xref: /openbmc/linux/net/tls/tls_main.c (revision 2a24da4cf6753ee4c1f5b9e16d526a4a115e8562)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43 
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47 
48 #include "tls.h"
49 
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54 
55 enum {
56 	TLSV4,
57 	TLSV6,
58 	TLS_NUM_PROTS,
59 };
60 
61 #define CHECK_CIPHER_DESC(cipher,ci)				\
62 	static_assert(cipher ## _IV_SIZE <= MAX_IV_SIZE);		\
63 	static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE);	\
64 	static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE);		\
65 	static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE);	\
66 	static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE);	\
67 	static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE);	\
68 	static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
69 
70 #define __CIPHER_DESC(ci) \
71 	.iv_offset = offsetof(struct ci, iv), \
72 	.key_offset = offsetof(struct ci, key), \
73 	.salt_offset = offsetof(struct ci, salt), \
74 	.rec_seq_offset = offsetof(struct ci, rec_seq), \
75 	.crypto_info = sizeof(struct ci)
76 
77 #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = {	\
78 	.nonce = cipher ## _IV_SIZE, \
79 	.iv = cipher ## _IV_SIZE, \
80 	.key = cipher ## _KEY_SIZE, \
81 	.salt = cipher ## _SALT_SIZE, \
82 	.tag = cipher ## _TAG_SIZE, \
83 	.rec_seq = cipher ## _REC_SEQ_SIZE, \
84 	.cipher_name = algname,	\
85 	.offloadable = _offloadable, \
86 	__CIPHER_DESC(ci), \
87 }
88 
89 #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
90 	.nonce = 0, \
91 	.iv = cipher ## _IV_SIZE, \
92 	.key = cipher ## _KEY_SIZE, \
93 	.salt = cipher ## _SALT_SIZE, \
94 	.tag = cipher ## _TAG_SIZE, \
95 	.rec_seq = cipher ## _REC_SEQ_SIZE, \
96 	.cipher_name = algname,	\
97 	.offloadable = _offloadable, \
98 	__CIPHER_DESC(ci), \
99 }
100 
101 const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
102 	CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
103 	CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
104 	CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
105 	CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
106 	CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
107 	CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
108 	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
109 	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
110 };
111 
112 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
113 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
114 CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
115 CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
116 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
117 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
118 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
119 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
120 
121 static const struct proto *saved_tcpv6_prot;
122 static DEFINE_MUTEX(tcpv6_prot_mutex);
123 static const struct proto *saved_tcpv4_prot;
124 static DEFINE_MUTEX(tcpv4_prot_mutex);
125 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
126 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
128 			 const struct proto *base);
129 
130 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
131 {
132 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
133 
134 	WRITE_ONCE(sk->sk_prot,
135 		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
136 	WRITE_ONCE(sk->sk_socket->ops,
137 		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
138 }
139 
140 int wait_on_pending_writer(struct sock *sk, long *timeo)
141 {
142 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
143 	int ret, rc = 0;
144 
145 	add_wait_queue(sk_sleep(sk), &wait);
146 	while (1) {
147 		if (!*timeo) {
148 			rc = -EAGAIN;
149 			break;
150 		}
151 
152 		if (signal_pending(current)) {
153 			rc = sock_intr_errno(*timeo);
154 			break;
155 		}
156 
157 		ret = sk_wait_event(sk, timeo,
158 				    !READ_ONCE(sk->sk_write_pending), &wait);
