 95 } 96 97 int wait_on_pending_writer(struct sock *sk, long *timeo) 98 { 99 int rc = 0; 100 DEFINE_WAIT_FUNC(wait, woken_wake_function); 101 102 add_wait_queue(sk_sleep(sk), &wait); 103 while (1) { 104 if (!*timeo) { 105 rc = -EAGAIN; 106 break; 107 } 108 109 if (signal_pending(current)) { 110 rc = sock_intr_errno(*timeo); 111 break; 112 } 113 114 if (sk_wait_event(sk, timeo, 115 !READ_ONCE(sk->sk_write_pending), &wait)) 116 break; 117 } 118 remove_wait_queue(sk_sleep(sk), &wait); 119 return rc; 120 } 121 122 int tls_push_sg(struct sock *sk, 123 struct tls_context *ctx, 124 struct scatterlist *sg, 125 u16 first_offset, 126 int flags) 127 { 128 struct bio_vec bvec; 129 struct msghdr msg = { 130 .msg_flags = MSG_SPLICE_PAGES | flags, 131 }; 132 int ret = 0; 133 struct page *p; 134 size_t size; 135 int offset = first_offset; 136 137 size = sg->length - offset; 138 offset += sg->offset; 139 140 ctx->splicing_pages = true; 141 while (1) { 142 if (sg_is_last(sg)) 143 msg.msg_flags = flags; 144 145 /* is sending application-limited? */ 146 tcp_rate_check_app_limited(sk); 147 p = sg_page(sg); 148 retry: 149 bvec_set_page(&bvec, p, size, offset); 150 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); 151 152 ret = tcp_sendmsg_locked(sk, &msg, size); 153 154 if (ret != size) { 155 if (ret > 0) { 156 offset += ret; 157 size -= ret; 158 goto retry; 159 } 160 161 offset -= sg->offset; 162 ctx->partially_sent_offset = offset; 163 ctx->partially_sent_record = (void *)sg; 164 ctx->splicing_pages = false; 165 return ret; 166 } 167 168 put_page(p); 169 sk_mem_uncharge(sk, sg->length); 170 sg = sg_next(sg); 171 if (!sg) 172 break; 173 174 offset = sg->offset; 175 size = sg->length; 176 } 177 178 ctx->splicing_pages = false; 179 180 return 0; 181 } 182 183 static int tls_handle_open_record(struct sock *sk, int flags) 184 { 185 struct tls_context *ctx = tls_get_ctx(sk); 186 187 if (tls_is_pending_open_record(ctx)) 188 return ctx->push_pending_record(sk, flags); 189 190 return 0; 191 } 192 193 int tls_process_cmsg(struct sock *sk, struct msghdr *msg, 194 unsigned char *record_type) 195 { 196 struct cmsghdr *cmsg; 197 int rc = -EINVAL; 198 199 for_each_cmsghdr(cmsg, msg) { 200 if (!CMSG_OK(msg, cmsg)) 201 return -EINVAL; 202 if (cmsg->cmsg_level != SOL_TLS) 203 continue; 204 205 switch (cmsg->cmsg_type) { 206 case TLS_SET_RECORD_TYPE: 207 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 208 return -EINVAL; 209 210 if (msg->msg_flags & MSG_MORE) 211 return -EINVAL; 212 213 rc = tls_handle_open_record(sk, msg->msg_flags); 214 if (rc) 215 return rc; 216 217 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 218 rc = 0; 219 break; 220 default: 221 return -EINVAL; 222 } 223 } 224 225 return rc; 226 } 227 228 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 229 int flags) 230 { 231 struct scatterlist *sg; 232 u16 offset; 233 234 sg = ctx->partially_sent_record; 235 offset = ctx->partially_sent_offset; 236 237 ctx->partially_sent_record = NULL; 238 return tls_push_sg(sk, ctx, sg, offset, flags); 239 } 240 241 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 242 { 243 struct scatterlist *sg; 244 245 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { 246 put_page(sg_page(sg)); 247 sk_mem_uncharge(sk, sg->length); 248 } 249 ctx->partially_sent_record = NULL; 250 } 251 252 static void tls_write_space(struct sock *sk) 253 { 254 struct tls_context *ctx = tls_get_ctx(sk); 255 256 /* If splicing_pages call lower protocol write space handler 257 * to ensure we wake up any waiting operations there. For example 258 * if splicing pages where to call sk_wait_event. 259 */ 260 if (ctx->splicing_pages) { 261 ctx->sk_write_space(sk); 262 return; 263 } 264 265 #ifdef CONFIG_TLS_DEVICE 266 if (ctx->tx_conf == TLS_HW) 267 tls_device_write_space(sk, ctx); 268 else 269 #endif 270 tls_sw_write_space(sk, ctx); 271 272 ctx->sk_write_space(sk); 273 } 274 275 /** 276 * tls_ctx_free() - free TLS ULP context 277 * @sk: socket to with @ctx is attached 278 * @ctx: TLS context structure 279 * 280 * Free TLS context. If @sk is %NULL caller guarantees that the socket 281 * to which @ctx was attached has no outstanding references. 