1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 #include <linux/inet_diag.h> 43 44 #include <net/snmp.h> 45 #include <net/tls.h> 46 #include <net/tls_toe.h> 47 48 MODULE_AUTHOR("Mellanox Technologies"); 49 MODULE_DESCRIPTION("Transport Layer Security Support"); 50 MODULE_LICENSE("Dual BSD/GPL"); 51 MODULE_ALIAS_TCP_ULP("tls"); 52 53 enum { 54 TLSV4, 55 TLSV6, 56 TLS_NUM_PROTS, 57 }; 58 59 static const struct proto *saved_tcpv6_prot; 60 static DEFINE_MUTEX(tcpv6_prot_mutex); 61 static const struct proto *saved_tcpv4_prot; 62 static DEFINE_MUTEX(tcpv4_prot_mutex); 63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 64 static struct proto_ops tls_sw_proto_ops; 65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 66 const struct proto *base); 67 68 void update_sk_prot(struct sock *sk, struct tls_context *ctx) 69 { 70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 71 72 WRITE_ONCE(sk->sk_prot, 73 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); 74 } 75 76 int wait_on_pending_writer(struct sock *sk, long *timeo) 77 { 78 int rc = 0; 79 DEFINE_WAIT_FUNC(wait, woken_wake_function); 80 81 add_wait_queue(sk_sleep(sk), &wait); 82 while (1) { 83 if (!*timeo) { 84 rc = -EAGAIN; 85 break; 86 } 87 88 if (signal_pending(current)) { 89 rc = sock_intr_errno(*timeo); 90 break; 91 } 92 93 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 94 break; 95 } 96 remove_wait_queue(sk_sleep(sk), &wait); 97 return rc; 98 } 99 100 int tls_push_sg(struct sock *sk, 101 struct tls_context *ctx, 102 struct scatterlist *sg, 103 u16 first_offset, 104 int flags) 105 { 106 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 107 int ret = 0; 108 struct page *p; 109 size_t size; 110 int offset = first_offset; 111 112 size = sg->length - offset; 113 offset += sg->offset; 114 115 ctx->in_tcp_sendpages = true; 116 while (1) { 117 if (sg_is_last(sg)) 118 sendpage_flags = flags; 119 120 /* is sending application-limited? */ 121 tcp_rate_check_app_limited(sk); 122 p = sg_page(sg); 123 retry: 124 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 125 126 if (ret != size) { 127 if (ret > 0) { 128 offset += ret; 129 size -= ret; 130 goto retry; 131 } 132 133 offset -= sg->offset; 134 ctx->partially_sent_offset = offset; 135 ctx->partially_sent_record = (void *)sg; 136 ctx->in_tcp_sendpages = false; 137 return ret; 138 } 139 140 put_page(p); 141 sk_mem_uncharge(sk, sg->length); 142 sg = sg_next(sg); 143 if (!sg) 144 break; 145 146 offset = sg->offset; 147 size = sg->length; 148 } 149 150 ctx->in_tcp_sendpages = false; 151 152 return 0; 153 } 154 155 static int tls_handle_open_record(struct sock *sk, int flags) 156 { 157 struct tls_context *ctx = tls_get_ctx(sk); 158 159 if (tls_is_pending_open_record(ctx)) 160 return ctx->push_pending_record(sk, flags); 161 162 return 0; 163 } 164 165 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 166 unsigned char *record_type) 167 { 168 struct cmsghdr *cmsg; 169 int rc = -EINVAL; 170 171 for_each_cmsghdr(cmsg, msg) { 172 if (!CMSG_OK(msg, cmsg)) 173 return -EINVAL; 174 if (cmsg->cmsg_level != SOL_TLS) 175 continue; 176 177 switch (cmsg->cmsg_type) { 178 case TLS_SET_RECORD_TYPE: 179 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 180 return -EINVAL; 181 182 if (msg->msg_flags & MSG_MORE) 183 return -EINVAL; 184 185 rc = tls_handle_open_record(sk, msg->msg_flags); 186 if (rc) 187 return rc; 188 189 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 190 rc = 0; 191 break; 192 default: 193 return -EINVAL; 194 } 195 } 196 197 return rc; 198 } 199 200 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 201 int flags) 202 { 203 struct scatterlist *sg; 