xref: /openbmc/linux/net/tls/tls_main.c (revision 16bed0e6)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43 
44 #include <net/tls.h>
45 #include <net/tls_toe.h>
46 
47 MODULE_AUTHOR("Mellanox Technologies");
48 MODULE_DESCRIPTION("Transport Layer Security Support");
49 MODULE_LICENSE("Dual BSD/GPL");
50 MODULE_ALIAS_TCP_ULP("tls");
51 
52 enum {
53 	TLSV4,
54 	TLSV6,
55 	TLS_NUM_PROTS,
56 };
57 
58 static struct proto *saved_tcpv6_prot;
59 static DEFINE_MUTEX(tcpv6_prot_mutex);
60 static struct proto *saved_tcpv4_prot;
61 static DEFINE_MUTEX(tcpv4_prot_mutex);
62 static LIST_HEAD(device_list);
63 static DEFINE_SPINLOCK(device_spinlock);
64 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
65 static struct proto_ops tls_sw_proto_ops;
66 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
67 			 struct proto *base);
68 
69 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
70 {
71 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
72 
73 	sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
74 }
75 
76 int wait_on_pending_writer(struct sock *sk, long *timeo)
77 {
78 	int rc = 0;
79 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
80 
81 	add_wait_queue(sk_sleep(sk), &wait);
82 	while (1) {
83 		if (!*timeo) {
84 			rc = -EAGAIN;
85 			break;
86 		}
87 
88 		if (signal_pending(current)) {
89 			rc = sock_intr_errno(*timeo);
90 			break;
91 		}
92 
93 		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
94 			break;
95 	}
96 	remove_wait_queue(sk_sleep(sk), &wait);
97 	return rc;
98 }
99 
100 int tls_push_sg(struct sock *sk,
101 		struct tls_context *ctx,
102 		struct scatterlist *sg,
103 		u16 first_offset,
104 		int flags)
105 {
106 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
107 	int ret = 0;
108 	struct page *p;
109 	size_t size;
110 	int offset = first_offset;
111 
112 	size = sg->length - offset;
113 	offset += sg->offset;
114 
115 	ctx->in_tcp_sendpages = true;
116 	while (1) {
117 		if (sg_is_last(sg))
118 			sendpage_flags = flags;
119 
120 		/* is sending application-limited? */
121 		tcp_rate_check_app_limited(sk);
122 		p = sg_page(sg);
123 retry:
124 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
125 
126 		if (ret != size) {
127 			if (ret > 0) {
128 				offset += ret;
129 				size -= ret;
130 				goto retry;
131 			}
132 
133 			offset -= sg->offset;
134 			ctx->partially_sent_offset = offset;
135 			ctx->partially_sent_record = (void *)sg;
136 			ctx->in_tcp_sendpages = false;
137 			return ret;
138 		}
139 
140 		put_page(p);
141 		sk_mem_uncharge(sk, sg->length);
142 		sg = sg_next(sg);
143 		if (!sg)
144 			break;
145 
146 		offset = sg->offset;
147 		size = sg->length;
148 	}
149 
150 	ctx->in_tcp_sendpages = false;
151 
152 	return 0;
153 }
154 
155 static int tls_handle_open_record(struct sock *sk, int flags)
156 {
157 	struct tls_context *ctx = tls_get_ctx(sk);
158 
159 	if (tls_is_pending_open_record(ctx))
160 		return ctx->push_pending_record(sk, flags);
161 
162 	return 0;
163 }
164 
165 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166 		      unsigned char *record_type)
167 {
168 	struct cmsghdr *cmsg;
169 	int rc = -EINVAL;
170 
171 	for_each_cmsghdr(cmsg, msg) {
172 		if (!CMSG_OK(msg, cmsg))
173 			return -EINVAL;
174 		if (cmsg->cmsg_level != SOL_TLS)
175 			continue;
176 
177 		switch (cmsg->cmsg_type) {
178 		case TLS_SET_RECORD_TYPE:
179 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
180 				return -EINVAL;
181 
182 			if (msg->msg_flags & MSG_MORE)
183 				return -EINVAL;
184 
185 			rc = tls_handle_open_record(sk, msg->msg_flags);
186 			if (rc)
187 				return rc;
188 
189 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
190 			rc = 0;
191 			break;
192 		default:
193 			return -EINVAL;
194 		}
195 	}
196 
197 	return rc;
198 }
199 
200 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
201 			    int flags)
202 {
203 	struct scatterlist *sg;
204 	u16 offset;
205 
206 	sg = ctx->partially_sent_record;
207 	offset = ctx->partially_sent_offset;
208 
209 	ctx->partially_sent_record = NULL;
210 	return tls_push_sg(sk, ctx, sg, offset, flags);
211 }
212 
213 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
214 {
215 	struct scatterlist *sg;
216 
217 	sg = ctx->partially_sent_record;
218 	if (!sg)
219 		return false;
220 
221 	while (1) {
222 		put_page(sg_page(sg));
223 		sk_mem_uncharge(sk, sg->length);
224 
225 		if (sg_is_last(sg))
226 			break;
227 		sg++;
228 	}
229 	ctx->partially_sent_record = NULL;
230 	return true;
231 }
232 
233 static void tls_write_space(struct sock *sk)
234 {
235 	struct tls_context *ctx = tls_get_ctx(sk);
236 
237 	/* If in_tcp_sendpages call lower protocol write space handler
238 	 * to ensure we wake up any waiting operations there. For example
239 	 * if do_tcp_sendpages where to call sk_wait_event.