282 */ 283 void tls_ctx_free(struct sock *sk, struct tls_context *ctx) 284 { 285 if (!ctx) 286 return; 287 288 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 289 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 290 mutex_destroy(&ctx->tx_lock); 291 292 if (sk) 293 kfree_rcu(ctx, rcu); 294 else 295 kfree(ctx); 296 } 297 298 static void tls_sk_proto_cleanup(struct sock *sk, 299 struct tls_context *ctx, long timeo) 300 { 301 if (unlikely(sk->sk_write_pending) && 302 !wait_on_pending_writer(sk, &timeo)) 303 tls_handle_open_record(sk, 0); 304 305 /* We need these for tls_sw_fallback handling of other packets */ 306 if (ctx->tx_conf == TLS_SW) { 307 kfree(ctx->tx.rec_seq); 308 kfree(ctx->tx.iv); 309 tls_sw_release_resources_tx(sk); 310 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 311 } else if (ctx->tx_conf == TLS_HW) { 312 tls_device_free_resources_tx(sk); 313 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 314 } 315 316 if (ctx->rx_conf == TLS_SW) { 317 tls_sw_release_resources_rx(sk); 318 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 319 } else if (ctx->rx_conf == TLS_HW) { 320 tls_device_offload_cleanup_rx(sk); 321 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 322 } 323 } 324 325 static void tls_sk_proto_close(struct sock *sk, long timeout) 326 { 327 struct inet_connection_sock *icsk = inet_csk(sk); 328 struct tls_context *ctx = tls_get_ctx(sk); 329 long timeo = sock_sndtimeo(sk, 0); 330 bool free_ctx; 331 332 if (ctx->tx_conf == TLS_SW) 333 tls_sw_cancel_work_tx(ctx); 334 335 lock_sock(sk); 336 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 337 338 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 339 tls_sk_proto_cleanup(sk, ctx, timeo); 340 341 write_lock_bh(&sk->sk_callback_lock); 342 if (free_ctx) 343 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 344 WRITE_ONCE(sk->sk_prot, ctx->sk_proto); 345 if (sk->sk_write_space == tls_write_space) 346 sk->sk_write_space = ctx->sk_write_space; 347 write_unlock_bh(&sk->sk_callback_lock); 348 release_sock(sk); 349 if (ctx->tx_conf == TLS_SW) 350 tls_sw_free_ctx_tx(ctx); 351 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 352 tls_sw_strparser_done(ctx); 353 if (ctx->rx_conf == TLS_SW) 354 tls_sw_free_ctx_rx(ctx); 355 ctx->sk_proto->close(sk, timeout); 356 357 if (free_ctx) 358 tls_ctx_free(sk, ctx); 359 } 360 361 static __poll_t tls_sk_poll(struct file *file, struct socket *sock, 362 struct poll_table_struct *wait) 363 { 364 struct tls_sw_context_rx *ctx; 365 struct tls_context *tls_ctx; 366 struct sock *sk = sock->sk; 367 struct sk_psock *psock; 368 __poll_t mask = 0; 369 u8 shutdown; 370 int state; 371 372 mask = tcp_poll(file, sock, wait); 373 374 state = inet_sk_state_load(sk); 375 shutdown = READ_ONCE(sk->sk_shutdown); 376 if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN)) 377 return mask; 378 379 tls_ctx = tls_get_ctx(sk); 380 ctx = tls_sw_ctx_rx(tls_ctx); 381 psock = sk_psock_get(sk); 382 383 if (skb_queue_empty_lockless(&ctx->rx_list) && 384 !tls_strp_msg_ready(ctx) && 385 sk_psock_queue_empty(psock)) 386 mask &= ~(EPOLLIN | EPOLLRDNORM); 387 388 if (psock) 389 sk_psock_put(sk, psock); 390 391 return mask; 392 } 393 394 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval, 395 int __user *optlen, int tx) 396 { 397 int rc = 0; 398 struct tls_context *ctx = tls_get_ctx(sk); 399 struct tls_crypto_info *crypto_info; 400 struct cipher_context *cctx; 401 int len; 402 403 if (get_user(len, optlen)) 404 return -EFAULT; 405 406 if (!optval || (len < sizeof(*crypto_info))) { 407 rc = -EINVAL; 408 goto out; 409 } 410 411 if (!ctx) { 412 rc = -EBUSY; 413 goto out; 414 } 415 416 /* get user crypto info */ 417 if (tx) { 418 crypto_info = &ctx->crypto_send.info; 