159 		if (ret) {
160 			if (ret < 0)
161 				rc = ret;
162 			break;
163 		}
164 	}
165 	remove_wait_queue(sk_sleep(sk), &wait);
166 	return rc;
167 }
168 
169 int tls_push_sg(struct sock *sk,
170 		struct tls_context *ctx,
171 		struct scatterlist *sg,
172 		u16 first_offset,
173 		int flags)
174 {
175 	struct bio_vec bvec;
176 	struct msghdr msg = {
177 		.msg_flags = MSG_SPLICE_PAGES | flags,
178 	};
179 	int ret = 0;
180 	struct page *p;
181 	size_t size;
182 	int offset = first_offset;
183 
184 	size = sg->length - offset;
185 	offset += sg->offset;
186 
187 	ctx->splicing_pages = true;
188 	while (1) {
189 		/* is sending application-limited? */
190 		tcp_rate_check_app_limited(sk);
191 		p = sg_page(sg);
192 retry:
193 		bvec_set_page(&bvec, p, size, offset);
194 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
195 
196 		ret = tcp_sendmsg_locked(sk, &msg, size);
197 
198 		if (ret != size) {
199 			if (ret > 0) {
200 				offset += ret;
201 				size -= ret;
202 				goto retry;
203 			}
204 
205 			offset -= sg->offset;
206 			ctx->partially_sent_offset = offset;
207 			ctx->partially_sent_record = (void *)sg;
208 			ctx->splicing_pages = false;
209 			return ret;
210 		}
211 
212 		put_page(p);
213 		sk_mem_uncharge(sk, sg->length);
214 		sg = sg_next(sg);
215 		if (!sg)
216 			break;
217 
218 		offset = sg->offset;
219 		size = sg->length;
220 	}
221 
222 	ctx->splicing_pages = false;
223 
224 	return 0;
225 }
226 
227 static int tls_handle_open_record(struct sock *sk, int flags)
228 {
229 	struct tls_context *ctx = tls_get_ctx(sk);
230 
231 	if (tls_is_pending_open_record(ctx))
232 		return ctx->push_pending_record(sk, flags);
233 
234 	return 0;
235 }
236 
237 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
238 		     unsigned char *record_type)
239 {
240 	struct cmsghdr *cmsg;
241 	int rc = -EINVAL;
242 
243 	for_each_cmsghdr(cmsg, msg) {
244 		if (!CMSG_OK(msg, cmsg))
245 			return -EINVAL;
246 		if (cmsg->cmsg_level != SOL_TLS)
247 			continue;
248 
249 		switch (cmsg->cmsg_type) {
250 		case TLS_SET_RECORD_TYPE:
251 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
252 				return -EINVAL;
253 
254 			if (msg->msg_flags & MSG_MORE)
255 				return -EINVAL;
256 
257 			rc = tls_handle_open_record(sk, msg->msg_flags);
258 			if (rc)
259 				return rc;
260 
261 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
262 			rc = 0;
263 			break;
264 		default:
265 			return -EINVAL;
266 		}
267 	}
268 
269 	return rc;
270 }
271 
272 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
273 			    int flags)
274 {
275 	struct scatterlist *sg;
276 	u16 offset;
277 
278 	sg = ctx->partially_sent_record;
279 	offset = ctx->partially_sent_offset;
280 
281 	ctx->partially_sent_record = NULL;
282 	return tls_push_sg(sk, ctx, sg, offset, flags);
283 }
284 
285 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
286 {
287 	struct scatterlist *sg;
288 
289 	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
290 		put_page(sg_page(sg));
291 		sk_mem_uncharge(sk, sg->length);
292 	}
293 	ctx->partially_sent_record = NULL;
294 }
295 
296 static void tls_write_space(struct sock *sk)
297 {
298 	struct tls_context *ctx = tls_get_ctx(sk);
299 
300 	/* If splicing_pages call lower protocol write space handler
301 	 * to ensure we wake up any waiting operations there. For example
302 	 * if splicing pages where to call sk_wait_event.
303 	 */
304 	if (ctx->splicing_pages) {
305 		ctx->sk_write_space(sk);
306 		return;
307 	}
308 
309 #ifdef CONFIG_TLS_DEVICE
310 	if (ctx->tx_conf == TLS_HW)
311 		tls_device_write_space(sk, ctx);
312 	else
313 #endif
314 		tls_sw_write_space(sk, ctx);
315 
316 	ctx->sk_write_space(sk);
317 }
318 
319 /**
320  * tls_ctx_free() - free TLS ULP context
321  * @sk:  socket to with @ctx is attached
322  * @ctx: TLS context structure
323  *
324  * Free TLS context. If @sk is %NULL caller guarantees that the socket
325  * to which @ctx was attached has no outstanding references.