240 	 */
241 	if (ctx->in_tcp_sendpages) {
242 		ctx->sk_write_space(sk);
243 		return;
244 	}
245 
246 #ifdef CONFIG_TLS_DEVICE
247 	if (ctx->tx_conf == TLS_HW)
248 		tls_device_write_space(sk, ctx);
249 	else
250 #endif
251 		tls_sw_write_space(sk, ctx);
252 
253 	ctx->sk_write_space(sk);
254 }
255 
256 /**
257  * tls_ctx_free() - free TLS ULP context
258  * @sk:  socket to with @ctx is attached
259  * @ctx: TLS context structure
260  *
261  * Free TLS context. If @sk is %NULL caller guarantees that the socket
262  * to which @ctx was attached has no outstanding references.
263  */
264 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
265 {
266 	if (!ctx)
267 		return;
268 
269 	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
270 	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
271 
272 	if (sk)
273 		kfree_rcu(ctx, rcu);
274 	else
275 		kfree(ctx);
276 }
277 
278 static void tls_sk_proto_cleanup(struct sock *sk,
279 				 struct tls_context *ctx, long timeo)
280 {
281 	if (unlikely(sk->sk_write_pending) &&
282 	    !wait_on_pending_writer(sk, &timeo))
283 		tls_handle_open_record(sk, 0);
284 
285 	/* We need these for tls_sw_fallback handling of other packets */
286 	if (ctx->tx_conf == TLS_SW) {
287 		kfree(ctx->tx.rec_seq);
288 		kfree(ctx->tx.iv);
289 		tls_sw_release_resources_tx(sk);
290 	} else if (ctx->tx_conf == TLS_HW) {
291 		tls_device_free_resources_tx(sk);
292 	}
293 
294 	if (ctx->rx_conf == TLS_SW)
295 		tls_sw_release_resources_rx(sk);
296 	else if (ctx->rx_conf == TLS_HW)
297 		tls_device_offload_cleanup_rx(sk);
298 }
299 
300 static void tls_sk_proto_close(struct sock *sk, long timeout)
301 {
302 	struct inet_connection_sock *icsk = inet_csk(sk);
303 	struct tls_context *ctx = tls_get_ctx(sk);
304 	long timeo = sock_sndtimeo(sk, 0);
305 	bool free_ctx;
306 
307 	if (ctx->tx_conf == TLS_SW)
308 		tls_sw_cancel_work_tx(ctx);
309 
310 	lock_sock(sk);
311 	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
312 
313 	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
314 		tls_sk_proto_cleanup(sk, ctx, timeo);
315 
316 	write_lock_bh(&sk->sk_callback_lock);
317 	if (free_ctx)
318 		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
319 	sk->sk_prot = ctx->sk_proto;
320 	if (sk->sk_write_space == tls_write_space)
321 		sk->sk_write_space = ctx->sk_write_space;
322 	write_unlock_bh(&sk->sk_callback_lock);
323 	release_sock(sk);
324 	if (ctx->tx_conf == TLS_SW)
325 		tls_sw_free_ctx_tx(ctx);
326 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
327 		tls_sw_strparser_done(ctx);
328 	if (ctx->rx_conf == TLS_SW)
329 		tls_sw_free_ctx_rx(ctx);
330 	ctx->sk_proto->close(sk, timeout);
331 
332 	if (free_ctx)
333 		tls_ctx_free(sk, ctx);
334 }
335 
336 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
337 				int __user *optlen)
338 {
339 	int rc = 0;
340 	struct tls_context *ctx = tls_get_ctx(sk);
341 	struct tls_crypto_info *crypto_info;
342 	int len;
343 
344 	if (get_user(len, optlen))
345 		return -EFAULT;
346 
347 	if (!optval || (len < sizeof(*crypto_info))) {
348 		rc = -EINVAL;
349 		goto out;
350 	}
351 
352 	if (!ctx) {
353 		rc = -EBUSY;
354 		goto out;
355 	}
356 
357 	/* get user crypto info */
358 	crypto_info = &ctx->crypto_send.info;
359 
360 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
361 		rc = -EBUSY;
362 		goto out;
363 	}
364 
365 	if (len == sizeof(*crypto_info)) {
366 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
367 			rc = -EFAULT;
368 		goto out;
369 	}
370 
371 	switch (crypto_info->cipher_type) {
372 	case TLS_CIPHER_AES_GCM_128: {
373 		struct tls12_crypto_info_aes_gcm_128 *
374 		  crypto_info_aes_gcm_128 =
375 		  container_of(crypto_info,
376 			       struct tls12_crypto_info_aes_gcm_128,
377 			       info);
378 
379 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