419 cctx = &ctx->tx; 420 } else { 421 crypto_info = &ctx->crypto_recv.info; 422 cctx = &ctx->rx; 423 } 424 425 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 426 rc = -EBUSY; 427 goto out; 428 } 429 430 if (len == sizeof(*crypto_info)) { 431 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 432 rc = -EFAULT; 433 goto out; 434 } 435 436 switch (crypto_info->cipher_type) { 437 case TLS_CIPHER_AES_GCM_128: { 438 struct tls12_crypto_info_aes_gcm_128 * 439 crypto_info_aes_gcm_128 = 440 container_of(crypto_info, 441 struct tls12_crypto_info_aes_gcm_128, 442 info); 443 444 if (len != sizeof(*crypto_info_aes_gcm_128)) { 445 rc = -EINVAL; 446 goto out; 447 } 448 memcpy(crypto_info_aes_gcm_128->iv, 449 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 450 TLS_CIPHER_AES_GCM_128_IV_SIZE); 451 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq, 452 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 453 if (copy_to_user(optval, 454 crypto_info_aes_gcm_128, 455 sizeof(*crypto_info_aes_gcm_128))) 456 rc = -EFAULT; 457 break; 458 } 459 case TLS_CIPHER_AES_GCM_256: { 460 struct tls12_crypto_info_aes_gcm_256 * 461 crypto_info_aes_gcm_256 = 462 container_of(crypto_info, 463 struct tls12_crypto_info_aes_gcm_256, 464 info); 465 466 if (len != sizeof(*crypto_info_aes_gcm_256)) { 467 rc = -EINVAL; 468 goto out; 469 } 470 memcpy(crypto_info_aes_gcm_256->iv, 471 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 472 TLS_CIPHER_AES_GCM_256_IV_SIZE); 473 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq, 474 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 475 if (copy_to_user(optval, 476 crypto_info_aes_gcm_256, 477 sizeof(*crypto_info_aes_gcm_256))) 478 rc = -EFAULT; 479 break; 480 } 481 case TLS_CIPHER_AES_CCM_128: { 482 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 = 483 container_of(crypto_info, 484 struct tls12_crypto_info_aes_ccm_128, info); 485 486 if (len != sizeof(*aes_ccm_128)) { 487 rc = -EINVAL; 488 goto out; 489 } 490 memcpy(aes_ccm_128->iv, 491 cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE, 492 TLS_CIPHER_AES_CCM_128_IV_SIZE); 493 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq, 494 TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE); 495 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128))) 496 rc = -EFAULT; 497 break; 498 } 499 case TLS_CIPHER_CHACHA20_POLY1305: { 500 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 = 501 container_of(crypto_info, 502 struct tls12_crypto_info_chacha20_poly1305, 503 info); 504 505 if (len != sizeof(*chacha20_poly1305)) { 506 rc = -EINVAL; 507 goto out; 508 } 509 memcpy(chacha20_poly1305->iv, 510 cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE, 511 TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE); 512 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq, 513 TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE); 514 if (copy_to_user(optval, chacha20_poly1305, 515 sizeof(*chacha20_poly1305))) 516 rc = -EFAULT; 517 break; 518 } 519 case TLS_CIPHER_SM4_GCM: { 520 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info = 521 container_of(crypto_info, 522 struct tls12_crypto_info_sm4_gcm, info); 523 524 if (len != sizeof(*sm4_gcm_info)) { 525 rc = -EINVAL; 526 goto out; 527 } 528 memcpy(sm4_gcm_info->iv, 529 cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE, 530 TLS_CIPHER_SM4_GCM_IV_SIZE); 531 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq, 532 TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE); 533 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info))) 534 rc = -EFAULT; 535 break; 536 } 537 case TLS_CIPHER_SM4_CCM: { 538 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info = 539 container_of(crypto_info, 540 struct tls12_crypto_info_sm4_ccm, info); 541 542 if (len != sizeof(*sm4_ccm_info)) { 543 rc = -EINVAL; 544 goto out; 545 } 546 memcpy(sm4_ccm_info->iv, 547 cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE, 548 