1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 #include <linux/inet_diag.h> 43 44 #include <net/snmp.h> 45 #include <net/tls.h> 46 #include <net/tls_toe.h> 47 48 #include "tls.h" 49 50 MODULE_AUTHOR("Mellanox Technologies"); 51 MODULE_DESCRIPTION("Transport Layer Security Support"); 52 MODULE_LICENSE("Dual BSD/GPL"); 53 MODULE_ALIAS_TCP_ULP("tls"); 54 55 enum { 56 TLSV4, 57 TLSV6, 58 TLS_NUM_PROTS, 59 }; 60 61 #define CIPHER_SIZE_DESC(cipher) [cipher] = { \ 62 .iv = cipher ## _IV_SIZE, \ 63 .key = cipher ## _KEY_SIZE, \ 64 .salt = cipher ## _SALT_SIZE, \ 65 .tag = cipher ## _TAG_SIZE, \ 66 .rec_seq = cipher ## _REC_SEQ_SIZE, \ 67 } 68 69 const struct tls_cipher_size_desc tls_cipher_size_desc[] = { 70 CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128), 71 CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256), 72 CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128), 73 CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305), 74 CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM), 75 CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM), 76 }; 77 78 static const struct proto *saved_tcpv6_prot; 79 static DEFINE_MUTEX(tcpv6_prot_mutex); 80 static const struct proto *saved_tcpv4_prot; 81 static DEFINE_MUTEX(tcpv4_prot_mutex); 82 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 83 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 84 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 85 const struct proto *base); 86 87 void update_sk_prot(struct sock *sk, struct tls_context *ctx) 88 { 89 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 90 91 WRITE_ONCE(sk->sk_prot, 92 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); 93 WRITE_ONCE(sk->sk_socket->ops, 94 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]); 95 } 96 97 int wait_on_pending_writer(struct sock *sk, long *timeo) 98 { 99 int rc = 0; 100 DEFINE_WAIT_FUNC(wait, woken_wake_function); 101 102 add_wait_queue(sk_sleep(sk), &wait); 103 while (1) { 104 if (!*timeo) { 105 rc = -EAGAIN; 106 break; 107 } 108 109 if (signal_pending(current)) { 110 rc = sock_intr_errno(*timeo); 111 break; 112 } 113 114 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 115 break; 116 } 117 remove_wait_queue(sk_sleep(sk), &wait); 118 return rc; 119 } 120 121 int tls_push_sg(struct sock *sk, 122 struct tls_context *ctx, 123 struct scatterlist *sg, 124 u16 first_offset, 125 int flags) 126 { 127 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 128 int ret = 0; 129 struct page *p; 130 size_t size; 131 int offset = first_offset; 132 133 size = sg->length - offset; 134 offset += sg->offset; 135 136 ctx->in_tcp_sendpages = true; 137 while (1) { 138 if (sg_is_last(sg)) 139 sendpage_flags = flags; 140 141 /* is sending application-limited? */ 142 tcp_rate_check_app_limited(sk); 143 p = sg_page(sg); 144 retry: 145 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 146 147 if (ret != size) { 148 if (ret > 0) { 149 offset += ret; 150 size -= ret; 151 goto retry; 152 } 153 154 offset -= sg->offset; 155 ctx->partially_sent_offset = offset; 156 ctx->partially_sent_record = (void *)sg; 157 ctx->in_tcp_sendpages = false; 158 return ret; 159 } 160 161 put_page(p); 162 sk_mem_uncharge(sk, sg->length); 163 sg = sg_next(sg); 164 if (!sg) 165 break; 166 167 offset = sg->offset; 168 size = sg->length; 169 } 170 171 ctx->in_tcp_sendpages = false; 172 173 return 0; 174 } 175 176 static