1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 #include <linux/inet_diag.h> 43 44 #include <net/snmp.h> 45 #include <net/tls.h> 46 #include <net/tls_toe.h> 47 48 MODULE_AUTHOR("Mellanox Technologies"); 49 MODULE_DESCRIPTION("Transport Layer Security Support"); 50 MODULE_LICENSE("Dual BSD/GPL"); 51 MODULE_ALIAS_TCP_ULP("tls"); 52 53 enum { 54 TLSV4, 55 TLSV6, 56 TLS_NUM_PROTS, 57 }; 58 59 static struct proto *saved_tcpv6_prot; 60 static DEFINE_MUTEX(tcpv6_prot_mutex); 61 static struct proto *saved_tcpv4_prot; 62 static DEFINE_MUTEX(tcpv4_prot_mutex); 63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 64 static struct proto_ops tls_sw_proto_ops; 65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 66 struct proto *base); 67 68 void update_sk_prot(struct sock *sk, struct tls_context *ctx) 69 { 70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 71 72 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]; 73 } 74 75 int wait_on_pending_writer(struct sock *sk, long *timeo) 76 { 77 int rc = 0; 78 DEFINE_WAIT_FUNC(wait, woken_wake_function); 79 80 add_wait_queue(sk_sleep(sk), &wait); 81 while (1) { 82 if (!*timeo) { 83 rc = -EAGAIN; 84 break; 85 } 86 87 if (signal_pending(current)) { 88 rc = sock_intr_errno(*timeo); 89 break; 90 } 91 92 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 93 break; 94 } 95 remove_wait_queue(sk_sleep(sk), &wait); 96 return rc; 97 } 98 99 int tls_push_sg(struct sock *sk, 100 struct tls_context *ctx, 101 struct scatterlist *sg, 102 u16 first_offset, 103 int flags) 104 { 105 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 106 int ret = 0; 107 struct page *p; 108 size_t size; 109 int offset = first_offset; 110 111 size = sg->length - offset; 112 offset += sg->offset; 113 114 ctx->in_tcp_sendpages = true; 115 while (1) { 116 if (sg_is_last(sg)) 117 sendpage_flags = flags; 118 119 /* is sending application-limited? */ 120 tcp_rate_check_app_limited(sk); 121 p = sg_page(sg); 122 retry: 123 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 124 125 if (ret != size) { 126 if (ret > 0) { 127 offset += ret; 128 size -= ret; 129 goto retry; 130 } 131 132 offset -= sg->offset; 133 ctx->partially_sent_offset = offset; 134 ctx->partially_sent_record = (void *)sg; 135 ctx->in_tcp_sendpages = false; 136 return ret; 137 } 138 139 put_page(p); 140 sk_mem_uncharge(sk, sg->length); 141 sg = sg_next(sg); 142 if (!sg) 143 break; 144 145 offset = sg->offset; 146 size = sg->length; 147 } 148 149 ctx->in_tcp_sendpages = false; 150 151 return 0; 152 } 153 154 static int tls_handle_open_record(struct sock *sk, int flags) 155 { 156 struct tls_context *ctx = tls_get_ctx(sk); 157 158 if (tls_is_pending_open_record(ctx)) 159 return ctx->push_pending_record(sk, flags); 160 161 return 0; 162 } 163 164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 165 unsigned char *record_type) 166 { 167 struct cmsghdr *cmsg; 168 int rc = -EINVAL; 169 170 for_each_cmsghdr(cmsg, msg) { 171 if (!CMSG_OK(msg, cmsg)) 172 return -EINVAL; 173 if (cmsg->cmsg_level != SOL_TLS) 174 continue; 175 176 switch (cmsg->cmsg_type) { 177 case TLS_SET_RECORD_TYPE: 178 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 179 return -EINVAL; 180 181 if (msg->msg_flags & MSG_MORE) 182 return -EINVAL; 183 184 rc = tls_handle_open_record(sk, msg->msg_flags); 185 if (rc) 186 return rc; 187 188 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 189 rc = 0; 190 break; 191 default: 192 return -EINVAL; 193 } 194 } 195 196 return rc; 197 } 198 199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 200 int flags) 201 { 202 struct scatterlist *sg; 203 u16 offset; 204 205 sg = ctx->partially_sent_record; 206 offset = ctx->partially_sent_offset; 207 208 ctx->partially_sent_record = NULL; 209 return tls_push_sg(sk, ctx, sg, offset, flags); 210 } 211 212 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 213 { 214 struct scatterlist *sg; 215 216 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { 217 put_page(sg_page(sg)); 218 sk_mem_uncharge(sk, sg->length); 219 } 220 ctx->partially_sent_record = NULL; 221 } 222 223 static void tls_write_space(struct sock *sk) 224 { 225 struct tls_context *ctx = tls_get_ctx(sk); 226 227 /* If in_tcp_sendpages call lower protocol write space handler 228 * to ensure we wake up any waiting operations there. For example 229 * if do_tcp_sendpages where to call sk_wait_event. 