326  */
327 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
328 {
329 	if (!ctx)
330 		return;
331 
332 	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
333 	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
334 	mutex_destroy(&ctx->tx_lock);
335 
336 	if (sk)
337 		kfree_rcu(ctx, rcu);
338 	else
339 		kfree(ctx);
340 }
341 
342 static void tls_sk_proto_cleanup(struct sock *sk,
343 				 struct tls_context *ctx, long timeo)
344 {
345 	if (unlikely(sk->sk_write_pending) &&
346 	    !wait_on_pending_writer(sk, &timeo))
347 		tls_handle_open_record(sk, 0);
348 
349 	/* We need these for tls_sw_fallback handling of other packets */
350 	if (ctx->tx_conf == TLS_SW) {
351 		kfree(ctx->tx.rec_seq);
352 		kfree(ctx->tx.iv);
353 		tls_sw_release_resources_tx(sk);
354 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
355 	} else if (ctx->tx_conf == TLS_HW) {
356 		tls_device_free_resources_tx(sk);
357 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
358 	}
359 
360 	if (ctx->rx_conf == TLS_SW) {
361 		tls_sw_release_resources_rx(sk);
362 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
363 	} else if (ctx->rx_conf == TLS_HW) {
364 		tls_device_offload_cleanup_rx(sk);
365 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
366 	}
367 }
368 
369 static void tls_sk_proto_close(struct sock *sk, long timeout)
370 {
371 	struct inet_connection_sock *icsk = inet_csk(sk);
372 	struct tls_context *ctx = tls_get_ctx(sk);
373 	long timeo = sock_sndtimeo(sk, 0);
374 	bool free_ctx;
375 
376 	if (ctx->tx_conf == TLS_SW)
377 		tls_sw_cancel_work_tx(ctx);
378 
379 	lock_sock(sk);
380 	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
381 
382 	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
383 		tls_sk_proto_cleanup(sk, ctx, timeo);
384 
385 	write_lock_bh(&sk->sk_callback_lock);
386 	if (free_ctx)
387 		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
388 	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
389 	if (sk->sk_write_space == tls_write_space)
390 		sk->sk_write_space = ctx->sk_write_space;
391 	write_unlock_bh(&sk->sk_callback_lock);
392 	release_sock(sk);
393 	if (ctx->tx_conf == TLS_SW)
394 		tls_sw_free_ctx_tx(ctx);
395 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
396 		tls_sw_strparser_done(ctx);
397 	if (ctx->rx_conf == TLS_SW)
398 		tls_sw_free_ctx_rx(ctx);
399 	ctx->sk_proto->close(sk, timeout);
400 
401 	if (free_ctx)
402 		tls_ctx_free(sk, ctx);
403 }
404 
405 static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
406 			    struct poll_table_struct *wait)
407 {
408 	struct tls_sw_context_rx *ctx;
409 	struct tls_context *tls_ctx;
410 	struct sock *sk = sock->sk;
411 	struct sk_psock *psock;
412 	__poll_t mask = 0;
413 	u8 shutdown;
414 	int state;
415 
416 	mask = tcp_poll(file, sock, wait);
417 
418 	state = inet_sk_state_load(sk);
419 	shutdown = READ_ONCE(sk->sk_shutdown);
420 	if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
421 		return mask;
422 
423 	tls_ctx = tls_get_ctx(sk);
424 	ctx = tls_sw_ctx_rx(tls_ctx);
425 	psock = sk_psock_get(sk);
426 
427 	if (skb_queue_empty_lockless(&ctx->rx_list) &&
428 	    !tls_strp_msg_ready(ctx) &&
429 	    sk_psock_queue_empty(psock))
430 		mask &= ~(EPOLLIN | EPOLLRDNORM);
431 
432 	if (psock)
433 		sk_psock_put(sk, psock);
434 
435 	return mask;
436 }
437 
438 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
439 				  int __user *optlen, int tx)
440 {
441 	int rc = 0;
442 	const struct tls_cipher_desc *cipher_desc;
443 	struct tls_context *ctx = tls_get_ctx(sk);
444 	struct tls_crypto_info *crypto_info;
445 	struct cipher_context *cctx;
446 	int len;
447 
448 	if (get_user(len, optlen))
449 		return -EFAULT;
450 
451 	if (!optval || (len < sizeof(*crypto_info))) {
452 		rc = -EINVAL;
453 		goto out;
454 	}
455 
456 	if (!ctx) {
457 		rc = -EBUSY;
458 		goto out;
459 	}
460 
461 	/* get user crypto info */