380 			rc = -EINVAL;
381 			goto out;
382 		}
383 		lock_sock(sk);
384 		memcpy(crypto_info_aes_gcm_128->iv,
385 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
386 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
387 		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
388 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
389 		release_sock(sk);
390 		if (copy_to_user(optval,
391 				 crypto_info_aes_gcm_128,
392 				 sizeof(*crypto_info_aes_gcm_128)))
393 			rc = -EFAULT;
394 		break;
395 	}
396 	case TLS_CIPHER_AES_GCM_256: {
397 		struct tls12_crypto_info_aes_gcm_256 *
398 		  crypto_info_aes_gcm_256 =
399 		  container_of(crypto_info,
400 			       struct tls12_crypto_info_aes_gcm_256,
401 			       info);
402 
403 		if (len != sizeof(*crypto_info_aes_gcm_256)) {
404 			rc = -EINVAL;
405 			goto out;
406 		}
407 		lock_sock(sk);
408 		memcpy(crypto_info_aes_gcm_256->iv,
409 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
410 		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
411 		memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
412 		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
413 		release_sock(sk);
414 		if (copy_to_user(optval,
415 				 crypto_info_aes_gcm_256,
416 				 sizeof(*crypto_info_aes_gcm_256)))
417 			rc = -EFAULT;
418 		break;
419 	}
420 	default:
421 		rc = -EINVAL;
422 	}
423 
424 out:
425 	return rc;
426 }
427 
428 static int do_tls_getsockopt(struct sock *sk, int optname,
429 			     char __user *optval, int __user *optlen)
430 {
431 	int rc = 0;
432 
433 	switch (optname) {
434 	case TLS_TX:
435 		rc = do_tls_getsockopt_tx(sk, optval, optlen);
436 		break;
437 	default:
438 		rc = -ENOPROTOOPT;
439 		break;
440 	}
441 	return rc;
442 }
443 
444 static int tls_getsockopt(struct sock *sk, int level, int optname,
445 			  char __user *optval, int __user *optlen)
446 {
447 	struct tls_context *ctx = tls_get_ctx(sk);
448 
449 	if (level != SOL_TLS)
450 		return ctx->sk_proto->getsockopt(sk, level,
451 						 optname, optval, optlen);
452 
453 	return do_tls_getsockopt(sk, optname, optval, optlen);
454 }
455 
456 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
457 				  unsigned int optlen, int tx)
458 {
459 	struct tls_crypto_info *crypto_info;
460 	struct tls_crypto_info *alt_crypto_info;
461 	struct tls_context *ctx = tls_get_ctx(sk);
462 	size_t optsize;
463 	int rc = 0;
464 	int conf;
465 
466 	if (!optval || (optlen < sizeof(*crypto_info))) {
467 		rc = -EINVAL;
468 		goto out;
469 	}
470 
471 	if (tx) {
472 		crypto_info = &ctx->crypto_send.info;
473 		alt_crypto_info = &ctx->crypto_recv.info;
474 	} else {
475 		crypto_info = &ctx->crypto_recv.info;
476 		alt_crypto_info = &ctx->crypto_send.info;
477 	}
478 
479 	/* Currently we don't support set crypto info more than one time */
480 	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
481 		rc = -EBUSY;
482 		goto out;
483 	}
484 
485 	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
486 	if (rc) {
487 		rc = -EFAULT;
488 		goto err_crypto_info;
489 	}
490 
491 	/* check version */
492 	if (crypto_info->version != TLS_1_2_VERSION &&
493 	    crypto_info->version != TLS_1_3_VERSION) {
494 		rc = -ENOTSUPP;
495 		goto err_crypto_info;
496 	}
497 
498 	/* Ensure that TLS version and ciphers are same in both directions */
499 	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
500 		if (alt_crypto_info->version != crypto_info->version ||
501 		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
502 			rc = -EINVAL;
503 			goto err_crypto_info;
504 		}
505 	}
506 
507 	switch (crypto_info->cipher_type) {
508 	case TLS_CIPHER_AES_GCM_128:
509 		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
510 		break;
511 	case TLS_CIPHER_AES_GCM_256: {
512 		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