230 */ 231 if (ctx->in_tcp_sendpages) { 232 ctx->sk_write_space(sk); 233 return; 234 } 235 236 #ifdef CONFIG_TLS_DEVICE 237 if (ctx->tx_conf == TLS_HW) 238 tls_device_write_space(sk, ctx); 239 else 240 #endif 241 tls_sw_write_space(sk, ctx); 242 243 ctx->sk_write_space(sk); 244 } 245 246 /** 247 * tls_ctx_free() - free TLS ULP context 248 * @sk: socket to with @ctx is attached 249 * @ctx: TLS context structure 250 * 251 * Free TLS context. If @sk is %NULL caller guarantees that the socket 252 * to which @ctx was attached has no outstanding references. 253 */ 254 void tls_ctx_free(struct sock *sk, struct tls_context *ctx) 255 { 256 if (!ctx) 257 return; 258 259 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 260 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 261 mutex_destroy(&ctx->tx_lock); 262 263 if (sk) 264 kfree_rcu(ctx, rcu); 265 else 266 kfree(ctx); 267 } 268 269 static void tls_sk_proto_cleanup(struct sock *sk, 270 struct tls_context *ctx, long timeo) 271 { 272 if (unlikely(sk->sk_write_pending) && 273 !wait_on_pending_writer(sk, &timeo)) 274 tls_handle_open_record(sk, 0); 275 276 /* We need these for tls_sw_fallback handling of other packets */ 277 if (ctx->tx_conf == TLS_SW) { 278 kfree(ctx->tx.rec_seq); 279 kfree(ctx->tx.iv); 280 tls_sw_release_resources_tx(sk); 281 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 282 } else if (ctx->tx_conf == TLS_HW) { 283 tls_device_free_resources_tx(sk); 284 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 285 } 286 287 if (ctx->rx_conf == TLS_SW) { 288 tls_sw_release_resources_rx(sk); 289 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 290 } else if (ctx->rx_conf == TLS_HW) { 291 tls_device_offload_cleanup_rx(sk); 292 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 293 } 294 } 295 296 static void tls_sk_proto_close(struct sock *sk, long timeout) 297 { 298 struct inet_connection_sock *icsk = inet_csk(sk); 299 struct tls_context *ctx = tls_get_ctx(sk); 300 long timeo = sock_sndtimeo(sk, 0); 301 bool free_ctx; 302 303 if (ctx->tx_conf == TLS_SW) 304 tls_sw_cancel_work_tx(ctx); 305 306 lock_sock(sk); 307 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 308 309 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 310 tls_sk_proto_cleanup(sk, ctx, timeo); 311 312 write_lock_bh(&sk->sk_callback_lock); 313 if (free_ctx) 314 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 315 sk->sk_prot = ctx->sk_proto; 316 if (sk->sk_write_space == tls_write_space) 317 sk->sk_write_space = ctx->sk_write_space; 318 write_unlock_bh(&sk->sk_callback_lock); 319 release_sock(sk); 320 if (ctx->tx_conf == TLS_SW) 321 tls_sw_free_ctx_tx(ctx); 322 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 323 tls_sw_strparser_done(ctx); 324 if (ctx->rx_conf == TLS_SW) 325 tls_sw_free_ctx_rx(ctx); 326 ctx->sk_proto->close(sk, timeout); 327 328 if (free_ctx) 329 tls_ctx_free(sk, ctx); 330 } 331 332 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, 333 int __user *optlen) 334 { 335 int rc = 0; 336 struct tls_context *ctx = tls_get_ctx(sk); 337 struct tls_crypto_info *crypto_info; 338 int len; 339 340 if (get_user(len, optlen)) 341 return -EFAULT; 342 343 if (!optval || (len < sizeof(*crypto_info))) { 344 rc = -EINVAL; 345 goto out; 346 } 347 348 if (!ctx) { 349 rc = -EBUSY; 350 goto out; 351 } 352 353 /* get user crypto info */ 354 crypto_info = &ctx->crypto_send.info; 355 356 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 357 rc = -EBUSY; 358 goto out; 359 } 360 361 if (len == sizeof(*crypto_info)) { 362 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 363 rc = -EFAULT; 364 goto out; 365 } 366 367 switch (crypto_info->cipher_type) { 368 case TLS_CIPHER_AES_GCM_128: { 369 struct tls12_crypto_info_aes_gcm_128 * 370 crypto_info_aes_gcm_128 = 371 container_of(crypto_info, 372 struct tls12_crypto_info_aes_gcm_128, 373 info); 374 375 if (len != sizeof(*crypto_info_aes_gcm_128)) { 376 rc = -EINVAL; 377 goto out; 378 } 379 lock_sock(sk); 380 memcpy(crypto_info_aes_gcm_128->iv, 381 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 382 TLS_CIPHER_AES_GCM_128_IV_SIZE); 383 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, 384 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 385 