1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 43 #include <net/tls.h> 44 45 MODULE_AUTHOR("Mellanox Technologies"); 46 MODULE_DESCRIPTION("Transport Layer Security Support"); 47 MODULE_LICENSE("Dual BSD/GPL"); 48 MODULE_ALIAS_TCP_ULP("tls"); 49 50 enum { 51 TLSV4, 52 TLSV6, 53 TLS_NUM_PROTS, 54 }; 55 56 static struct proto *saved_tcpv6_prot; 57 static DEFINE_MUTEX(tcpv6_prot_mutex); 58 static LIST_HEAD(device_list); 59 static DEFINE_MUTEX(device_mutex); 60 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 61 static struct proto_ops tls_sw_proto_ops; 62 63 static void update_sk_prot(struct sock *sk, struct tls_context *ctx) 64 { 65 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 66 67 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]; 68 } 69 70 int wait_on_pending_writer(struct sock *sk, long *timeo) 71 { 72 int rc = 0; 73 DEFINE_WAIT_FUNC(wait, woken_wake_function); 74 75 add_wait_queue(sk_sleep(sk), &wait); 76 while (1) { 77 if (!*timeo) { 78 rc = -EAGAIN; 79 break; 80 } 81 82 if (signal_pending(current)) { 83 rc = sock_intr_errno(*timeo); 84 break; 85 } 86 87 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 88 break; 89 } 90 remove_wait_queue(sk_sleep(sk), &wait); 91 return rc; 92 } 93 94 int tls_push_sg(struct sock *sk, 95 struct tls_context *ctx, 96 struct scatterlist *sg, 97 u16 first_offset, 98 int flags) 99 { 100 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 101 int ret = 0; 102 struct page *p; 103 size_t size; 104 int offset = first_offset; 105 106 size = sg->length - offset; 107 offset += sg->offset; 108 109 ctx->in_tcp_sendpages = true; 110 while (1) { 111 if (sg_is_last(sg)) 112 sendpage_flags = flags; 113 114 /* is sending application-limited? */ 115 tcp_rate_check_app_limited(sk); 116 p = sg_page(sg); 117 retry: 118 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 119 120 if (ret != size) { 121 if (ret > 0) { 122 offset += ret; 123 size -= ret; 124 goto retry; 125 } 126 127 offset -= sg->offset; 128 ctx->partially_sent_offset = offset; 129 ctx->partially_sent_record = (void *)sg; 130 ctx->in_tcp_sendpages = false; 131 return ret; 132 } 133 134 put_page(p); 135 sk_mem_uncharge(sk, sg->length); 136 sg = sg_next(sg); 137 if (!sg) 138 break; 139 140 offset = sg->offset; 141 size = sg->length; 142 } 143 144 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags); 145 ctx->in_tcp_sendpages = false; 146 ctx->sk_write_space(sk); 147 148 return 0; 149 } 150 151 static int tls_handle_open_record(struct sock *sk, int flags) 152 { 153 struct tls_context *ctx = tls_get_ctx(sk); 154 155 if (tls_is_pending_open_record(ctx)) 156 return ctx->push_pending_record(sk, flags); 157 158 return 0; 159 } 160 161 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 162 unsigned char *record_type) 163 { 164 struct cmsghdr *cmsg; 165 int rc = -EINVAL; 166 167 for_each_cmsghdr(cmsg, msg) { 168 if (!CMSG_OK(msg, cmsg)) 169 return -EINVAL; 170 if (cmsg->cmsg_level != SOL_TLS) 171 continue; 172 173 switch (cmsg->cmsg_type) { 174 case TLS_SET_RECORD_TYPE: 175 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 176 return -EINVAL; 177 178 if (msg->msg_flags & MSG_MORE) 179 return -EINVAL; 180 181 rc = tls_handle_open_record(sk, msg->msg_flags); 182 if (rc) 183 return rc; 184 185 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 186 rc = 0; 187 break; 188 default: 189 return -EINVAL; 190 } 191 } 192 193 return