1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 43 #include <net/tls.h> 44 45 MODULE_AUTHOR("Mellanox Technologies"); 46 MODULE_DESCRIPTION("Transport Layer Security Support"); 47 MODULE_LICENSE("Dual BSD/GPL"); 48 MODULE_ALIAS_TCP_ULP("tls"); 49 50 enum { 51 TLSV4, 52 TLSV6, 53 TLS_NUM_PROTS, 54 }; 55 56 static struct proto *saved_tcpv6_prot; 57 static DEFINE_MUTEX(tcpv6_prot_mutex); 58 static struct proto *saved_tcpv4_prot; 59 static DEFINE_MUTEX(tcpv4_prot_mutex); 60 static LIST_HEAD(device_list); 61 static DEFINE_SPINLOCK(device_spinlock); 62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 63 static struct proto_ops tls_sw_proto_ops; 64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 65 struct proto *base); 66 67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx) 68 { 69 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 70 71 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]; 72 } 73 74 int wait_on_pending_writer(struct sock *sk, long *timeo) 75 { 76 int rc = 0; 77 DEFINE_WAIT_FUNC(wait, woken_wake_function); 78 79 add_wait_queue(sk_sleep(sk), &wait); 80 while (1) { 81 if (!*timeo) { 82 rc = -EAGAIN; 83 break; 84 } 85 86 if (signal_pending(current)) { 87 rc = sock_intr_errno(*timeo); 88 break; 89 } 90 91 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 92 break; 93 } 94 remove_wait_queue(sk_sleep(sk), &wait); 95 return rc; 96 } 97 98 int tls_push_sg(struct sock *sk, 99 struct tls_context *ctx, 100 struct scatterlist *sg, 101 u16 first_offset, 102 int flags) 103 { 104 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 105 int ret = 0; 106 struct page *p; 107 size_t size; 108 int offset = first_offset; 109 110 size = sg->length - offset; 111 offset += sg->offset; 112 113 ctx->in_tcp_sendpages = true; 114 while (1) { 115 if (sg_is_last(sg)) 116 sendpage_flags = flags; 117 118 /* is sending application-limited? */ 119 tcp_rate_check_app_limited(sk); 120 p = sg_page(sg); 121 retry: 122 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 123 124 if (ret != size) { 125 if (ret > 0) { 126 offset += ret; 127 size -= ret; 128 goto retry; 129 } 130 131 offset -= sg->offset; 132 ctx->partially_sent_offset = offset; 133 ctx->partially_sent_record = (void *)sg; 134 ctx->in_tcp_sendpages = false; 135 return ret; 136 } 137 138 put_page(p); 139 sk_mem_uncharge(sk, sg->length); 140 sg = sg_next(sg); 141 if (!sg) 142 break; 143 144 offset = sg->offset; 145 size = sg->length; 146 } 147 148 ctx->in_tcp_sendpages = false; 149 150 return 0; 151 } 152 153 static int tls_handle_open_record(struct sock *sk, int flags) 154 { 155 struct tls_context *ctx = tls_get_ctx(sk); 156 157 if (tls_is_pending_open_record(ctx)) 158 return ctx->push_pending_record(sk, flags); 159 160 return 0; 161 } 162 163 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 164 unsigned char *record_type) 165 { 166 struct cmsghdr *cmsg; 167 int rc = -EINVAL; 168 169 for_each_cmsghdr(cmsg, msg) { 170 if (!CMSG_OK(msg, cmsg)) 171 return -EINVAL; 172 if (cmsg->cmsg_level != SOL_TLS) 173 continue; 174 175 switch (cmsg->cmsg_type) { 176 case TLS_SET_RECORD_TYPE: 177 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 178 return -EINVAL; 179 180 if (msg->msg_flags & MSG_MORE) 181 return -EINVAL; 182 183 rc = tls_handle_open_record(sk, msg->msg_flags); 184 if (rc) 185 return rc; 186 187 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 188 rc = 0; 189 break; 190 default: 191 return -EINVAL; 192 } 193 } 194 195 return rc; 196 } 197 198 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 199 int flags) 200 { 201 struct scatterlist *sg; 202 u16 offset; 203 204 sg = ctx->partially_sent_record; 205 offset = ctx->partially_sent_offset; 206 207 ctx->partially_sent_record = NULL; 208 return tls_push_sg(sk, ctx, sg, offset, flags); 209 } 210 211 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 212 { 213 struct scatterlist *sg; 214 215 sg = ctx->partially_sent_record; 216 if (!sg) 217 return false; 218 219 while (1) { 220 put_page(sg_page(sg)); 221 sk_mem_uncharge(sk, sg->length); 222 223 if (sg_is_last(sg)) 224 break; 225 sg++; 226 } 227 ctx->partially_sent_record = NULL; 228 return true; 229 } 230 231 static void tls_write_space(struct sock *sk) 232 { 233 struct tls_context *ctx = tls_get_ctx(sk); 234 235 /* If in_tcp_sendpages call lower protocol write space handler 236 * to ensure we wake up any waiting operations there. For example 237 * if do_tcp_sendpages where to call sk_wait_event. 