462 	if (tx) {
463 		crypto_info = &ctx->crypto_send.info;
464 		cctx = &ctx->tx;
465 	} else {
466 		crypto_info = &ctx->crypto_recv.info;
467 		cctx = &ctx->rx;
468 	}
469 
470 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
471 		rc = -EBUSY;
472 		goto out;
473 	}
474 
475 	if (len == sizeof(*crypto_info)) {
476 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
477 			rc = -EFAULT;
478 		goto out;
479 	}
480 
481 	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
482 	if (!cipher_desc || len != cipher_desc->crypto_info) {
483 		rc = -EINVAL;
484 		goto out;
485 	}
486 
487 	memcpy(crypto_info_iv(crypto_info, cipher_desc),
488 	       cctx->iv + cipher_desc->salt, cipher_desc->iv);
489 	memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
490 	       cctx->rec_seq, cipher_desc->rec_seq);
491 
492 	if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
493 		rc = -EFAULT;
494 
495 out:
496 	return rc;
497 }
498 
499 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
500 				   int __user *optlen)
501 {
502 	struct tls_context *ctx = tls_get_ctx(sk);
503 	unsigned int value;
504 	int len;
505 
506 	if (get_user(len, optlen))
507 		return -EFAULT;
508 
509 	if (len != sizeof(value))
510 		return -EINVAL;
511 
512 	value = ctx->zerocopy_sendfile;
513 	if (copy_to_user(optval, &value, sizeof(value)))
514 		return -EFAULT;
515 
516 	return 0;
517 }
518 
519 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
520 				    int __user *optlen)
521 {
522 	struct tls_context *ctx = tls_get_ctx(sk);
523 	int value, len;
524 
525 	if (ctx->prot_info.version != TLS_1_3_VERSION)
526 		return -EINVAL;
527 
528 	if (get_user(len, optlen))
529 		return -EFAULT;
530 	if (len < sizeof(value))
531 		return -EINVAL;
532 
533 	value = -EINVAL;
534 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
535 		value = ctx->rx_no_pad;
536 	if (value < 0)
537 		return value;
538 
539 	if (put_user(sizeof(value), optlen))
540 		return -EFAULT;
541 	if (copy_to_user(optval, &value, sizeof(value)))
542 		return -EFAULT;
543 
544 	return 0;
545 }
546 
547 static int do_tls_getsockopt(struct sock *sk, int optname,
548 			     char __user *optval, int __user *optlen)
549 {
550 	int rc = 0;
551 
552 	lock_sock(sk);
553 
554 	switch (optname) {
555 	case TLS_TX:
556 	case TLS_RX:
557 		rc = do_tls_getsockopt_conf(sk, optval, optlen,
558 					    optname == TLS_TX);
559 		break;
560 	case TLS_TX_ZEROCOPY_RO:
561 		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
562 		break;
563 	case TLS_RX_EXPECT_NO_PAD:
564 		rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
565 		break;
566 	default:
567 		rc = -ENOPROTOOPT;
568 		break;
569 	}
570 
571 	release_sock(sk);
572 
573 	return rc;
574 }
575 
576 static int tls_getsockopt(struct sock *sk, int level, int optname,
577 			  char __user *optval, int __user *optlen)
578 {
579 	struct tls_context *ctx = tls_get_ctx(sk);
580 
581 	if (level != SOL_TLS)
582 		return ctx->sk_proto->getsockopt(sk, level,
583 						 optname, optval, optlen);
584 
585 	return do_tls_getsockopt(sk, optname, optval, optlen);
586 }
587 
588 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
589 				  unsigned int optlen, int tx)
590 {
591 	struct tls_crypto_info *crypto_info;
592 	struct tls_crypto_info *alt_crypto_info;
593 	struct tls_context *ctx = tls_get_ctx(sk);
594 	const struct tls_cipher_desc *cipher_desc;
595 	int rc = 0;
596 	int conf;
597 
598 	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
599 		return -EINVAL;
600 
601 	if (tx) {
602 		crypto_info = &ctx->crypto_send.info;
603 		alt_crypto_info = &ctx->crypto_recv.info;
604 	} else {
605 		crypto_info = &ctx->crypto_recv.info;
606 		alt_crypto_info = &ctx->crypto_send.info;
607 	}
608 
609 	/* Currently we don't support set crypto info more than one time */
610 	if (TLS_CRYPTO_INFO_READY(crypto_info))
611 		return -EBUSY;
612 