rc; 194 } 195 196 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx, 197 int flags, long *timeo) 198 { 199 struct scatterlist *sg; 200 u16 offset; 201 202 if (!tls_is_partially_sent_record(ctx)) 203 return ctx->push_pending_record(sk, flags); 204 205 sg = ctx->partially_sent_record; 206 offset = ctx->partially_sent_offset; 207 208 ctx->partially_sent_record = NULL; 209 return tls_push_sg(sk, ctx, sg, offset, flags); 210 } 211 212 static void tls_write_space(struct sock *sk) 213 { 214 struct tls_context *ctx = tls_get_ctx(sk); 215 216 /* We are already sending pages, ignore notification */ 217 if (ctx->in_tcp_sendpages) 218 return; 219 220 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) { 221 gfp_t sk_allocation = sk->sk_allocation; 222 int rc; 223 long timeo = 0; 224 225 sk->sk_allocation = GFP_ATOMIC; 226 rc = tls_push_pending_closed_record(sk, ctx, 227 MSG_DONTWAIT | 228 MSG_NOSIGNAL, 229 &timeo); 230 sk->sk_allocation = sk_allocation; 231 232 if (rc < 0) 233 return; 234 } 235 236 ctx->sk_write_space(sk); 237 } 238 239 static void tls_sk_proto_close(struct sock *sk, long timeout) 240 { 241 struct tls_context *ctx = tls_get_ctx(sk); 242 long timeo = sock_sndtimeo(sk, 0); 243 void (*sk_proto_close)(struct sock *sk, long timeout); 244 bool free_ctx = false; 245 246 lock_sock(sk); 247 sk_proto_close = ctx->sk_proto_close; 248 249 if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) || 250 (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) { 251 free_ctx = true; 252 goto skip_tx_cleanup; 253 } 254 255 if (!tls_complete_pending_work(sk, ctx, 0, &timeo)) 256 tls_handle_open_record(sk, 0); 257 258 if (ctx->partially_sent_record) { 259 struct scatterlist *sg = ctx->partially_sent_record; 260 261 while (1) { 262 put_page(sg_page(sg)); 263 sk_mem_uncharge(sk, sg->length); 264 265 if (sg_is_last(sg)) 266 break; 267 sg++; 268 } 269 } 270 271 /* We need these for tls_sw_fallback handling of other packets */ 272 if (ctx->tx_conf == TLS_SW) { 273 kfree(ctx->tx.rec_seq); 274 kfree(ctx->tx.iv); 275 tls_sw_free_resources_tx(sk); 276 } 277 278 if (ctx->rx_conf == TLS_SW) { 279 kfree(ctx->rx.rec_seq); 280 kfree(ctx->rx.iv); 281 tls_sw_free_resources_rx(sk); 282 } 283 284 #ifdef CONFIG_TLS_DEVICE 285 if (ctx->rx_conf == TLS_HW) 286 tls_device_offload_cleanup_rx(sk); 287 288 if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) { 289 #else 290 { 291 #endif 292 kfree(ctx); 293 ctx = NULL; 294 } 295 296 skip_tx_cleanup: 297 release_sock(sk); 298 sk_proto_close(sk, timeout); 299 /* free ctx for TLS_HW_RECORD, used by tcp_set_state 300 * for sk->sk_prot->unhash [tls_hw_unhash] 301 */ 302 if (free_ctx) 303 kfree(ctx); 304 } 305 306 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, 307 int __user *optlen) 308 { 309 int rc = 0; 310 struct tls_context *ctx = tls_get_ctx(sk); 311 struct tls_crypto_info *crypto_info; 312 int len; 313 314 if (get_user(len, optlen)) 315 return -EFAULT; 316 317 if (!optval || (len < sizeof(*crypto_info))) { 318 rc = -EINVAL; 319 goto out; 320 } 321 322 if (!ctx) { 323 rc = -EBUSY; 324 goto out; 325 } 326 327 /* get user crypto info */ 328 crypto_info = &ctx->crypto_send; 329 330 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 331 rc = -EBUSY; 332 goto out; 333 } 334 335 if (len == sizeof(*crypto_info)) { 336 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 337 rc = -EFAULT; 338 goto out; 339 } 340 341 