204 u16 offset; 205 206 sg = ctx->partially_sent_record; 207 offset = ctx->partially_sent_offset; 208 209 ctx->partially_sent_record = NULL; 210 return tls_push_sg(sk, ctx, sg, offset, flags); 211 } 212 213 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 214 { 215 struct scatterlist *sg; 216 217 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { 218 put_page(sg_page(sg)); 219 sk_mem_uncharge(sk, sg->length); 220 } 221 ctx->partially_sent_record = NULL; 222 } 223 224 static void tls_write_space(struct sock *sk) 225 { 226 struct tls_context *ctx = tls_get_ctx(sk); 227 228 /* If in_tcp_sendpages call lower protocol write space handler 229 * to ensure we wake up any waiting operations there. For example 230 * if do_tcp_sendpages where to call sk_wait_event. 231 */ 232 if (ctx->in_tcp_sendpages) { 233 ctx->sk_write_space(sk); 234 return; 235 } 236 237 #ifdef CONFIG_TLS_DEVICE 238 if (ctx->tx_conf == TLS_HW) 239 tls_device_write_space(sk, ctx); 240 else 241 #endif 242 tls_sw_write_space(sk, ctx); 243 244 ctx->sk_write_space(sk); 245 } 246 247 /** 248 * tls_ctx_free() - free TLS ULP context 249 * @sk: socket to with @ctx is attached 250 * @ctx: TLS context structure 251 * 252 * Free TLS context. If @sk is %NULL caller guarantees that the socket 253 * to which @ctx was attached has no outstanding references. 254 */ 255 void tls_ctx_free(struct sock *sk, struct tls_context *ctx) 256 { 257 if (!ctx) 258 return; 259 260 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 261 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 262 mutex_destroy(&ctx->tx_lock); 263 264 if (sk) 265 kfree_rcu(ctx, rcu); 266 else 267 kfree(ctx); 268 } 269 270 static void tls_sk_proto_cleanup(struct sock *sk, 271 struct tls_context *ctx, long timeo) 272 { 273 if (unlikely(sk->sk_write_pending) && 274 !wait_on_pending_writer(sk, &timeo)) 275 tls_handle_open_record(sk, 0); 276 277 /* We need these for tls_sw_fallback handling of other packets */ 278 if (ctx->tx_conf == TLS_SW) { 279 kfree(ctx->tx.rec_seq); 280 kfree(ctx->tx.iv); 281 tls_sw_release_resources_tx(sk); 282 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 283 } else if (ctx->tx_conf == TLS_HW) { 284 tls_device_free_resources_tx(sk); 285 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 286 } 287 288 if (ctx->rx_conf == TLS_SW) { 289 tls_sw_release_resources_rx(sk); 290 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 291 } else if (ctx->rx_conf == TLS_HW) { 292 tls_device_offload_cleanup_rx(sk); 293 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 294 } 295 } 296 297 static void tls_sk_proto_close(struct sock *sk, long timeout) 298 { 299 struct inet_connection_sock *icsk = inet_csk(sk); 300 struct tls_context *ctx = tls_get_ctx(sk); 301 long timeo = sock_sndtimeo(sk, 0); 302 bool free_ctx; 303 304 if (ctx->tx_conf == TLS_SW) 305 tls_sw_cancel_work_tx(ctx); 306 307 lock_sock(sk); 308 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 309 310 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 311 tls_sk_proto_cleanup(sk, ctx, timeo); 312 313 write_lock_bh(&sk->sk_callback_lock); 314 if (free_ctx) 315 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 316 WRITE_ONCE(sk->sk_prot, ctx->sk_proto); 317 if (sk->sk_write_space == tls_write_space) 318 sk->sk_write_space = ctx->sk_write_space; 319 write_unlock_bh(&sk->sk_callback_lock); 320 release_sock(sk); 321 if (ctx->tx_conf == TLS_SW) 322 tls_sw_free_ctx_tx(ctx); 323 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 324 tls_sw_strparser_done(ctx); 325 if (ctx->rx_conf == TLS_SW) 326 tls_sw_free_ctx_rx(ctx); 327 ctx->sk_proto->close(sk, timeout); 328 329 if (free_ctx) 