TLS_CIPHER_SM4_CCM_IV_SIZE); 549 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq, 550 TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE); 551 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info))) 552 rc = -EFAULT; 553 break; 554 } 555 case TLS_CIPHER_ARIA_GCM_128: { 556 struct tls12_crypto_info_aria_gcm_128 * 557 crypto_info_aria_gcm_128 = 558 container_of(crypto_info, 559 struct tls12_crypto_info_aria_gcm_128, 560 info); 561 562 if (len != sizeof(*crypto_info_aria_gcm_128)) { 563 rc = -EINVAL; 564 goto out; 565 } 566 memcpy(crypto_info_aria_gcm_128->iv, 567 cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE, 568 TLS_CIPHER_ARIA_GCM_128_IV_SIZE); 569 memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq, 570 TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE); 571 if (copy_to_user(optval, 572 crypto_info_aria_gcm_128, 573 sizeof(*crypto_info_aria_gcm_128))) 574 rc = -EFAULT; 575 break; 576 } 577 case TLS_CIPHER_ARIA_GCM_256: { 578 struct tls12_crypto_info_aria_gcm_256 * 579 crypto_info_aria_gcm_256 = 580 container_of(crypto_info, 581 struct tls12_crypto_info_aria_gcm_256, 582 info); 583 584 if (len != sizeof(*crypto_info_aria_gcm_256)) { 585 rc = -EINVAL; 586 goto out; 587 } 588 memcpy(crypto_info_aria_gcm_256->iv, 589 cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE, 590 TLS_CIPHER_ARIA_GCM_256_IV_SIZE); 591 memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq, 592 TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE); 593 if (copy_to_user(optval, 594 crypto_info_aria_gcm_256, 595 sizeof(*crypto_info_aria_gcm_256))) 596 rc = -EFAULT; 597 break; 598 } 599 default: 600 rc = -EINVAL; 601 } 602 603 out: 604 return rc; 605 } 606 607 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval, 608 int __user *optlen) 609 { 610 struct tls_context *ctx = tls_get_ctx(sk); 611 unsigned int value; 612 int len; 613 614 if (get_user(len, optlen)) 615 return -EFAULT; 616 617 if (len != sizeof(value)) 618 return -EINVAL; 619 620 value = ctx->zerocopy_sendfile; 621 if (copy_to_user(optval, &value, sizeof(value))) 622 return -EFAULT; 623 624 return 0; 625 } 626 627 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval, 628 int __user *optlen) 629 { 630 struct tls_context *ctx = tls_get_ctx(sk); 631 int value, len; 632 633 if (ctx->prot_info.version != TLS_1_3_VERSION) 634 return -EINVAL; 635 636 if (get_user(len, optlen)) 637 return -EFAULT; 638 if (len < sizeof(value)) 639 return -EINVAL; 640 641 value = -EINVAL; 642 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 643 value = ctx->rx_no_pad; 644 if (value < 0) 645 return value; 646 647 if (put_user(sizeof(value), optlen)) 648 return -EFAULT; 649 if (copy_to_user(optval, &value, sizeof(value))) 650 return -EFAULT; 651 652 return 0; 653 } 654 655 static int do_tls_getsockopt(struct sock *sk, int optname, 656 char __user *optval, int __user *optlen) 657 { 658 int rc = 0; 659 660 lock_sock(sk); 661 662 switch (optname) { 663 case TLS_TX: 664 case TLS_RX: 665 rc = do_tls_getsockopt_conf(sk, optval, optlen, 666 optname == TLS_TX); 667 break; 668 case TLS_TX_ZEROCOPY_RO: 669 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen); 670 break; 671 case TLS_RX_EXPECT_NO_PAD: 672 rc = do_tls_getsockopt_no_pad(sk, optval, optlen); 673 break; 674 default: 675 rc = -ENOPROTOOPT; 676 break; 677 } 678 679 release_sock(sk); 680 681 return rc; 682 } 683 684 static int tls_getsockopt(struct sock *sk, int level, int optname, 685 char __user *optval, int __user *optlen) 686 { 687 struct tls_context *ctx = tls_get_ctx(sk); 688 689 if (level != SOL_TLS) 690 return ctx->sk_proto->getsockopt(sk, level, 691 optname, optval, optlen); 692 693 return do_tls_getsockopt(sk, optname, optval, optlen); 694 } 695 696 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, 697 unsigned int optlen, int tx) 698 { 699 struct tls_crypto_info *crypto_info; 700 struct tls_crypto_info *alt_crypto_info; 701 struct tls_context *ctx = tls_get_ctx(sk); 702 size_t optsize; 703 int rc = 0; 704 int conf; 705 706 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) 707 return -EINVAL; 708 709 if (tx) { 710 crypto_info = &ctx->crypto_send.info; 711 alt_crypto_info = &ctx->crypto_recv.info; 712 } else { 713 crypto_info = &ctx->crypto_recv.info; 714 alt_crypto_info = &ctx->crypto_send.info; 715 } 716 717 /* Currently we don't support set crypto info more than one time */ 718 if (TLS_CRYPTO_INFO_READY(crypto_info)) 719 return -EBUSY; 720 721 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info)); 722 if (rc) { 723 rc = -EFAULT; 724 goto err_crypto_info; 725 } 726 727 /* check version */ 728 if (crypto_info->version != TLS_1_2_VERSION && 729 crypto_info->version != TLS_1_3_VERSION) { 730 rc = -EINVAL; 731 goto err_crypto_info; 732 } 733 734 /* Ensure that TLS version and ciphers are same in both directions */ 735 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 736 if (alt_crypto_info->version != crypto_info->version || 737 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 738 rc = -EINVAL; 739 goto err_crypto_info; 740 } 741 } 742 743 switch (crypto_info->cipher_type) { 744 case TLS_CIPHER_AES_GCM_128: 745 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 746 break; 747 case TLS_CIPHER_AES_GCM_256: { 748 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 749 break; 750 } 751 case TLS_CIPHER_AES_CCM_128: 752 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 753 break; 754 case TLS_CIPHER_CHACHA20_POLY1305: 755 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305); 756 break; 757 case TLS_CIPHER_SM4_GCM: 758 optsize = sizeof(struct tls12_crypto_info_sm4_gcm); 759 break; 760 case TLS_CIPHER_SM4_CCM: 761 optsize = sizeof(struct tls12_crypto_info_sm4_ccm); 762 break; 763 case TLS_CIPHER_ARIA_GCM_128: 764 if (crypto_info->version != TLS_1_2_VERSION) { 765 rc = -EINVAL; 766 goto err_crypto_info; 767 } 768 optsize = sizeof(struct tls12_crypto_info_aria_gcm_128); 769 break; 770 case TLS_CIPHER_ARIA_GCM_256: 771 if (crypto_info->version != TLS_1_2_VERSION) { 772 rc = -EINVAL; 773 goto err_crypto_info; 774 } 775 optsize = sizeof(struct tls12_crypto_info_aria_gcm_256); 776 break; 777 default: 778 rc = -EINVAL; 779 goto err_crypto_info; 780 } 781 782 if (optlen != optsize) { 783 rc = -EINVAL; 784 goto err_crypto_info; 785 } 786 787 rc = copy_from_sockptr_offset(crypto_info + 1, optval, 788 sizeof(*crypto_info), 789 optlen - sizeof(*crypto_info)); 790 if (rc) { 791 rc = -EFAULT; 792 goto err_crypto_info; 793 } 794 795 if (tx) { 796 rc = tls_set_device_offload(sk, ctx); 797 conf = TLS_HW; 798 if (!rc) { 799 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); 800 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 801 } else { 802 rc = tls_set_sw_offload(sk, ctx, 1); 803 if (rc) 804 goto err_crypto_info; 805 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); 806 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 807 conf = TLS_SW; 808 } 809 } else { 810 rc = tls_set_device_offload_rx(sk, ctx); 811 conf = TLS_HW; 812 if (!rc) { 813 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); 814 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 815 } else { 816 rc = tls_set_sw_offload(sk, ctx, 0); 817 if (rc) 818 goto err_crypto_info; 819 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); 820 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 821 conf = TLS_SW; 822 } 823 tls_sw_strparser_arm(sk, ctx); 824 } 825 826 if (tx) 827 ctx->tx_conf = conf; 828 else 829 ctx->rx_conf = conf; 830 update_sk_prot(sk, ctx); 831 if (tx) { 832 ctx->sk_write_space = sk->sk_write_space; 833 sk->sk_write_space = tls_write_space; 834 } else { 835 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx); 836 837 tls_strp_check_rcv(&rx_ctx->strp); 838 } 839 return 0; 840 841 err_crypto_info: 842 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 843 return rc; 844 } 845 846 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval, 