238 */ 239 if (ctx->in_tcp_sendpages) { 240 ctx->sk_write_space(sk); 241 return; 242 } 243 244 #ifdef CONFIG_TLS_DEVICE 245 if (ctx->tx_conf == TLS_HW) 246 tls_device_write_space(sk, ctx); 247 else 248 #endif 249 tls_sw_write_space(sk, ctx); 250 251 ctx->sk_write_space(sk); 252 } 253 254 static void tls_ctx_free(struct tls_context *ctx) 255 { 256 if (!ctx) 257 return; 258 259 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 260 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 261 kfree(ctx); 262 } 263 264 static void tls_sk_proto_close(struct sock *sk, long timeout) 265 { 266 struct tls_context *ctx = tls_get_ctx(sk); 267 long timeo = sock_sndtimeo(sk, 0); 268 void (*sk_proto_close)(struct sock *sk, long timeout); 269 bool free_ctx = false; 270 271 lock_sock(sk); 272 sk_proto_close = ctx->sk_proto_close; 273 274 if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) 275 goto skip_tx_cleanup; 276 277 if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) { 278 free_ctx = true; 279 goto skip_tx_cleanup; 280 } 281 282 if (!tls_complete_pending_work(sk, ctx, 0, &timeo)) 283 tls_handle_open_record(sk, 0); 284 285 /* We need these for tls_sw_fallback handling of other packets */ 286 if (ctx->tx_conf == TLS_SW) { 287 kfree(ctx->tx.rec_seq); 288 kfree(ctx->tx.iv); 289 tls_sw_free_resources_tx(sk); 290 #ifdef CONFIG_TLS_DEVICE 291 } else if (ctx->tx_conf == TLS_HW) { 292 tls_device_free_resources_tx(sk); 293 #endif 294 } 295 296 if (ctx->rx_conf == TLS_SW) { 297 kfree(ctx->rx.rec_seq); 298 kfree(ctx->rx.iv); 299 tls_sw_free_resources_rx(sk); 300 } 301 302 #ifdef CONFIG_TLS_DEVICE 303 if (ctx->rx_conf == TLS_HW) 304 tls_device_offload_cleanup_rx(sk); 305 306 if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) { 307 #else 308 { 309 #endif 310 tls_ctx_free(ctx); 311 ctx = NULL; 312 } 313 314 skip_tx_cleanup: 315 release_sock(sk); 316 sk_proto_close(sk, timeout); 317 /* free ctx for TLS_HW_RECORD, used by tcp_set_state 318 * for sk->sk_prot->unhash [tls_hw_unhash] 319 */ 320 if (free_ctx) 321 tls_ctx_free(ctx); 322 } 323 324 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, 325 int __user *optlen) 326 { 327 int rc = 0; 328 struct tls_context *ctx = tls_get_ctx(sk); 329 struct tls_crypto_info *crypto_info; 330 int len; 331 332 if (get_user(len, optlen)) 333 return -EFAULT; 334 335 if (!optval || (len < sizeof(*crypto_info))) { 336 rc = -EINVAL; 337 goto out; 338 } 339 340 if (!ctx) { 341 rc = -EBUSY; 342 goto out; 343 } 344 345 /* get user crypto info */ 346 crypto_info = &ctx->crypto_send.info; 347 348 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 349 rc = -EBUSY; 350 goto out; 351 } 352 353 if (len == sizeof(*crypto_info)) { 354 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 355 rc = -EFAULT; 356 goto out; 357 } 358 359 switch (crypto_info->cipher_type) { 360 case TLS_CIPHER_AES_GCM_128: { 361 struct tls12_crypto_info_aes_gcm_128 * 362 crypto_info_aes_gcm_128 = 363 container_of(crypto_info, 364 struct tls12_crypto_info_aes_gcm_128, 365 info); 366 367 if (len != sizeof(*crypto_info_aes_gcm_128)) { 368 rc = -EINVAL; 369 goto out; 370 } 371 lock_sock(sk); 372 memcpy(crypto_info_aes_gcm_128->iv, 373 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 374 TLS_CIPHER_AES_GCM_128_IV_SIZE); 375 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, 376 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 377 release_sock(sk); 378 if (copy_to_user(optval, 379 crypto_info_aes_gcm_128, 380 sizeof(*crypto_info_aes_gcm_128))) 381 rc = -EFAULT; 382 break; 383 } 384 case TLS_CIPHER_AES_GCM_256: { 385 struct tls12_crypto_info_aes_gcm_256 * 386 crypto_info_aes_gcm_256 = 387 container_of(crypto_info, 388 struct tls12_crypto_info_aes_gcm_256, 389 info); 390 391 if (len != sizeof(*crypto_info_aes_gcm_256)) { 392 rc = -EINVAL; 393 goto out; 394 } 395 lock_sock(sk); 396 memcpy(crypto_info_aes_gcm_256->iv, 397 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 398 TLS_CIPHER_AES_GCM_256_IV_SIZE); 399 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq, 400 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 401 release_sock(sk); 402 if (copy_to_user(optval, 403 crypto_info_aes_gcm_256, 404 sizeof(*crypto_info_aes_gcm_256))) 405 rc = -EFAULT; 406 break; 407 } 408 default: 409 rc = -EINVAL; 410 } 411 412 out: 413 return rc; 414 } 415 416 static int do_tls_getsockopt(struct sock *sk, int optname, 417 char __user *optval, int __user *optlen) 418 { 419 int rc = 0; 420 421 switch (optname) { 422 case TLS_TX: 423 rc = do_tls_getsockopt_tx(sk, optval, optlen); 424 break; 425 default: 426 rc = -ENOPROTOOPT; 427 break; 428 } 429 return rc; 430 } 431 432 static int tls_getsockopt(struct sock *sk, int level, int optname, 433 char __user *optval, int __user *optlen) 434 { 435 struct tls_context *ctx = tls_get_ctx(sk); 436 437 if (level != SOL_TLS) 438 return ctx->getsockopt(sk, level, optname, optval, optlen); 439 440 return do_tls_getsockopt(sk, optname, optval, optlen); 441 } 442 443 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval, 444 unsigned int optlen, int tx) 445 { 446 struct tls_crypto_info *crypto_info; 447 struct tls_crypto_info *alt_crypto_info; 448 struct tls_context *ctx = tls_get_ctx(sk); 449 size_t optsize; 450 int rc = 0; 451 int conf; 452 453 if (!optval || (optlen < sizeof(*crypto_info))) { 454 rc = -EINVAL; 455 goto out; 456 } 457 458 if (tx) { 459 crypto_info = &ctx->crypto_send.info; 460 alt_crypto_info = &ctx->crypto_recv.info; 461 } else { 462 crypto_info = &ctx->crypto_recv.info; 463 alt_crypto_info = &ctx->crypto_send.info; 464 } 465 466 /* Currently we don't support set crypto info more than one time */ 467 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 468 rc = -EBUSY; 469 goto out; 470 } 471 472 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); 473 if (rc) { 474 rc = -EFAULT; 475 goto err_crypto_info; 476 } 477 478 /* check version */ 479 if (crypto_info->version != TLS_1_2_VERSION && 480 crypto_info->version != TLS_1_3_VERSION) { 481 rc = -ENOTSUPP; 482 goto err_crypto_info; 483 } 484 485 /* Ensure that TLS version and ciphers are same in both directions */ 486 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 487 if (alt_crypto_info->version != crypto_info->version || 488 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 489 rc = -EINVAL; 490 goto err_crypto_info; 491 } 492 } 493 494 switch (crypto_info->cipher_type) { 495 case TLS_CIPHER_AES_GCM_128: 496 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 497 break; 498 case TLS_CIPHER_AES_GCM_256: { 499 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 500 break; 501 } 502 case TLS_CIPHER_AES_CCM_128: 503 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 504 break; 505 default: 506 rc = -EINVAL; 507 goto err_crypto_info; 508 } 509 510 if (optlen != optsize) { 511 rc = -EINVAL; 512 goto err_crypto_info; 513 } 514 515 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), 516 optlen - sizeof(*crypto_info)); 517 if (rc) { 518 rc = -EFAULT; 519 goto err_crypto_info; 520 } 521 522 if (tx) { 523 #ifdef CONFIG_TLS_DEVICE 524 rc = tls_set_device_offload(sk, ctx); 525 conf = TLS_HW; 526 if (rc) { 527 #else 528 { 529 #endif 530 rc = tls_set_sw_offload(sk, ctx, 1); 531 conf = TLS_SW; 532 } 533 } else { 534 #ifdef CONFIG_TLS_DEVICE 535 rc = tls_set_device_offload_rx(sk, ctx); 536 conf = TLS_HW; 537 if (rc) { 538 #else 539 { 540 #endif 541 rc = tls_set_sw_offload(sk, ctx, 0); 542 conf = TLS_SW; 543 } 544 } 545 546 if (rc) 547 goto err_crypto_info; 548 549 if (tx) 550 ctx->tx_conf = conf; 551 else 552 ctx->rx_conf = conf; 553 update_sk_prot(sk, ctx); 554 if (tx) { 555 ctx->sk_write_space = sk->sk_write_space; 556 sk->sk_write_space = tls_write_space; 557 } else { 558 sk->sk_socket->ops = &tls_sw_proto_ops; 559 } 560 goto out; 561 562 err_crypto_info: 563 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 564 out: 565 return rc; 566 } 567 568 static int do_tls_setsockopt(struct sock *sk, int optname, 569 char __user *optval, unsigned int optlen) 570 { 571 int rc = 0; 572 573 switch (optname) { 574 case TLS_TX: 575 case TLS_RX: 576 lock_sock(sk); 577 rc = do_tls_setsockopt_conf(sk, optval, optlen, 578 optname == TLS_TX); 579 release_sock(sk); 580 break; 581 default: 582 rc = -ENOPROTOOPT; 583 break; 584 } 585 return rc; 586 } 587 588 static int tls_setsockopt(struct sock *sk, int level, int optname, 589 char __user *optval, unsigned int optlen) 590 { 591 struct tls_context *ctx = tls_get_ctx(sk); 592 593 if (level != SOL_TLS) 594 return ctx->setsockopt(sk, level, optname, optval, optlen); 595 596 return do_tls_setsockopt(sk, optname, optval, optlen); 597 } 598 599 static struct tls_context *create_ctx(struct sock *sk) 600 { 601 struct inet_connection_sock *icsk = inet_csk(sk); 602 struct tls_context *ctx; 603 604 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 605 if (!ctx) 606 return NULL; 607 608 icsk->icsk_ulp_data = ctx; 609 ctx->setsockopt = sk->sk_prot->setsockopt; 610 ctx->getsockopt = sk->sk_prot->getsockopt; 611 ctx->sk_proto_close = sk->sk_prot->close; 612 return ctx; 613 } 614 615 static void tls_build_proto(struct sock *sk) 616 { 617 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 618 619 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 620 if (ip_ver == TLSV6 && 621 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { 622 mutex_lock(&tcpv6_prot_mutex); 623 if (likely(sk->sk_prot != saved_tcpv6_prot)) { 624 build_protos(tls_prots[TLSV6], sk->sk_prot); 625 smp_store_release(&saved_tcpv6_prot, sk->sk_prot); 626 } 627 mutex_unlock(&tcpv6_prot_mutex); 628 } 629 630 if (ip_ver == TLSV4 && 631 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) { 632 mutex_lock(&tcpv4_prot_mutex); 633 if (likely(sk->sk_prot != saved_tcpv4_prot)) { 634 build_protos(tls_prots[TLSV4], sk->sk_prot); 635 smp_store_release(&saved_tcpv4_prot, sk->sk_prot); 636 } 637 mutex_unlock(&tcpv4_prot_mutex); 638 } 639 } 640 641 static void tls_hw_sk_destruct(struct sock *sk) 642 { 643 struct tls_context *ctx = tls_get_ctx(sk); 644 struct inet_connection_sock *icsk = inet_csk(sk); 645 646 ctx->sk_destruct(sk); 647 /* Free ctx */ 648 kfree(ctx); 649 icsk->icsk_ulp_data = NULL; 650 } 651 652 static int tls_hw_prot(struct sock *sk) 653 { 654 struct tls_context *ctx; 655 struct tls_device *dev; 656 int rc = 0; 657 658 spin_lock_bh(&device_spinlock); 659 list_for_each_entry(dev, &device_list, dev_list) { 660 if (dev->feature && dev->feature(dev)) { 661 ctx = create_ctx(sk); 662 if (!ctx) 663 goto out; 664 665 spin_unlock_bh(&device_spinlock); 666 tls_build_proto(sk); 667 ctx->hash = sk->sk_prot->hash; 668 ctx->unhash = sk->sk_prot->unhash; 669 ctx->sk_proto_close = sk->sk_prot->close; 670 ctx->sk_destruct = sk->sk_destruct; 671 sk->sk_destruct = tls_hw_sk_destruct; 672 ctx->rx_conf = TLS_HW_RECORD; 673 ctx->tx_conf = TLS_HW_RECORD; 674 update_sk_prot(sk, ctx); 675 spin_lock_bh(&device_spinlock); 676 rc = 1; 677 break; 678 } 679 } 680 out: 681 spin_unlock_bh(&device_spinlock); 682 return rc; 683 } 684 685 static void tls_hw_unhash(struct sock *sk) 686 { 687 struct tls_context *ctx = tls_get_ctx(sk); 688 struct tls_device *dev; 689 690 spin_lock_bh(&device_spinlock); 691 list_for_each_entry(dev, &device_list, dev_list) { 692 if (dev->unhash) { 693 kref_get(&dev->kref); 694 spin_unlock_bh(&device_spinlock); 695 dev->unhash(dev, sk); 696 kref_put(&dev->kref, dev->release); 697 spin_lock_bh(&device_spinlock); 698 } 699 } 700 spin_unlock_bh(&device_spinlock); 701 ctx->unhash(sk); 702 } 703 704 static int tls_hw_hash(struct sock *sk) 705 { 706 struct tls_context *ctx = tls_get_ctx(sk); 707 struct tls_device *dev; 708 int err; 709 710 err = ctx->hash(sk); 