330 tls_ctx_free(sk, ctx); 331 } 332 333 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval, 334 int __user *optlen, int tx) 335 { 336 int rc = 0; 337 struct tls_context *ctx = tls_get_ctx(sk); 338 struct tls_crypto_info *crypto_info; 339 struct cipher_context *cctx; 340 int len; 341 342 if (get_user(len, optlen)) 343 return -EFAULT; 344 345 if (!optval || (len < sizeof(*crypto_info))) { 346 rc = -EINVAL; 347 goto out; 348 } 349 350 if (!ctx) { 351 rc = -EBUSY; 352 goto out; 353 } 354 355 /* get user crypto info */ 356 if (tx) { 357 crypto_info = &ctx->crypto_send.info; 358 cctx = &ctx->tx; 359 } else { 360 crypto_info = &ctx->crypto_recv.info; 361 cctx = &ctx->rx; 362 } 363 364 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 365 rc = -EBUSY; 366 goto out; 367 } 368 369 if (len == sizeof(*crypto_info)) { 370 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 371 rc = -EFAULT; 372 goto out; 373 } 374 375 switch (crypto_info->cipher_type) { 376 case TLS_CIPHER_AES_GCM_128: { 377 struct tls12_crypto_info_aes_gcm_128 * 378 crypto_info_aes_gcm_128 = 379 container_of(crypto_info, 380 struct tls12_crypto_info_aes_gcm_128, 381 info); 382 383 if (len != sizeof(*crypto_info_aes_gcm_128)) { 384 rc = -EINVAL; 385 goto out; 386 } 387 lock_sock(sk); 388 memcpy(crypto_info_aes_gcm_128->iv, 389 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 390 TLS_CIPHER_AES_GCM_128_IV_SIZE); 391 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq, 392 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 393 release_sock(sk); 394 if (copy_to_user(optval, 395 crypto_info_aes_gcm_128, 396 sizeof(*crypto_info_aes_gcm_128))) 397 rc = -EFAULT; 398 break; 399 } 400 case TLS_CIPHER_AES_GCM_256: { 401 struct tls12_crypto_info_aes_gcm_256 * 402 crypto_info_aes_gcm_256 = 403 container_of(crypto_info, 404 struct tls12_crypto_info_aes_gcm_256, 405 info); 406 407 if (len != sizeof(*crypto_info_aes_gcm_256)) { 408 rc = -EINVAL; 409 goto out; 410 } 411 lock_sock(sk); 412 memcpy(crypto_info_aes_gcm_256->iv, 413 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 414 TLS_CIPHER_AES_GCM_256_IV_SIZE); 415 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq, 416 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 417 release_sock(sk); 418 if (copy_to_user(optval, 419 crypto_info_aes_gcm_256, 420 sizeof(*crypto_info_aes_gcm_256))) 421 rc = -EFAULT; 422 break; 423 } 424 default: 425 rc = -EINVAL; 426 } 427 428 out: 429 return rc; 430 } 431 432 static int do_tls_getsockopt(struct sock *sk, int optname, 433 char __user *optval, int __user *optlen) 434 { 435 int rc = 0; 436 437 switch (optname) { 438 case TLS_TX: 439 case TLS_RX: 440 rc = do_tls_getsockopt_conf(sk, optval, optlen, 441 optname == TLS_TX); 442 break; 443 default: 444 rc = -ENOPROTOOPT; 445 break; 446 } 447 return rc; 448 } 449 450 static int tls_getsockopt(struct sock *sk, int level, int optname, 451 char __user *optval, int __user *optlen) 452 { 453 struct tls_context *ctx = tls_get_ctx(sk); 454 455 if (level != SOL_TLS) 456 return ctx->sk_proto->getsockopt(sk, level, 457 optname, optval, optlen); 458 459 return do_tls_getsockopt(sk, optname, optval, optlen); 460 } 461 462 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, 463 unsigned int optlen, int tx) 464 { 465 struct tls_crypto_info *crypto_info; 466 struct tls_crypto_info *alt_crypto_info; 467 struct tls_context *ctx = tls_get_ctx(sk); 468 size_t optsize; 469 int rc = 0; 470 int conf; 471 472 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) { 473 rc = -EINVAL; 474 goto out; 475 } 476 477 if (tx) { 478 crypto_info = &ctx->crypto_send.info; 479 alt_crypto_info = &ctx->crypto_recv.info; 