613 	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
614 	if (rc) {
615 		rc = -EFAULT;
616 		goto err_crypto_info;
617 	}
618 
619 	/* check version */
620 	if (crypto_info->version != TLS_1_2_VERSION &&
621 	    crypto_info->version != TLS_1_3_VERSION) {
622 		rc = -EINVAL;
623 		goto err_crypto_info;
624 	}
625 
626 	/* Ensure that TLS version and ciphers are same in both directions */
627 	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
628 		if (alt_crypto_info->version != crypto_info->version ||
629 		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
630 			rc = -EINVAL;
631 			goto err_crypto_info;
632 		}
633 	}
634 
635 	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
636 	if (!cipher_desc) {
637 		rc = -EINVAL;
638 		goto err_crypto_info;
639 	}
640 
641 	switch (crypto_info->cipher_type) {
642 	case TLS_CIPHER_ARIA_GCM_128:
643 	case TLS_CIPHER_ARIA_GCM_256:
644 		if (crypto_info->version != TLS_1_2_VERSION) {
645 			rc = -EINVAL;
646 			goto err_crypto_info;
647 		}
648 		break;
649 	}
650 
651 	if (optlen != cipher_desc->crypto_info) {
652 		rc = -EINVAL;
653 		goto err_crypto_info;
654 	}
655 
656 	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
657 				      sizeof(*crypto_info),
658 				      optlen - sizeof(*crypto_info));
659 	if (rc) {
660 		rc = -EFAULT;
661 		goto err_crypto_info;
662 	}
663 
664 	if (tx) {
665 		rc = tls_set_device_offload(sk, ctx);
666 		conf = TLS_HW;
667 		if (!rc) {
668 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
669 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
670 		} else {
671 			rc = tls_set_sw_offload(sk, ctx, 1);
672 			if (rc)
673 				goto err_crypto_info;
674 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
675 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
676 			conf = TLS_SW;
677 		}
678 	} else {
679 		rc = tls_set_device_offload_rx(sk, ctx);
680 		conf = TLS_HW;
681 		if (!rc) {
682 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
683 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
684 		} else {
685 			rc = tls_set_sw_offload(sk, ctx, 0);
686 			if (rc)
687 				goto err_crypto_info;
688 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
689 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
690 			conf = TLS_SW;
691 		}
692 		tls_sw_strparser_arm(sk, ctx);
693 	}
694 
695 	if (tx)
696 		ctx->tx_conf = conf;
697 	else
698 		ctx->rx_conf = conf;
699 	update_sk_prot(sk, ctx);
700 	if (tx) {
701 		ctx->sk_write_space = sk->sk_write_space;
702 		sk->sk_write_space = tls_write_space;
703 	} else {
704 		struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
705 
706 		tls_strp_check_rcv(&rx_ctx->strp);
707 	}
708 	return 0;
709 
710 err_crypto_info:
711 	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
712 	return rc;
713 }
714 
715 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
716 				   unsigned int optlen)
717 {
718 	struct tls_context *ctx = tls_get_ctx(sk);
719 	unsigned int value;
720 
721 	if (sockptr_is_null(optval) || optlen != sizeof(value))
722 		return -EINVAL;
723 
724 	if (copy_from_sockptr(&value, optval, sizeof(value)))
725 		return -EFAULT;
726 
727 	if (value > 1)
728 		return -EINVAL;
729 
730 	ctx->zerocopy_sendfile = value;
731 
732 	return 0;
733 }
734 
735 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
736 				    unsigned int optlen)
737 {
738 	struct tls_context *ctx = tls_get_ctx(sk);
739 	u32 val;
740 	int rc;
741 
742 	if (ctx->prot_info.version != TLS_1_3_VERSION ||
743 	    sockptr_is_null(optval) || optlen < sizeof(val))
744 		return -EINVAL;
745 
746 	rc = copy_from_sockptr(&val, optval, sizeof(val));
747 	if (rc)
748 		return -EFAULT;
749 	if (val > 1)
750 		return -EINVAL;
751 	rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
752 	if (rc < 1)
753 		return rc == 0 ? -EINVAL : rc;
754 
755 	lock_sock(sk);
756 	rc = -EINVAL;