847 unsigned int optlen) 848 { 849 struct tls_context *ctx = tls_get_ctx(sk); 850 unsigned int value; 851 852 if (sockptr_is_null(optval) || optlen != sizeof(value)) 853 return -EINVAL; 854 855 if (copy_from_sockptr(&value, optval, sizeof(value))) 856 return -EFAULT; 857 858 if (value > 1) 859 return -EINVAL; 860 861 ctx->zerocopy_sendfile = value; 862 863 return 0; 864 } 865 866 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval, 867 unsigned int optlen) 868 { 869 struct tls_context *ctx = tls_get_ctx(sk); 870 u32 val; 871 int rc; 872 873 if (ctx->prot_info.version != TLS_1_3_VERSION || 874 sockptr_is_null(optval) || optlen < sizeof(val)) 875 return -EINVAL; 876 877 rc = copy_from_sockptr(&val, optval, sizeof(val)); 878 if (rc) 879 return -EFAULT; 880 if (val > 1) 881 return -EINVAL; 882 rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val)); 883 if (rc < 1) 884 return rc == 0 ? -EINVAL : rc; 885 886 lock_sock(sk); 887 rc = -EINVAL; 888 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) { 889 ctx->rx_no_pad = val; 890 tls_update_rx_zc_capable(ctx); 891 rc = 0; 892 } 893 release_sock(sk); 894 895 return rc; 896 } 897 898 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, 899 unsigned int optlen) 900 { 901 int rc = 0; 902 903 switch (optname) { 904 case TLS_TX: 905 case TLS_RX: 906 lock_sock(sk); 907 rc = do_tls_setsockopt_conf(sk, optval, optlen, 908 optname == TLS_TX); 909 release_sock(sk); 910 break; 911 case TLS_TX_ZEROCOPY_RO: 912 lock_sock(sk); 913 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen); 914 release_sock(sk); 915 break; 916 case TLS_RX_EXPECT_NO_PAD: 917 rc = do_tls_setsockopt_no_pad(sk, optval, optlen); 918 break; 919 default: 920 rc = -ENOPROTOOPT; 921 break; 922 } 923 return rc; 924 } 925 926 static int tls_setsockopt(struct sock *sk, int level, int optname, 927 sockptr_t optval, unsigned int optlen) 928 { 929 struct tls_context *ctx = tls_get_ctx(sk); 930 931 if (level != SOL_TLS) 932 return ctx->sk_proto->setsockopt(sk, level, optname, optval, 933 optlen); 934 935 return do_tls_setsockopt(sk, optname, optval, optlen); 936 } 937 938 struct tls_context *tls_ctx_create(struct sock *sk) 939 { 940 struct inet_connection_sock *icsk = inet_csk(sk); 941 struct tls_context *ctx; 942 943 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 944 if (!ctx) 945 return NULL; 946 947 mutex_init(&ctx->tx_lock); 948 rcu_assign_pointer(icsk->icsk_ulp_data, ctx); 949 ctx->sk_proto = READ_ONCE(sk->sk_prot); 950 ctx->sk = sk; 951 return ctx; 952 } 953 954 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 955 const struct proto_ops *base) 956 { 957 ops[TLS_BASE][TLS_BASE] = *base; 958 959 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; 960 ops[TLS_SW ][TLS_BASE].splice_eof = tls_sw_splice_eof; 961 962 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE]; 963 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read; 964 ops[TLS_BASE][TLS_SW ].poll = tls_sk_poll; 965 966 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE]; 967 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read; 968 ops[TLS_SW ][TLS_SW ].poll = tls_sk_poll; 969 970 #ifdef CONFIG_TLS_DEVICE 971 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; 972 973 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ]; 974 975 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ]; 976 977 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ]; 978 979 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ]; 980 #endif 981 #ifdef CONFIG_TLS_TOE 982 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 983 #endif 984 } 985 986 static void tls_build_proto(struct sock *sk) 987 { 988 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 989 struct proto *prot = READ_ONCE(sk->sk_prot); 990 991 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 992 if (ip_ver == TLSV6 && 993 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { 994 mutex_lock(&tcpv6_prot_mutex); 