release_sock(sk); 386 if (copy_to_user(optval, 387 crypto_info_aes_gcm_128, 388 sizeof(*crypto_info_aes_gcm_128))) 389 rc = -EFAULT; 390 break; 391 } 392 case TLS_CIPHER_AES_GCM_256: { 393 struct tls12_crypto_info_aes_gcm_256 * 394 crypto_info_aes_gcm_256 = 395 container_of(crypto_info, 396 struct tls12_crypto_info_aes_gcm_256, 397 info); 398 399 if (len != sizeof(*crypto_info_aes_gcm_256)) { 400 rc = -EINVAL; 401 goto out; 402 } 403 lock_sock(sk); 404 memcpy(crypto_info_aes_gcm_256->iv, 405 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 406 TLS_CIPHER_AES_GCM_256_IV_SIZE); 407 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq, 408 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 409 release_sock(sk); 410 if (copy_to_user(optval, 411 crypto_info_aes_gcm_256, 412 sizeof(*crypto_info_aes_gcm_256))) 413 rc = -EFAULT; 414 break; 415 } 416 default: 417 rc = -EINVAL; 418 } 419 420 out: 421 return rc; 422 } 423 424 static int do_tls_getsockopt(struct sock *sk, int optname, 425 char __user *optval, int __user *optlen) 426 { 427 int rc = 0; 428 429 switch (optname) { 430 case TLS_TX: 431 rc = do_tls_getsockopt_tx(sk, optval, optlen); 432 break; 433 default: 434 rc = -ENOPROTOOPT; 435 break; 436 } 437 return rc; 438 } 439 440 static int tls_getsockopt(struct sock *sk, int level, int optname, 441 char __user *optval, int __user *optlen) 442 { 443 struct tls_context *ctx = tls_get_ctx(sk); 444 445 if (level != SOL_TLS) 446 return ctx->sk_proto->getsockopt(sk, level, 447 optname, optval, optlen); 448 449 return do_tls_getsockopt(sk, optname, optval, optlen); 450 } 451 452 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval, 453 unsigned int optlen, int tx) 454 { 455 struct tls_crypto_info *crypto_info; 456 struct tls_crypto_info *alt_crypto_info; 457 struct tls_context *ctx = tls_get_ctx(sk); 458 size_t optsize; 459 int rc = 0; 460 int conf; 461 462 if (!optval || (optlen < sizeof(*crypto_info))) { 463 rc = -EINVAL; 464 goto out; 465 } 466 467 if (tx) { 468 crypto_info = &ctx->crypto_send.info; 469 alt_crypto_info = &ctx->crypto_recv.info; 470 } else { 471 crypto_info = &ctx->crypto_recv.info; 472 alt_crypto_info = &ctx->crypto_send.info; 473 } 474 475 /* Currently we don't support set crypto info more than one time */ 476 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 477 rc = -EBUSY; 478 goto out; 479 } 480 481 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); 482 if (rc) { 483 rc = -EFAULT; 484 goto err_crypto_info; 485 } 486 487 /* check version */ 488 if (crypto_info->version != TLS_1_2_VERSION && 489 crypto_info->version != TLS_1_3_VERSION) { 490 rc = -EINVAL; 491 goto err_crypto_info; 492 } 493 494 /* Ensure that TLS version and ciphers are same in both directions */ 495 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 496 if (alt_crypto_info->version != crypto_info->version || 497 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 498 rc = -EINVAL; 499 goto err_crypto_info; 500 } 501 } 502 503 switch (crypto_info->cipher_type) { 504 case TLS_CIPHER_AES_GCM_128: 505 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 506 break; 507 case TLS_CIPHER_AES_GCM_256: { 508 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 509 break; 510 } 511 case TLS_CIPHER_AES_CCM_128: 512 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 513 break; 514 default: 515 rc = -EINVAL; 516 goto err_crypto_info; 517 } 518 519 if (optlen != optsize) { 520 rc = -EINVAL; 521 goto err_crypto_info; 522 } 523 524 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), 525 optlen - sizeof(*crypto_info)); 526 if (rc) { 527 rc = -EFAULT; 528 goto err_crypto_info; 529 } 530 531 if (tx) { 532 rc = tls_set_device_offload(sk, ctx); 533 conf = TLS_HW; 534 if (!rc) { 535 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); 536 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 537 } else { 538 rc = tls_set_sw_offload(sk, ctx, 1); 539 if (rc) 540 goto err_crypto_info; 541 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); 542 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 543 conf = TLS_SW; 544 } 545 } else { 546 rc = tls_set_device_offload_rx(sk, ctx); 547 conf = TLS_HW; 548 if (!rc) { 549 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); 550 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 551 } else { 