711 spin_lock_bh(&device_spinlock); 712 list_for_each_entry(dev, &device_list, dev_list) { 713 if (dev->hash) { 714 kref_get(&dev->kref); 715 spin_unlock_bh(&device_spinlock); 716 err |= dev->hash(dev, sk); 717 kref_put(&dev->kref, dev->release); 718 spin_lock_bh(&device_spinlock); 719 } 720 } 721 spin_unlock_bh(&device_spinlock); 722 723 if (err) 724 tls_hw_unhash(sk); 725 return err; 726 } 727 728 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 729 struct proto *base) 730 { 731 prot[TLS_BASE][TLS_BASE] = *base; 732 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 733 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 734 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 735 736 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 737 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 738 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 739 740 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 741 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 742 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read; 743 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 744 745 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 746 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 747 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read; 748 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 749 750 #ifdef CONFIG_TLS_DEVICE 751 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 752 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 753 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 754 755 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 756 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 757 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 758 759 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 760 761 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 762 763 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 764 #endif 765 766 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 767 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash; 768 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash; 769 prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close; 770 } 771 772 static int tls_init(struct sock *sk) 773 { 774 struct tls_context *ctx; 775 int rc = 0; 776 777 if (tls_hw_prot(sk)) 778 goto out; 779 780 /* The TLS ulp is currently supported only for TCP sockets 781 * in ESTABLISHED state. 782 * Supporting sockets in LISTEN state will require us 783 * to modify the accept implementation to clone rather then 784 * share the ulp context. 785 */ 786 if (sk->sk_state != TCP_ESTABLISHED) 787 return -ENOTSUPP; 788 789 /* allocate tls context */ 790 ctx = create_ctx(sk); 791 if (!ctx) { 792 rc = -ENOMEM; 793 goto out; 794 } 795 796 tls_build_proto(sk); 797 ctx->tx_conf = TLS_BASE; 798 ctx->rx_conf = TLS_BASE; 799 update_sk_prot(sk, ctx); 800 out: 801 return rc; 802 } 803 804 void tls_register_device(struct tls_device *device) 805 { 806 spin_lock_bh(&device_spinlock); 807 list_add_tail(&device->dev_list, &device_list); 808 spin_unlock_bh(&device_spinlock); 809 } 810 EXPORT_SYMBOL(tls_register_device); 811 812 void tls_unregister_device(struct tls_device *device) 813 { 814 spin_lock_bh(&device_spinlock); 815 list_del(&device->dev_list); 816 spin_unlock_bh(&device_spinlock); 817 } 818 EXPORT_SYMBOL(tls_unregister_device); 819 820 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 821 .name = "tls", 822 .owner = THIS_MODULE, 823 .init = tls_init, 824 }; 825 826 static int __init tls_register(void) 827 { 828 tls_sw_proto_ops = inet_stream_ops; 829 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 830 831 #ifdef CONFIG_TLS_DEVICE 832 tls_device_init(); 833 #endif 834 tcp_register_ulp(&tcp_tls_ulp_ops); 835 836 return 0; 837 } 838 839 static void __exit tls_unregister(void) 840 { 841 tcp_unregister_ulp(&tcp_tls_ulp_ops); 842 #ifdef CONFIG_TLS_DEVICE 843 tls_device_cleanup(); 844 #endif 845 } 846 847 module_init(tls_register); 848 module_exit(tls_unregister); 849