int tls_handle_open_record(struct sock *sk, int flags) 177 { 178 struct tls_context *ctx = tls_get_ctx(sk); 179 180 if (tls_is_pending_open_record(ctx)) 181 return ctx->push_pending_record(sk, flags); 182 183 return 0; 184 } 185 186 int tls_process_cmsg(struct sock *sk, struct msghdr *msg, 187 unsigned char *record_type) 188 { 189 struct cmsghdr *cmsg; 190 int rc = -EINVAL; 191 192 for_each_cmsghdr(cmsg, msg) { 193 if (!CMSG_OK(msg, cmsg)) 194 return -EINVAL; 195 if (cmsg->cmsg_level != SOL_TLS) 196 continue; 197 198 switch (cmsg->cmsg_type) { 199 case TLS_SET_RECORD_TYPE: 200 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 201 return -EINVAL; 202 203 if (msg->msg_flags & MSG_MORE) 204 return -EINVAL; 205 206 rc = tls_handle_open_record(sk, msg->msg_flags); 207 if (rc) 208 return rc; 209 210 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 211 rc = 0; 212 break; 213 default: 214 return -EINVAL; 215 } 216 } 217 218 return rc; 219 } 220 221 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 222 int flags) 223 { 224 struct scatterlist *sg; 225 u16 offset; 226 227 sg = ctx->partially_sent_record; 228 offset = ctx->partially_sent_offset; 229 230 ctx->partially_sent_record = NULL; 231 return tls_push_sg(sk, ctx, sg, offset, flags); 232 } 233 234 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 235 { 236 struct scatterlist *sg; 237 238 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { 239 put_page(sg_page(sg)); 240 sk_mem_uncharge(sk, sg->length); 241 } 242 ctx->partially_sent_record = NULL; 243 } 244 245 static void tls_write_space(struct sock *sk) 246 { 247 struct tls_context *ctx = tls_get_ctx(sk); 248 249 /* If in_tcp_sendpages call lower protocol write space handler 250 * to ensure we wake up any waiting operations there. For example 251 * if do_tcp_sendpages where to call sk_wait_event. 252 */ 253 if (ctx->in_tcp_sendpages) { 254 ctx->sk_write_space(sk); 255 return; 256 } 257 258 #ifdef CONFIG_TLS_DEVICE 259 if (ctx->tx_conf == TLS_HW) 260 tls_device_write_space(sk, ctx); 261 else 262 #endif 263 tls_sw_write_space(sk, ctx); 264 265 ctx->sk_write_space(sk); 266 } 267 268 /** 269 * tls_ctx_free() - free TLS ULP context 270 * @sk: socket to with @ctx is attached 271 * @ctx: TLS context structure 272 * 273 * Free TLS context. If @sk is %NULL caller guarantees that the socket 274 * to which @ctx was attached has no outstanding references. 275 */ 276 void tls_ctx_free(struct sock *sk, struct tls_context *ctx) 277 { 278 if (!ctx) 279 return; 280 281 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 282 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 283 mutex_destroy(&ctx->tx_lock); 284 285 if (sk) 286 kfree_rcu(ctx, rcu); 287 else 288 kfree(ctx); 289 } 290 291 static void tls_sk_proto_cleanup(struct sock *sk, 292 struct tls_context *ctx, long timeo) 293 { 294 if (unlikely(sk->sk_write_pending) && 295 !wait_on_pending_writer(sk, &timeo)) 296 tls_handle_open_record(sk, 0); 297 298 /* We need these for tls_sw_fallback handling of other packets */ 299 if (ctx->tx_conf == TLS_SW) { 300 kfree(ctx->tx.rec_seq); 301 kfree(ctx->tx.iv); 302 tls_sw_release_resources_tx(sk); 303 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 304 } else if (ctx->tx_conf == TLS_HW) { 305 tls_device_free_resources_tx(sk); 306 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 307 } 308 309 if (ctx->rx_conf == TLS_SW) { 310 tls_sw_release_resources_rx(sk); 