757 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
758 		ctx->rx_no_pad = val;
759 		tls_update_rx_zc_capable(ctx);
760 		rc = 0;
761 	}
762 	release_sock(sk);
763 
764 	return rc;
765 }
766 
767 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
768 			     unsigned int optlen)
769 {
770 	int rc = 0;
771 
772 	switch (optname) {
773 	case TLS_TX:
774 	case TLS_RX:
775 		lock_sock(sk);
776 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
777 					    optname == TLS_TX);
778 		release_sock(sk);
779 		break;
780 	case TLS_TX_ZEROCOPY_RO:
781 		lock_sock(sk);
782 		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
783 		release_sock(sk);
784 		break;
785 	case TLS_RX_EXPECT_NO_PAD:
786 		rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
787 		break;
788 	default:
789 		rc = -ENOPROTOOPT;
790 		break;
791 	}
792 	return rc;
793 }
794 
795 static int tls_setsockopt(struct sock *sk, int level, int optname,
796 			  sockptr_t optval, unsigned int optlen)
797 {
798 	struct tls_context *ctx = tls_get_ctx(sk);
799 
800 	if (level != SOL_TLS)
801 		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
802 						 optlen);
803 
804 	return do_tls_setsockopt(sk, optname, optval, optlen);
805 }
806 
807 struct tls_context *tls_ctx_create(struct sock *sk)
808 {
809 	struct inet_connection_sock *icsk = inet_csk(sk);
810 	struct tls_context *ctx;
811 
812 	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
813 	if (!ctx)
814 		return NULL;
815 
816 	mutex_init(&ctx->tx_lock);
817 	ctx->sk_proto = READ_ONCE(sk->sk_prot);
818 	ctx->sk = sk;
819 	/* Release semantic of rcu_assign_pointer() ensures that
820 	 * ctx->sk_proto is visible before changing sk->sk_prot in
821 	 * update_sk_prot(), and prevents reading uninitialized value in
822 	 * tls_{getsockopt, setsockopt}. Note that we do not need a
823 	 * read barrier in tls_{getsockopt,setsockopt} as there is an
824 	 * address dependency between sk->sk_proto->{getsockopt,setsockopt}
825 	 * and ctx->sk_proto.
826 	 */
827 	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
828 	return ctx;
829 }
830 
831 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
832 			    const struct proto_ops *base)
833 {
834 	ops[TLS_BASE][TLS_BASE] = *base;
835 
836 	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
837 	ops[TLS_SW  ][TLS_BASE].splice_eof	= tls_sw_splice_eof;
838 
839 	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
840 	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
841 	ops[TLS_BASE][TLS_SW  ].poll		= tls_sk_poll;
842 	ops[TLS_BASE][TLS_SW  ].read_sock	= tls_sw_read_sock;
843 
844 	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
845 	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
846 	ops[TLS_SW  ][TLS_SW  ].poll		= tls_sk_poll;
847 	ops[TLS_SW  ][TLS_SW  ].read_sock	= tls_sw_read_sock;
848 
849 #ifdef CONFIG_TLS_DEVICE
850 	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
851 
852 	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
853 
854 	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
855 
856 	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
857 
858 	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
859 #endif
860 #ifdef CONFIG_TLS_TOE
861 	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
862 #endif
863 }
864 
865 static void tls_build_proto(struct sock *sk)
866 {
867 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
868 	struct proto *prot = READ_ONCE(sk->sk_prot);
869 
870 	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
871 	if (ip_ver == TLSV6 &&
872 	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
873 		mutex_lock(&tcpv6_prot_mutex);
874 		if (likely(prot != saved_tcpv6_prot)) {
875 			build_protos(tls_prots[TLSV6], prot);
876 			build_proto_ops(tls_proto_ops[TLSV6],
877 					sk->sk_socket->ops);
878 			smp_store_release(&saved_tcpv6_prot, prot);
879 		}
880 		mutex_unlock(&tcpv6_prot_mutex);