513 		break;
514 	}
515 	case TLS_CIPHER_AES_CCM_128:
516 		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
517 		break;
518 	default:
519 		rc = -EINVAL;
520 		goto err_crypto_info;
521 	}
522 
523 	if (optlen != optsize) {
524 		rc = -EINVAL;
525 		goto err_crypto_info;
526 	}
527 
528 	rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
529 			    optlen - sizeof(*crypto_info));
530 	if (rc) {
531 		rc = -EFAULT;
532 		goto err_crypto_info;
533 	}
534 
535 	if (tx) {
536 		rc = tls_set_device_offload(sk, ctx);
537 		conf = TLS_HW;
538 		if (rc) {
539 			rc = tls_set_sw_offload(sk, ctx, 1);
540 			if (rc)
541 				goto err_crypto_info;
542 			conf = TLS_SW;
543 		}
544 	} else {
545 		rc = tls_set_device_offload_rx(sk, ctx);
546 		conf = TLS_HW;
547 		if (rc) {
548 			rc = tls_set_sw_offload(sk, ctx, 0);
549 			if (rc)
550 				goto err_crypto_info;
551 			conf = TLS_SW;
552 		}
553 		tls_sw_strparser_arm(sk, ctx);
554 	}
555 
556 	if (tx)
557 		ctx->tx_conf = conf;
558 	else
559 		ctx->rx_conf = conf;
560 	update_sk_prot(sk, ctx);
561 	if (tx) {
562 		ctx->sk_write_space = sk->sk_write_space;
563 		sk->sk_write_space = tls_write_space;
564 	} else {
565 		sk->sk_socket->ops = &tls_sw_proto_ops;
566 	}
567 	goto out;
568 
569 err_crypto_info:
570 	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
571 out:
572 	return rc;
573 }
574 
575 static int do_tls_setsockopt(struct sock *sk, int optname,
576 			     char __user *optval, unsigned int optlen)
577 {
578 	int rc = 0;
579 
580 	switch (optname) {
581 	case TLS_TX:
582 	case TLS_RX:
583 		lock_sock(sk);
584 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
585 					    optname == TLS_TX);
586 		release_sock(sk);
587 		break;
588 	default:
589 		rc = -ENOPROTOOPT;
590 		break;
591 	}
592 	return rc;
593 }
594 
595 static int tls_setsockopt(struct sock *sk, int level, int optname,
596 			  char __user *optval, unsigned int optlen)
597 {
598 	struct tls_context *ctx = tls_get_ctx(sk);
599 
600 	if (level != SOL_TLS)
601 		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
602 						 optlen);
603 
604 	return do_tls_setsockopt(sk, optname, optval, optlen);
605 }
606 
607 static struct tls_context *create_ctx(struct sock *sk)
608 {
609 	struct inet_connection_sock *icsk = inet_csk(sk);
610 	struct tls_context *ctx;
611 
612 	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
613 	if (!ctx)
614 		return NULL;
615 
616 	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
617 	ctx->sk_proto = sk->sk_prot;
618 	return ctx;
619 }
620 
621 static void tls_build_proto(struct sock *sk)
622 {
623 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
624 
625 	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
626 	if (ip_ver == TLSV6 &&
627 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
628 		mutex_lock(&tcpv6_prot_mutex);
629 		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
630 			build_protos(tls_prots[TLSV6], sk->sk_prot);
631 			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
632 		}
633 		mutex_unlock(&tcpv6_prot_mutex);
634 	}
635 
636 	if (ip_ver == TLSV4 &&
637 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
638 		mutex_lock(&tcpv4_prot_mutex);
639 		if (likely(sk->sk_prot != saved_tcpv4_prot)) {
640 			build_protos(tls_prots[TLSV4], sk->sk_prot);
641 			smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
642 		}
643 		mutex_unlock(&tcpv4_prot_mutex);
644 	}
645 }
646 
647 static void tls_hw_sk_destruct(struct sock *sk)
648 {
649 	struct tls_context *ctx = tls_get_ctx(sk);
650 	struct inet_connection_sock *icsk = inet_csk(sk);
651 
652 	ctx->sk_destruct(sk);
653 	/* Free ctx */
654 	rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
655 	tls_ctx_free(sk, ctx);
656 }
657 
658 static int tls_hw_prot(struct sock *sk)