995 if (likely(prot != saved_tcpv6_prot)) { 996 build_protos(tls_prots[TLSV6], prot); 997 build_proto_ops(tls_proto_ops[TLSV6], 998 sk->sk_socket->ops); 999 smp_store_release(&saved_tcpv6_prot, prot); 1000 } 1001 mutex_unlock(&tcpv6_prot_mutex); 1002 } 1003 1004 if (ip_ver == TLSV4 && 1005 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { 1006 mutex_lock(&tcpv4_prot_mutex); 1007 if (likely(prot != saved_tcpv4_prot)) { 1008 build_protos(tls_prots[TLSV4], prot); 1009 build_proto_ops(tls_proto_ops[TLSV4], 1010 sk->sk_socket->ops); 1011 smp_store_release(&saved_tcpv4_prot, prot); 1012 } 1013 mutex_unlock(&tcpv4_prot_mutex); 1014 } 1015 } 1016 1017 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 1018 const struct proto *base) 1019 { 1020 prot[TLS_BASE][TLS_BASE] = *base; 1021 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 1022 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 1023 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 1024 1025 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 1026 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 1027 prot[TLS_SW][TLS_BASE].splice_eof = tls_sw_splice_eof; 1028 1029 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 1030 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 1031 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; 1032 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 1033 1034 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 1035 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 1036 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; 1037 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 1038 1039 #ifdef CONFIG_TLS_DEVICE 1040 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 1041 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 1042 prot[TLS_HW][TLS_BASE].splice_eof = tls_device_splice_eof; 1043 1044 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 1045 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 1046 prot[TLS_HW][TLS_SW].splice_eof = tls_device_splice_eof; 1047 1048 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 1049 1050 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 1051 1052 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 1053 #endif 1054 #ifdef CONFIG_TLS_TOE 1055 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 1056 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; 1057 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; 1058 #endif 1059 } 1060 1061 static int tls_init(struct sock *sk) 1062 { 1063 struct tls_context *ctx; 1064 int rc = 0; 1065 1066 tls_build_proto(sk); 1067 1068 #ifdef CONFIG_TLS_TOE 1069 if (tls_toe_bypass(sk)) 1070 return 0; 1071 #endif 1072 1073 /* The TLS ulp is currently supported only for TCP sockets 1074 * in ESTABLISHED state. 1075 * Supporting sockets in LISTEN state will require us 1076 * to modify the accept implementation to clone rather then 1077 * share the ulp context. 1078 */ 1079 if (sk->sk_state != TCP_ESTABLISHED) 1080 return -ENOTCONN; 1081 1082 /* allocate tls context */ 1083 write_lock_bh(&sk->sk_callback_lock); 1084 ctx = tls_ctx_create(sk); 1085 if (!ctx) { 1086 rc = -ENOMEM; 1087 goto out; 1088 } 1089 1090 ctx->tx_conf = TLS_BASE; 1091 ctx->rx_conf = TLS_BASE; 1092 update_sk_prot(sk, ctx); 1093 out: 1094 write_unlock_bh(&sk->sk_callback_lock); 1095 return rc; 1096 } 1097 1098 static void tls_update(struct sock *sk, struct proto *p, 1099 void (*write_space)(struct sock *sk)) 1100 { 1101 struct tls_context *ctx; 1102 1103 WARN_ON_ONCE(sk->sk_prot == p); 1104 1105 ctx = tls_get_ctx(sk); 1106 if (likely(ctx)) { 1107 ctx->sk_write_space = write_space; 1108 ctx->sk_proto = p; 1109 } else { 1110 /* Pairs with lockless read in sk_clone_lock(). */ 1111 WRITE_ONCE(sk->sk_prot, p); 1112 sk->sk_write_space = write_space; 1113 } 1114 } 1115 1116 static u16 tls_user_config(struct tls_context *ctx, bool tx) 1117 { 1118 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; 