881 	}
882 
883 	if (ip_ver == TLSV4 &&
884 	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
885 		mutex_lock(&tcpv4_prot_mutex);
886 		if (likely(prot != saved_tcpv4_prot)) {
887 			build_protos(tls_prots[TLSV4], prot);
888 			build_proto_ops(tls_proto_ops[TLSV4],
889 					sk->sk_socket->ops);
890 			smp_store_release(&saved_tcpv4_prot, prot);
891 		}
892 		mutex_unlock(&tcpv4_prot_mutex);
893 	}
894 }
895 
896 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
897 			 const struct proto *base)
898 {
899 	prot[TLS_BASE][TLS_BASE] = *base;
900 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
901 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
902 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
903 
904 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
905 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
906 	prot[TLS_SW][TLS_BASE].splice_eof	= tls_sw_splice_eof;
907 
908 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
909 	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
910 	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
911 	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
912 
913 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
914 	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
915 	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
916 	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
917 
918 #ifdef CONFIG_TLS_DEVICE
919 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
920 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
921 	prot[TLS_HW][TLS_BASE].splice_eof	= tls_device_splice_eof;
922 
923 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
924 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
925 	prot[TLS_HW][TLS_SW].splice_eof		= tls_device_splice_eof;
926 
927 	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
928 
929 	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
930 
931 	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
932 #endif
933 #ifdef CONFIG_TLS_TOE
934 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
935 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
936 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
937 #endif
938 }
939 
940 static int tls_init(struct sock *sk)
941 {
942 	struct tls_context *ctx;
943 	int rc = 0;
944 
945 	tls_build_proto(sk);
946 
947 #ifdef CONFIG_TLS_TOE
948 	if (tls_toe_bypass(sk))
949 		return 0;
950 #endif
951 
952 	/* The TLS ulp is currently supported only for TCP sockets
953 	 * in ESTABLISHED state.
954 	 * Supporting sockets in LISTEN state will require us
955 	 * to modify the accept implementation to clone rather then
956 	 * share the ulp context.
957 	 */
958 	if (sk->sk_state != TCP_ESTABLISHED)
959 		return -ENOTCONN;
960 
961 	/* allocate tls context */
962 	write_lock_bh(&sk->sk_callback_lock);
963 	ctx = tls_ctx_create(sk);
964 	if (!ctx) {
965 		rc = -ENOMEM;
966 		goto out;
967 	}
968 
969 	ctx->tx_conf = TLS_BASE;
970 	ctx->rx_conf = TLS_BASE;
971 	update_sk_prot(sk, ctx);
972 out:
973 	write_unlock_bh(&sk->sk_callback_lock);
974 	return rc;
975 }
976 
977 static void tls_update(struct sock *sk, struct proto *p,
978 		       void (*write_space)(struct sock *sk))
979 {
980 	struct tls_context *ctx;
981 
982 	WARN_ON_ONCE(sk->sk_prot == p);
983 
984 	ctx = tls_get_ctx(sk);
985 	if (likely(ctx)) {
986 		ctx->sk_write_space = write_space;
987 		ctx->sk_proto = p;
988 	} else {
989 		/* Pairs with lockless read in sk_clone_lock(). */
990 		WRITE_ONCE(sk->sk_prot, p);
991 		sk->sk_write_space = write_space;
992 	}
993 }
994 
995 static u16 tls_user_config(struct tls_context *ctx, bool tx)
996 {
997 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
998 
999 	switch (config) {
1000 	case TLS_BASE:
1001 		return TLS_CONF_BASE;
1002 	case TLS_SW:
1003 		return TLS_CONF_SW;
1004 	case TLS_HW:
1005 		return TLS_CONF_HW;