659 {
660 	struct tls_toe_device *dev;
661 	struct tls_context *ctx;
662 	int rc = 0;
663 
664 	spin_lock_bh(&device_spinlock);
665 	list_for_each_entry(dev, &device_list, dev_list) {
666 		if (dev->feature && dev->feature(dev)) {
667 			ctx = create_ctx(sk);
668 			if (!ctx)
669 				goto out;
670 
671 			ctx->sk_destruct = sk->sk_destruct;
672 			sk->sk_destruct = tls_hw_sk_destruct;
673 			ctx->rx_conf = TLS_HW_RECORD;
674 			ctx->tx_conf = TLS_HW_RECORD;
675 			update_sk_prot(sk, ctx);
676 			rc = 1;
677 			break;
678 		}
679 	}
680 out:
681 	spin_unlock_bh(&device_spinlock);
682 	return rc;
683 }
684 
685 static void tls_hw_unhash(struct sock *sk)
686 {
687 	struct tls_context *ctx = tls_get_ctx(sk);
688 	struct tls_toe_device *dev;
689 
690 	spin_lock_bh(&device_spinlock);
691 	list_for_each_entry(dev, &device_list, dev_list) {
692 		if (dev->unhash) {
693 			kref_get(&dev->kref);
694 			spin_unlock_bh(&device_spinlock);
695 			dev->unhash(dev, sk);
696 			kref_put(&dev->kref, dev->release);
697 			spin_lock_bh(&device_spinlock);
698 		}
699 	}
700 	spin_unlock_bh(&device_spinlock);
701 	ctx->sk_proto->unhash(sk);
702 }
703 
704 static int tls_hw_hash(struct sock *sk)
705 {
706 	struct tls_context *ctx = tls_get_ctx(sk);
707 	struct tls_toe_device *dev;
708 	int err;
709 
710 	err = ctx->sk_proto->hash(sk);
711 	spin_lock_bh(&device_spinlock);
712 	list_for_each_entry(dev, &device_list, dev_list) {
713 		if (dev->hash) {
714 			kref_get(&dev->kref);
715 			spin_unlock_bh(&device_spinlock);
716 			err |= dev->hash(dev, sk);
717 			kref_put(&dev->kref, dev->release);
718 			spin_lock_bh(&device_spinlock);
719 		}
720 	}
721 	spin_unlock_bh(&device_spinlock);
722 
723 	if (err)
724 		tls_hw_unhash(sk);
725 	return err;
726 }
727 
728 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
729 			 struct proto *base)
730 {
731 	prot[TLS_BASE][TLS_BASE] = *base;
732 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
733 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
734 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
735 
736 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
737 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
738 	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
739 
740 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
741 	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
742 	prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
743 	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
744 
745 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
746 	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
747 	prot[TLS_SW][TLS_SW].stream_memory_read	= tls_sw_stream_read;
748 	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
749 
750 #ifdef CONFIG_TLS_DEVICE
751 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
752 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
753 	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
754 
755 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
756 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
757 	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
758 
759 	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
760 
761 	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
762 
763 	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
764 #endif
765 
766 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
767 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_hw_hash;
768 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_hw_unhash;
769 }
770 
771 static int tls_init(struct sock *sk)
772 {
773 	struct tls_context *ctx;
774 	int rc = 0;
775 
776 	tls_build_proto(sk);
777 
778 	if (tls_hw_prot(sk))
779 		return 0;
780 
781 	/* The TLS ulp is currently supported only for TCP sockets
782 	 * in ESTABLISHED state.