480 } else { 481 crypto_info = &ctx->crypto_recv.info; 482 alt_crypto_info = &ctx->crypto_send.info; 483 } 484 485 /* Currently we don't support set crypto info more than one time */ 486 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 487 rc = -EBUSY; 488 goto out; 489 } 490 491 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info)); 492 if (rc) { 493 rc = -EFAULT; 494 goto err_crypto_info; 495 } 496 497 /* check version */ 498 if (crypto_info->version != TLS_1_2_VERSION && 499 crypto_info->version != TLS_1_3_VERSION) { 500 rc = -EINVAL; 501 goto err_crypto_info; 502 } 503 504 /* Ensure that TLS version and ciphers are same in both directions */ 505 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 506 if (alt_crypto_info->version != crypto_info->version || 507 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 508 rc = -EINVAL; 509 goto err_crypto_info; 510 } 511 } 512 513 switch (crypto_info->cipher_type) { 514 case TLS_CIPHER_AES_GCM_128: 515 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 516 break; 517 case TLS_CIPHER_AES_GCM_256: { 518 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 519 break; 520 } 521 case TLS_CIPHER_AES_CCM_128: 522 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 523 break; 524 default: 525 rc = -EINVAL; 526 goto err_crypto_info; 527 } 528 529 if (optlen != optsize) { 530 rc = -EINVAL; 531 goto err_crypto_info; 532 } 533 534 rc = copy_from_sockptr_offset(crypto_info + 1, optval, 535 sizeof(*crypto_info), 536 optlen - sizeof(*crypto_info)); 537 if (rc) { 538 rc = -EFAULT; 539 goto err_crypto_info; 540 } 541 542 if (tx) { 543 rc = tls_set_device_offload(sk, ctx); 544 conf = TLS_HW; 545 if (!rc) { 546 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); 547 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 548 } else { 549 rc = tls_set_sw_offload(sk, ctx, 1); 550 if (rc) 551 goto err_crypto_info; 552 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); 553 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 554 conf = TLS_SW; 555 } 556 } else { 557 rc = tls_set_device_offload_rx(sk, ctx); 558 conf = TLS_HW; 559 if (!rc) { 560 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); 561 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 562 } else { 563 rc = tls_set_sw_offload(sk, ctx, 0); 564 if (rc) 565 goto err_crypto_info; 566 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); 567 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 568 conf = TLS_SW; 569 } 570 tls_sw_strparser_arm(sk, ctx); 571 } 572 573 if (tx) 574 ctx->tx_conf = conf; 575 else 576 ctx->rx_conf = conf; 577 update_sk_prot(sk, ctx); 578 if (tx) { 579 ctx->sk_write_space = sk->sk_write_space; 580 sk->sk_write_space = tls_write_space; 581 } else { 582 sk->sk_socket->ops = &tls_sw_proto_ops; 583 } 584 goto out; 585 586 err_crypto_info: 587 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 588 out: 589 return rc; 590 } 591 592 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, 593 unsigned int optlen) 594 { 595 int rc = 0; 596 597 switch (optname) { 598 case TLS_TX: 599 case TLS_RX: 600 lock_sock(sk); 601 rc = do_tls_setsockopt_conf(sk, optval, optlen, 602 optname == TLS_TX); 603 release_sock(sk); 604 break; 605 default: 606 rc = -ENOPROTOOPT; 607 break; 608 } 609 return rc; 610 } 611 612 static int tls_setsockopt(struct sock *sk, int level, int optname, 613 sockptr_t optval, unsigned int optlen) 614 { 615 struct tls_context *ctx = tls_get_ctx(sk); 616 617 if (level != SOL_TLS) 618 return ctx->sk_proto->setsockopt(sk, level, optname, optval, 619 optlen); 620 621 return do_tls_setsockopt(sk, optname, optval, optlen); 622 } 623 624 struct tls_context *tls_ctx_create(struct sock *sk) 625 { 626 struct inet_connection_sock *icsk = inet_csk(sk); 627 struct tls_context *ctx; 628 629 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 630 if (!ctx) 631 return NULL; 632 633 mutex_init(&ctx->tx_lock); 634 rcu_assign_pointer(icsk->icsk_ulp_data, ctx); 635 ctx->sk_proto = READ_ONCE(sk->sk_prot); 636 return ctx; 637 } 638 639 static void tls_build_proto(struct sock *sk) 640 { 641 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 642 struct proto *prot = READ_ONCE(sk->sk_prot); 643 644 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 645 if (ip_ver == TLSV6 && 646 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { 647 mutex_lock(&tcpv6_prot_mutex); 648 if (likely(prot != saved_tcpv6_prot)) { 649 build_protos(tls_prots[TLSV6], prot); 650 smp_store_release(&saved_tcpv6_prot, prot); 651 } 652 mutex_unlock(&tcpv6_prot_mutex); 653 } 654 655 if (ip_ver == TLSV4 && 656 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { 657 mutex_lock(&tcpv4_prot_mutex); 658 if (likely(prot != saved_tcpv4_prot)) { 659 build_protos(tls_prots[TLSV4], prot); 660 smp_store_release(&saved_tcpv4_prot, prot); 661 } 662 mutex_unlock(&tcpv4_prot_mutex); 663 } 664 } 665 666 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 667 const struct proto *base) 668 { 669 prot[TLS_BASE][TLS_BASE] = *base; 670 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 671 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 672 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 673 674 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 675 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 676 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 677 678 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 679 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 680 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read; 681 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 682 683 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 684 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 685 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read; 686 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 687 688 #ifdef CONFIG_TLS_DEVICE 689 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 690 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 691 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 692 693 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 694 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 695 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 696 697 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 698 699 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 700 701 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 702 #endif 703 #ifdef CONFIG_TLS_TOE 704 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 705 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; 706 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; 707 #endif 708 } 709 710 static int tls_init(struct sock *sk) 711 { 712 struct tls_context *ctx; 713 int rc = 0; 714 715 tls_build_proto(sk); 716 717 #ifdef CONFIG_TLS_TOE 718 if (tls_toe_bypass(sk)) 719 return 0; 720 #endif 721 722 /* The TLS ulp is currently supported only for TCP sockets 723 * in ESTABLISHED state. 724 * Supporting sockets in LISTEN state will require us 725 * to modify the accept implementation to clone rather then 726 * share the ulp context. 