1006 	case TLS_HW_RECORD:
1007 		return TLS_CONF_HW_RECORD;
1008 	}
1009 	return 0;
1010 }
1011 
1012 static int tls_get_info(struct sock *sk, struct sk_buff *skb)
1013 {
1014 	u16 version, cipher_type;
1015 	struct tls_context *ctx;
1016 	struct nlattr *start;
1017 	int err;
1018 
1019 	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1020 	if (!start)
1021 		return -EMSGSIZE;
1022 
1023 	rcu_read_lock();
1024 	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1025 	if (!ctx) {
1026 		err = 0;
1027 		goto nla_failure;
1028 	}
1029 	version = ctx->prot_info.version;
1030 	if (version) {
1031 		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1032 		if (err)
1033 			goto nla_failure;
1034 	}
1035 	cipher_type = ctx->prot_info.cipher_type;
1036 	if (cipher_type) {
1037 		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1038 		if (err)
1039 			goto nla_failure;
1040 	}
1041 	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1042 	if (err)
1043 		goto nla_failure;
1044 
1045 	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1046 	if (err)
1047 		goto nla_failure;
1048 
1049 	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1050 		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1051 		if (err)
1052 			goto nla_failure;
1053 	}
1054 	if (ctx->rx_no_pad) {
1055 		err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1056 		if (err)
1057 			goto nla_failure;
1058 	}
1059 
1060 	rcu_read_unlock();
1061 	nla_nest_end(skb, start);
1062 	return 0;
1063 
1064 nla_failure:
1065 	rcu_read_unlock();
1066 	nla_nest_cancel(skb, start);
1067 	return err;
1068 }
1069 
1070 static size_t tls_get_info_size(const struct sock *sk)
1071 {
1072 	size_t size = 0;
1073 
1074 	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
1075 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
1076 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
1077 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
1078 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
1079 		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1080 		nla_total_size(0) +		/* TLS_INFO_RX_NO_PAD */
1081 		0;
1082 
1083 	return size;
1084 }
1085 
1086 static int __net_init tls_init_net(struct net *net)
1087 {
1088 	int err;
1089 
1090 	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1091 	if (!net->mib.tls_statistics)
1092 		return -ENOMEM;
1093 
1094 	err = tls_proc_init(net);
1095 	if (err)
1096 		goto err_free_stats;
1097 
1098 	return 0;
1099 err_free_stats:
1100 	free_percpu(net->mib.tls_statistics);
1101 	return err;
1102 }
1103 
1104 static void __net_exit tls_exit_net(struct net *net)
1105 {
1106 	tls_proc_fini(net);
1107 	free_percpu(net->mib.tls_statistics);
1108 }
1109 
1110 static struct pernet_operations tls_proc_ops = {
1111 	.init = tls_init_net,
1112 	.exit = tls_exit_net,
1113 };
1114 
1115 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1116 	.name			= "tls",
1117 	.owner			= THIS_MODULE,
1118 	.init			= tls_init,
1119 	.update			= tls_update,
1120 	.get_info		= tls_get_info,
1121 	.get_info_size		= tls_get_info_size,
1122 };
1123 
1124 static int __init tls_register(void)
1125 {
1126 	int err;
1127 
1128 	err = register_pernet_subsys(&tls_proc_ops);
1129 	if (err)
1130 		return err;
1131 
1132 	err = tls_strp_dev_init();
1133 	if (err)
1134 		goto err_pernet;
1135 
1136 	err = tls_device_init();
1137 	if (err)
1138 		goto err_strp;
1139 
1140 	tcp_register_ulp(&tcp_tls_ulp_ops);
1141 
1142 	return 0;
1143 err_strp:
1144 	tls_strp_dev_exit();
1145 err_pernet:
1146 	unregister_pernet_subsys(&tls_proc_ops);
1147 	return err;
1148 }
1149 
1150 static void __exit tls_unregister(void)
1151 {
1152 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1153 	tls_strp_dev_exit();
1154 	tls_device_cleanup();
1155 	unregister_pernet_subsys(&tls_proc_ops);
1156 }
1157 
1158 module_init(tls_register);
1159 module_exit(tls_unregister);
1160