552 rc = tls_set_sw_offload(sk, ctx, 0); 553 if (rc) 554 goto err_crypto_info; 555 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); 556 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 557 conf = TLS_SW; 558 } 559 tls_sw_strparser_arm(sk, ctx); 560 } 561 562 if (tx) 563 ctx->tx_conf = conf; 564 else 565 ctx->rx_conf = conf; 566 update_sk_prot(sk, ctx); 567 if (tx) { 568 ctx->sk_write_space = sk->sk_write_space; 569 sk->sk_write_space = tls_write_space; 570 } else { 571 sk->sk_socket->ops = &tls_sw_proto_ops; 572 } 573 goto out; 574 575 err_crypto_info: 576 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 577 out: 578 return rc; 579 } 580 581 static int do_tls_setsockopt(struct sock *sk, int optname, 582 char __user *optval, unsigned int optlen) 583 { 584 int rc = 0; 585 586 switch (optname) { 587 case TLS_TX: 588 case TLS_RX: 589 lock_sock(sk); 590 rc = do_tls_setsockopt_conf(sk, optval, optlen, 591 optname == TLS_TX); 592 release_sock(sk); 593 break; 594 default: 595 rc = -ENOPROTOOPT; 596 break; 597 } 598 return rc; 599 } 600 601 static int tls_setsockopt(struct sock *sk, int level, int optname, 602 char __user *optval, unsigned int optlen) 603 { 604 struct tls_context *ctx = tls_get_ctx(sk); 605 606 if (level != SOL_TLS) 607 return ctx->sk_proto->setsockopt(sk, level, optname, optval, 608 optlen); 609 610 return do_tls_setsockopt(sk, optname, optval, optlen); 611 } 612 613 struct tls_context *tls_ctx_create(struct sock *sk) 614 { 615 struct inet_connection_sock *icsk = inet_csk(sk); 616 struct tls_context *ctx; 617 618 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 619 if (!ctx) 620 return NULL; 621 622 mutex_init(&ctx->tx_lock); 623 rcu_assign_pointer(icsk->icsk_ulp_data, ctx); 624 ctx->sk_proto = sk->sk_prot; 625 return ctx; 626 } 627 628 static void tls_build_proto(struct sock *sk) 629 { 630 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 631 632 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 633 if (ip_ver == TLSV6 && 634 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { 635 mutex_lock(&tcpv6_prot_mutex); 636 if (likely(sk->sk_prot != saved_tcpv6_prot)) { 637 build_protos(tls_prots[TLSV6], sk->sk_prot); 638 smp_store_release(&saved_tcpv6_prot, sk->sk_prot); 639 } 640 mutex_unlock(&tcpv6_prot_mutex); 641 } 642 643 if (ip_ver == TLSV4 && 644 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) { 645 mutex_lock(&tcpv4_prot_mutex); 646 if (likely(sk->sk_prot != saved_tcpv4_prot)) { 647 build_protos(tls_prots[TLSV4], sk->sk_prot); 648 smp_store_release(&saved_tcpv4_prot, sk->sk_prot); 649 } 650 mutex_unlock(&tcpv4_prot_mutex); 651 } 652 } 653 654 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 655 struct proto *base) 656 { 657 prot[TLS_BASE][TLS_BASE] = *base; 658 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 659 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 660 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 661 662 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 663 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 664 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 665 666 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 667 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 668 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read; 669 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 670 671 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 672 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 673 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read; 674 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 675 676 #ifdef CONFIG_TLS_DEVICE 677 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 678 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 679 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 680 681 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 682 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 683 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 684 685 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 686 687 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 688 689 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 690 #endif 691 #ifdef CONFIG_TLS_TOE 692 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 693 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; 694 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; 695 #endif 696 } 697 698 static int tls_init(struct sock *sk) 699 { 700 struct tls_context *ctx; 701 int rc = 0; 702 703 tls_build_proto(sk); 704 705 #ifdef CONFIG_TLS_TOE 706 if (tls_toe_bypass(sk)) 707 return 0; 708 #endif 709 710 /* The TLS ulp is currently supported only for TCP sockets 711 * in ESTABLISHED state. 