switch (crypto_info->cipher_type) { 342 case TLS_CIPHER_AES_GCM_128: { 343 struct tls12_crypto_info_aes_gcm_128 * 344 crypto_info_aes_gcm_128 = 345 container_of(crypto_info, 346 struct tls12_crypto_info_aes_gcm_128, 347 info); 348 349 if (len != sizeof(*crypto_info_aes_gcm_128)) { 350 rc = -EINVAL; 351 goto out; 352 } 353 lock_sock(sk); 354 memcpy(crypto_info_aes_gcm_128->iv, 355 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 356 TLS_CIPHER_AES_GCM_128_IV_SIZE); 357 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, 358 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 359 release_sock(sk); 360 if (copy_to_user(optval, 361 crypto_info_aes_gcm_128, 362 sizeof(*crypto_info_aes_gcm_128))) 363 rc = -EFAULT; 364 break; 365 } 366 default: 367 rc = -EINVAL; 368 } 369 370 out: 371 return rc; 372 } 373 374 static int do_tls_getsockopt(struct sock *sk, int optname, 375 char __user *optval, int __user *optlen) 376 { 377 int rc = 0; 378 379 switch (optname) { 380 case TLS_TX: 381 rc = do_tls_getsockopt_tx(sk, optval, optlen); 382 break; 383 default: 384 rc = -ENOPROTOOPT; 385 break; 386 } 387 return rc; 388 } 389 390 static int tls_getsockopt(struct sock *sk, int level, int optname, 391 char __user *optval, int __user *optlen) 392 { 393 struct tls_context *ctx = tls_get_ctx(sk); 394 395 if (level != SOL_TLS) 396 return ctx->getsockopt(sk, level, optname, optval, optlen); 397 398 return do_tls_getsockopt(sk, optname, optval, optlen); 399 } 400 401 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval, 402 unsigned int optlen, int tx) 403 { 404 struct tls_crypto_info *crypto_info; 405 struct tls_context *ctx = tls_get_ctx(sk); 406 int rc = 0; 407 int conf; 408 409 if (!optval || (optlen < sizeof(*crypto_info))) { 410 rc = -EINVAL; 411 goto out; 412 } 413 414 if (tx) 415 crypto_info = &ctx->crypto_send; 416 else 417 crypto_info = &ctx->crypto_recv; 418 419 /* Currently we don't support set crypto info more than one time */ 420 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 421 rc = -EBUSY; 422 goto out; 423 } 424 425 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); 426 if (rc) { 427 rc = -EFAULT; 428 goto err_crypto_info; 429 } 430 431 /* check version */ 432 if (crypto_info->version != TLS_1_2_VERSION) { 433 rc = -ENOTSUPP; 434 goto err_crypto_info; 435 } 436 437 switch (crypto_info->cipher_type) { 438 case TLS_CIPHER_AES_GCM_128: { 439 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) { 440 rc = -EINVAL; 441 goto err_crypto_info; 442 } 443 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), 444 optlen - sizeof(*crypto_info)); 445 if (rc) { 446 rc = -EFAULT; 447 goto err_crypto_info; 448 } 449 break; 450 } 451 default: 452 rc = -EINVAL; 453 goto err_crypto_info; 454 } 455 456 if (tx) { 457 #ifdef CONFIG_TLS_DEVICE 458 rc = tls_set_device_offload(sk, ctx); 459 conf = TLS_HW; 460 if (rc) { 461 #else 462 { 463 #endif 464 rc = tls_set_sw_offload(sk, ctx, 1); 465 conf = TLS_SW; 466 } 467 } else { 468 #ifdef CONFIG_TLS_DEVICE 469 rc = tls_set_device_offload_rx(sk, ctx); 470 conf = TLS_HW; 471 if (rc) { 472 #else 473 { 474 #endif 475 rc = tls_set_sw_offload(sk, ctx, 0); 476 conf = TLS_SW; 477 } 478 } 479 480 if (rc) 481 goto err_crypto_info; 482 483 if (tx) 484 ctx->tx_conf = conf; 485 else 486 ctx->rx_conf = conf; 487 update_sk_prot(sk, ctx); 488 if (tx) { 489 ctx->sk_write_space = sk->sk_write_space; 490 sk->sk_write_space = tls_write_space; 491 } else { 492 sk->sk_socket->ops = &tls_sw_proto_ops; 493 } 494 goto out; 495 496 err_crypto_info: 497 memset(crypto_info, 0, sizeof(*crypto_info)); 498 out: 499 return rc; 500 } 501 502 static int do_tls_setsockopt(struct sock *sk, int optname, 503 char __user *optval, unsigned int optlen) 504 { 505 int rc = 0; 506 507 switch (optname) { 508 case TLS_TX: 509 case TLS_RX: 510 lock_sock(sk); 511 rc = do_tls_setsockopt_conf(sk, optval, optlen, 512 optname == TLS_TX); 513 release_sock(sk); 514 break; 515 default: 516 rc = -ENOPROTOOPT; 517 break; 518 } 519 return rc; 520 } 521 522 static int tls_setsockopt(struct sock *sk, int level, int optname, 523 char __user *optval, unsigned int optlen) 524 { 525 struct tls_context *ctx = tls_get_ctx(sk); 526 527 if (level != SOL_TLS) 528 return ctx->setsockopt(sk, level, optname, optval, optlen); 529 530 return do_tls_setsockopt(sk, optname, optval, optlen); 531 } 532 533 static struct tls_context *create_ctx(struct sock *sk) 534 { 535 struct inet_connection_sock *icsk = inet_csk(sk); 536 struct tls_context *ctx; 537 538 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 539 if (!ctx) 540 return NULL; 541 542 icsk->icsk_ulp_data = ctx; 543 return ctx; 544 } 545 546 static int tls_hw_prot(struct sock *sk) 547 { 548 struct tls_context *ctx; 549 struct tls_device *dev; 550 int rc = 0; 551 552 mutex_lock(&device_mutex); 553 list_for_each_entry(dev, &device_list, dev_list) { 554 if (dev->feature && dev->feature(dev)) { 555 ctx = create_ctx(sk); 556 if (!ctx) 557 goto out; 558 559 ctx->hash = sk->sk_prot->hash; 560 ctx->unhash = sk->sk_prot->unhash; 561 ctx->sk_proto_close = sk->sk_prot->close; 562 ctx->rx_conf = TLS_HW_RECORD; 563 ctx->tx_conf = TLS_HW_RECORD; 564 update_sk_prot(sk, ctx); 565 rc = 1; 566 break; 567 } 568 } 569 out: 570 mutex_unlock(&device_mutex); 571 return rc; 572 } 573 574 static void tls_hw_unhash(struct sock *sk) 575 { 576 struct tls_context *ctx = tls_get_ctx(sk); 577 struct tls_device *dev; 578 579 mutex_lock(&device_mutex); 580 list_for_each_entry(dev, &device_list, dev_list) { 581 if (dev->unhash) 582 dev->unhash(dev, sk); 583 } 584 mutex_unlock(&device_mutex); 585 ctx->unhash(sk); 586 } 587 588 static int tls_hw_hash(struct sock *sk) 589 { 590 struct tls_context *ctx = tls_get_ctx(sk); 591 struct tls_device *dev; 592 int err; 593 594 err = ctx->hash(sk); 595 mutex_lock(&device_mutex); 596 list_for_each_entry(dev, &device_list, dev_list) { 597 if (dev->hash) 598 err |= dev->hash(dev, sk); 599 } 600 mutex_unlock(&device_mutex); 601 602 if (err) 603 tls_hw_unhash(sk); 604 return err; 605 } 606 607 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 608 struct proto *base) 609 { 610 prot[TLS_BASE][TLS_BASE] = *base; 611 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 612 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 613 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 614 615 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 616 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 617 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 618 619 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 620 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 621 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 622 623 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 624 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 625 