1119 1120 switch (config) { 1121 case TLS_BASE: 1122 return TLS_CONF_BASE; 1123 case TLS_SW: 1124 return TLS_CONF_SW; 1125 case TLS_HW: 1126 return TLS_CONF_HW; 1127 case TLS_HW_RECORD: 1128 return TLS_CONF_HW_RECORD; 1129 } 1130 return 0; 1131 } 1132 1133 static int tls_get_info(const struct sock *sk, struct sk_buff *skb) 1134 { 1135 u16 version, cipher_type; 1136 struct tls_context *ctx; 1137 struct nlattr *start; 1138 int err; 1139 1140 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); 1141 if (!start) 1142 return -EMSGSIZE; 1143 1144 rcu_read_lock(); 1145 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); 1146 if (!ctx) { 1147 err = 0; 1148 goto nla_failure; 1149 } 1150 version = ctx->prot_info.version; 1151 if (version) { 1152 err = nla_put_u16(skb, TLS_INFO_VERSION, version); 1153 if (err) 1154 goto nla_failure; 1155 } 1156 cipher_type = ctx->prot_info.cipher_type; 1157 if (cipher_type) { 1158 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); 1159 if (err) 1160 goto nla_failure; 1161 } 1162 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); 1163 if (err) 1164 goto nla_failure; 1165 1166 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); 1167 if (err) 1168 goto nla_failure; 1169 1170 if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) { 1171 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX); 1172 if (err) 1173 goto nla_failure; 1174 } 1175 if (ctx->rx_no_pad) { 1176 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD); 1177 if (err) 1178 goto nla_failure; 1179 } 1180 1181 rcu_read_unlock(); 1182 nla_nest_end(skb, start); 1183 return 0; 1184 1185 nla_failure: 1186 rcu_read_unlock(); 1187 nla_nest_cancel(skb, start); 1188 return err; 1189 } 1190 1191 static size_t tls_get_info_size(const struct sock *sk) 1192 { 1193 size_t size = 0; 1194 1195 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ 1196 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ 1197 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ 1198 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ 1199 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 1200 nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */ 1201 nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */ 1202 0; 1203 1204 return size; 1205 } 1206 1207 static int __net_init tls_init_net(struct net *net) 1208 { 1209 int err; 1210 1211 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); 1212 if (!net->mib.tls_statistics) 1213 return -ENOMEM; 1214 1215 err = tls_proc_init(net); 1216 if (err) 1217 goto err_free_stats; 1218 1219 return 0; 1220 err_free_stats: 1221 free_percpu(net->mib.tls_statistics); 1222 return err; 1223 } 1224 1225 static void __net_exit tls_exit_net(struct net *net) 1226 { 1227 tls_proc_fini(net); 1228 free_percpu(net->mib.tls_statistics); 1229 } 1230 1231 static struct pernet_operations tls_proc_ops = { 1232 .init = tls_init_net, 1233 .exit = tls_exit_net, 1234 }; 1235 1236 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 1237 .name = "tls", 1238 .owner = THIS_MODULE, 1239 .init = tls_init, 1240 .update = tls_update, 1241 .get_info = tls_get_info, 1242 .get_info_size = tls_get_info_size, 1243 }; 1244 1245 static int __init tls_register(void) 1246 { 1247 int err; 1248 1249 err = register_pernet_subsys(&tls_proc_ops); 1250 if (err) 1251 return err; 1252 1253 err = tls_strp_dev_init(); 1254 if (err) 1255 goto err_pernet; 1256 1257 err = tls_device_init(); 1258 if (err) 1259 goto err_strp; 1260 1261 tcp_register_ulp(&tcp_tls_ulp_ops); 1262 1263 return 0; 1264 err_strp: 1265 tls_strp_dev_exit(); 1266 err_pernet: 1267 unregister_pernet_subsys(&tls_proc_ops); 1268 return err; 1269 } 1270 1271 static void __exit tls_unregister(void) 1272 { 1273 tcp_unregister_ulp(&tcp_tls_ulp_ops); 1274 tls_strp_dev_exit(); 1275 tls_device_cleanup(); 1276 unregister_pernet_subsys(&tls_proc_ops); 1277 } 1278 1279 module_init(tls_register); 1280 module_exit(tls_unregister); 1281