712 * Supporting sockets in LISTEN state will require us 713 * to modify the accept implementation to clone rather then 714 * share the ulp context. 715 */ 716 if (sk->sk_state != TCP_ESTABLISHED) 717 return -ENOTCONN; 718 719 /* allocate tls context */ 720 write_lock_bh(&sk->sk_callback_lock); 721 ctx = tls_ctx_create(sk); 722 if (!ctx) { 723 rc = -ENOMEM; 724 goto out; 725 } 726 727 ctx->tx_conf = TLS_BASE; 728 ctx->rx_conf = TLS_BASE; 729 update_sk_prot(sk, ctx); 730 out: 731 write_unlock_bh(&sk->sk_callback_lock); 732 return rc; 733 } 734 735 static void tls_update(struct sock *sk, struct proto *p, 736 void (*write_space)(struct sock *sk)) 737 { 738 struct tls_context *ctx; 739 740 ctx = tls_get_ctx(sk); 741 if (likely(ctx)) { 742 ctx->sk_write_space = write_space; 743 ctx->sk_proto = p; 744 } else { 745 sk->sk_prot = p; 746 sk->sk_write_space = write_space; 747 } 748 } 749 750 static int tls_get_info(const struct sock *sk, struct sk_buff *skb) 751 { 752 u16 version, cipher_type; 753 struct tls_context *ctx; 754 struct nlattr *start; 755 int err; 756 757 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); 758 if (!start) 759 return -EMSGSIZE; 760 761 rcu_read_lock(); 762 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); 763 if (!ctx) { 764 err = 0; 765 goto nla_failure; 766 } 767 version = ctx->prot_info.version; 768 if (version) { 769 err = nla_put_u16(skb, TLS_INFO_VERSION, version); 770 if (err) 771 goto nla_failure; 772 } 773 cipher_type = ctx->prot_info.cipher_type; 774 if (cipher_type) { 775 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); 776 if (err) 777 goto nla_failure; 778 } 779 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); 780 if (err) 781 goto nla_failure; 782 783 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); 784 if (err) 785 goto nla_failure; 786 787 rcu_read_unlock(); 788 nla_nest_end(skb, start); 789 return 0; 790 791 nla_failure: 792 rcu_read_unlock(); 793 nla_nest_cancel(skb, start); 794 return err; 795 } 796 797 static size_t tls_get_info_size(const struct sock *sk) 798 { 799 size_t size = 0; 800 801 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ 802 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ 803 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ 804 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ 805 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 806 0; 807 808 return size; 809 } 810 811 static int __net_init tls_init_net(struct net *net) 812 { 813 int err; 814 815 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); 816 if (!net->mib.tls_statistics) 817 return -ENOMEM; 818 819 err = tls_proc_init(net); 820 if (err) 821 goto err_free_stats; 822 823 return 0; 824 err_free_stats: 825 free_percpu(net->mib.tls_statistics); 826 return err; 827 } 828 829 static void __net_exit tls_exit_net(struct net *net) 830 { 831 tls_proc_fini(net); 832 free_percpu(net->mib.tls_statistics); 833 } 834 835 static struct pernet_operations tls_proc_ops = { 836 .init = tls_init_net, 837 .exit = tls_exit_net, 838 }; 839 840 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 841 .name = "tls", 842 .owner = THIS_MODULE, 843 .init = tls_init, 844 .update = tls_update, 845 .get_info = tls_get_info, 846 .get_info_size = tls_get_info_size, 847 }; 848 849 static int __init tls_register(void) 850 { 851 int err; 852 853 err = register_pernet_subsys(&tls_proc_ops); 854 if (err) 855 return err; 856 857 tls_sw_proto_ops = inet_stream_ops; 858 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 859 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked, 860 861 tls_device_init(); 862 tcp_register_ulp(&tcp_tls_ulp_ops); 863 864 return 0; 865 } 866 867 static void __exit tls_unregister(void) 868 { 869 tcp_unregister_ulp(&tcp_tls_ulp_ops); 870 tls_device_cleanup(); 871 unregister_pernet_subsys(&tls_proc_ops); 872 } 873 874 module_init(tls_register); 875 module_exit(tls_unregister); 876