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 626 627 #ifdef CONFIG_TLS_DEVICE 628 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 629 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 630 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 631 632 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 633 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 634 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 635 636 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 637 638 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 639 640 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 641 #endif 642 643 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 644 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash; 645 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash; 646 prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close; 647 } 648 649 static int tls_init(struct sock *sk) 650 { 651 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 652 struct tls_context *ctx; 653 int rc = 0; 654 655 if (tls_hw_prot(sk)) 656 goto out; 657 658 /* The TLS ulp is currently supported only for TCP sockets 659 * in ESTABLISHED state. 660 * Supporting sockets in LISTEN state will require us 661 * to modify the accept implementation to clone rather then 662 * share the ulp context. 663 */ 664 if (sk->sk_state != TCP_ESTABLISHED) 665 return -ENOTSUPP; 666 667 /* allocate tls context */ 668 ctx = create_ctx(sk); 669 if (!ctx) { 670 rc = -ENOMEM; 671 goto out; 672 } 673 ctx->setsockopt = sk->sk_prot->setsockopt; 674 ctx->getsockopt = sk->sk_prot->getsockopt; 675 ctx->sk_proto_close = sk->sk_prot->close; 676 677 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 678 if (ip_ver == TLSV6 && 679 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { 680 mutex_lock(&tcpv6_prot_mutex); 681 if (likely(sk->sk_prot != saved_tcpv6_prot)) { 682 build_protos(tls_prots[TLSV6], sk->sk_prot); 683 smp_store_release(&saved_tcpv6_prot, sk->sk_prot); 684 } 685 mutex_unlock(&tcpv6_prot_mutex); 686 } 687 688 ctx->tx_conf = TLS_BASE; 689 ctx->rx_conf = TLS_BASE; 690 update_sk_prot(sk, ctx); 691 out: 692 return rc; 693 } 694 695 void tls_register_device(struct tls_device *device) 696 { 697 mutex_lock(&device_mutex); 698 list_add_tail(&device->dev_list, &device_list); 699 mutex_unlock(&device_mutex); 700 } 701 EXPORT_SYMBOL(tls_register_device); 702 703 void tls_unregister_device(struct tls_device *device) 704 { 705 mutex_lock(&device_mutex); 706 list_del(&device->dev_list); 707 mutex_unlock(&device_mutex); 708 } 709 EXPORT_SYMBOL(tls_unregister_device); 710 711 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 712 .name = "tls", 713 .uid = TCP_ULP_TLS, 714 .user_visible = true, 715 .owner = THIS_MODULE, 716 .init = tls_init, 717 }; 718 719 static int __init tls_register(void) 720 { 721 build_protos(tls_prots[TLSV4], &tcp_prot); 722 723 tls_sw_proto_ops = inet_stream_ops; 724 tls_sw_proto_ops.poll = tls_sw_poll; 725 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 726 727 #ifdef CONFIG_TLS_DEVICE 728 tls_device_init(); 729 #endif 730 tcp_register_ulp(&tcp_tls_ulp_ops); 731 732 return 0; 733 } 734 735 static void __exit tls_unregister(void) 736 { 737 tcp_unregister_ulp(&tcp_tls_ulp_ops); 738 #ifdef CONFIG_TLS_DEVICE 739 tls_device_cleanup(); 740 #endif 741 } 742 743 module_init(tls_register); 744 module_exit(tls_unregister); 745