783 	 * Supporting sockets in LISTEN state will require us
784 	 * to modify the accept implementation to clone rather then
785 	 * share the ulp context.
786 	 */
787 	if (sk->sk_state != TCP_ESTABLISHED)
788 		return -ENOTSUPP;
789 
790 	/* allocate tls context */
791 	write_lock_bh(&sk->sk_callback_lock);
792 	ctx = create_ctx(sk);
793 	if (!ctx) {
794 		rc = -ENOMEM;
795 		goto out;
796 	}
797 
798 	ctx->tx_conf = TLS_BASE;
799 	ctx->rx_conf = TLS_BASE;
800 	update_sk_prot(sk, ctx);
801 out:
802 	write_unlock_bh(&sk->sk_callback_lock);
803 	return rc;
804 }
805 
806 static void tls_update(struct sock *sk, struct proto *p)
807 {
808 	struct tls_context *ctx;
809 
810 	ctx = tls_get_ctx(sk);
811 	if (likely(ctx))
812 		ctx->sk_proto = p;
813 	else
814 		sk->sk_prot = p;
815 }
816 
817 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
818 {
819 	u16 version, cipher_type;
820 	struct tls_context *ctx;
821 	struct nlattr *start;
822 	int err;
823 
824 	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
825 	if (!start)
826 		return -EMSGSIZE;
827 
828 	rcu_read_lock();
829 	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
830 	if (!ctx) {
831 		err = 0;
832 		goto nla_failure;
833 	}
834 	version = ctx->prot_info.version;
835 	if (version) {
836 		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
837 		if (err)
838 			goto nla_failure;
839 	}
840 	cipher_type = ctx->prot_info.cipher_type;
841 	if (cipher_type) {
842 		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
843 		if (err)
844 			goto nla_failure;
845 	}
846 	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
847 	if (err)
848 		goto nla_failure;
849 
850 	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
851 	if (err)
852 		goto nla_failure;
853 
854 	rcu_read_unlock();
855 	nla_nest_end(skb, start);
856 	return 0;
857 
858 nla_failure:
859 	rcu_read_unlock();
860 	nla_nest_cancel(skb, start);
861 	return err;
862 }
863 
864 static size_t tls_get_info_size(const struct sock *sk)
865 {
866 	size_t size = 0;
867 
868 	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
869 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
870 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
871 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
872 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
873 		0;
874 
875 	return size;
876 }
877 
878 void tls_toe_register_device(struct tls_toe_device *device)
879 {
880 	spin_lock_bh(&device_spinlock);
881 	list_add_tail(&device->dev_list, &device_list);
882 	spin_unlock_bh(&device_spinlock);
883 }
884 EXPORT_SYMBOL(tls_toe_register_device);
885 
886 void tls_toe_unregister_device(struct tls_toe_device *device)
887 {
888 	spin_lock_bh(&device_spinlock);
889 	list_del(&device->dev_list);
890 	spin_unlock_bh(&device_spinlock);
891 }
892 EXPORT_SYMBOL(tls_toe_unregister_device);
893 
894 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
895 	.name			= "tls",
896 	.owner			= THIS_MODULE,
897 	.init			= tls_init,
898 	.update			= tls_update,
899 	.get_info		= tls_get_info,
900 	.get_info_size		= tls_get_info_size,
901 };
902 
903 static int __init tls_register(void)
904 {
905 	tls_sw_proto_ops = inet_stream_ops;
906 	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
907 
908 	tls_device_init();
909 	tcp_register_ulp(&tcp_tls_ulp_ops);
910 
911 	return 0;
912 }
913 
914 static void __exit tls_unregister(void)
915 {
916 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
917 	tls_device_cleanup();
918 }
919 
920 module_init(tls_register);
921 module_exit(tls_unregister);
922