727 */ 728 if (sk->sk_state != TCP_ESTABLISHED) 729 return -ENOTCONN; 730 731 /* allocate tls context */ 732 write_lock_bh(&sk->sk_callback_lock); 733 ctx = tls_ctx_create(sk); 734 if (!ctx) { 735 rc = -ENOMEM; 736 goto out; 737 } 738 739 ctx->tx_conf = TLS_BASE; 740 ctx->rx_conf = TLS_BASE; 741 update_sk_prot(sk, ctx); 742 out: 743 write_unlock_bh(&sk->sk_callback_lock); 744 return rc; 745 } 746 747 static void tls_update(struct sock *sk, struct proto *p, 748 void (*write_space)(struct sock *sk)) 749 { 750 struct tls_context *ctx; 751 752 ctx = tls_get_ctx(sk); 753 if (likely(ctx)) { 754 ctx->sk_write_space = write_space; 755 ctx->sk_proto = p; 756 } else { 757 /* Pairs with lockless read in sk_clone_lock(). */ 758 WRITE_ONCE(sk->sk_prot, p); 759 sk->sk_write_space = write_space; 760 } 761 } 762 763 static int tls_get_info(const struct sock *sk, struct sk_buff *skb) 764 { 765 u16 version, cipher_type; 766 struct tls_context *ctx; 767 struct nlattr *start; 768 int err; 769 770 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); 771 if (!start) 772 return -EMSGSIZE; 773 774 rcu_read_lock(); 775 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); 776 if (!ctx) { 777 err = 0; 778 goto nla_failure; 779 } 780 version = ctx->prot_info.version; 781 if (version) { 782 err = nla_put_u16(skb, TLS_INFO_VERSION, version); 783 if (err) 784 goto nla_failure; 785 } 786 cipher_type = ctx->prot_info.cipher_type; 787 if (cipher_type) { 788 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); 789 if (err) 790 goto nla_failure; 791 } 792 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); 793 if (err) 794 goto nla_failure; 795 796 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); 797 if (err) 798 goto nla_failure; 799 800 rcu_read_unlock(); 801 nla_nest_end(skb, start); 802 return 0; 803 804 nla_failure: 805 rcu_read_unlock(); 806 nla_nest_cancel(skb, start); 807 return err; 808 } 809 810 static size_t tls_get_info_size(const struct sock *sk) 811 { 812 size_t size = 0; 813 814 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ 815 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ 816 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ 817 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ 818 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 819 0; 820 821 return size; 822 } 823 824 static int __net_init tls_init_net(struct net *net) 825 { 826 int err; 827 828 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); 829 if (!net->mib.tls_statistics) 830 return -ENOMEM; 831 832 err = tls_proc_init(net); 833 if (err) 834 goto err_free_stats; 835 836 return 0; 837 err_free_stats: 838 free_percpu(net->mib.tls_statistics); 839 return err; 840 } 841 842 static void __net_exit tls_exit_net(struct net *net) 843 { 844 tls_proc_fini(net); 845 free_percpu(net->mib.tls_statistics); 846 } 847 848 static struct pernet_operations tls_proc_ops = { 849 .init = tls_init_net, 850 .exit = tls_exit_net, 851 }; 852 853 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 854 .name = "tls", 855 .owner = THIS_MODULE, 856 .init = tls_init, 857 .update = tls_update, 858 .get_info = tls_get_info, 859 .get_info_size = tls_get_info_size, 860 }; 861 862 static int __init tls_register(void) 863 { 864 int err; 865 866 err = register_pernet_subsys(&tls_proc_ops); 867 if (err) 868 return err; 869 870 tls_sw_proto_ops = inet_stream_ops; 871 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 872 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked; 873 874 tls_device_init(); 875 tcp_register_ulp(&tcp_tls_ulp_ops); 876 877 return 0; 878 } 879 880 static void __exit tls_unregister(void) 881 { 882 tcp_unregister_ulp(&tcp_tls_ulp_ops); 883 tls_device_cleanup(); 884 unregister_pernet_subsys(&tls_proc_ops); 885 } 886 887 module_init(tls_register); 888 module_exit(tls_unregister); 889