311 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 312 } else if (ctx->rx_conf == TLS_HW) { 313 tls_device_offload_cleanup_rx(sk); 314 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 315 } 316 } 317 318 static void tls_sk_proto_close(struct sock *sk, long timeout) 319 { 320 struct inet_connection_sock *icsk = inet_csk(sk); 321 struct tls_context *ctx = tls_get_ctx(sk); 322 long timeo = sock_sndtimeo(sk, 0); 323 bool free_ctx; 324 325 if (ctx->tx_conf == TLS_SW) 326 tls_sw_cancel_work_tx(ctx); 327 328 lock_sock(sk); 329 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 330 331 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 332 tls_sk_proto_cleanup(sk, ctx, timeo); 333 334 write_lock_bh(&sk->sk_callback_lock); 335 if (free_ctx) 336 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 337 WRITE_ONCE(sk->sk_prot, ctx->sk_proto); 338 if (sk->sk_write_space == tls_write_space) 339 sk->sk_write_space = ctx->sk_write_space; 340 write_unlock_bh(&sk->sk_callback_lock); 341 release_sock(sk); 342 if (ctx->tx_conf == TLS_SW) 343 tls_sw_free_ctx_tx(ctx); 344 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 345 tls_sw_strparser_done(ctx); 346 if (ctx->rx_conf == TLS_SW) 347 tls_sw_free_ctx_rx(ctx); 348 ctx->sk_proto->close(sk, timeout); 349 350 if (free_ctx) 351 tls_ctx_free(sk, ctx); 352 } 353 354 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval, 355 int __user *optlen, int tx) 356 { 357 int rc = 0; 358 struct tls_context *ctx = tls_get_ctx(sk); 359 struct tls_crypto_info *crypto_info; 360 struct cipher_context *cctx; 361 int len; 362 363 if (get_user(len, optlen)) 364 return -EFAULT; 365 366 if (!optval || (len < sizeof(*crypto_info))) { 367 rc = -EINVAL; 368 goto out; 369 } 370 371 if (!ctx) { 372 rc = -EBUSY; 373 goto out; 374 } 375 376 /* get user crypto info */ 377 if (tx) { 378 crypto_info = &ctx->crypto_send.info; 379 cctx = &ctx->tx; 380 } else { 381 crypto_info = &ctx->crypto_recv.info; 382 cctx = &ctx->rx; 383 } 384 385 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 386 rc = -EBUSY; 387 goto out; 388 } 389 390 if (len == sizeof(*crypto_info)) { 391 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 392 rc = -EFAULT; 393 goto out; 394 } 395 396 switch (crypto_info->cipher_type) { 397 case TLS_CIPHER_AES_GCM_128: { 398 struct tls12_crypto_info_aes_gcm_128 * 399 crypto_info_aes_gcm_128 = 400 container_of(crypto_info, 401 struct tls12_crypto_info_aes_gcm_128, 402 info); 403 404 if (len != sizeof(*crypto_info_aes_gcm_128)) { 405 rc = -EINVAL; 406 goto out; 407 } 408 lock_sock(sk); 409 memcpy(crypto_info_aes_gcm_128->iv, 410 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 411 TLS_CIPHER_AES_GCM_128_IV_SIZE); 412 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq, 413 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 414 release_sock(sk); 415 if (copy_to_user(optval, 416 crypto_info_aes_gcm_128, 417 sizeof(*crypto_info_aes_gcm_128))) 418 rc = -EFAULT; 419 break; 420 } 421 case TLS_CIPHER_AES_GCM_256: { 422 struct tls12_crypto_info_aes_gcm_256 * 423 crypto_info_aes_gcm_256 = 424 container_of(crypto_info, 425 struct tls12_crypto_info_aes_gcm_256, 426 info); 427 428 if (len != sizeof(*crypto_info_aes_gcm_256)) { 429 rc = -EINVAL; 430 goto out; 431 } 432 lock_sock(sk); 433 memcpy(crypto_info_aes_gcm_256->iv, 434 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 435 TLS_CIPHER_AES_GCM_256_IV_SIZE); 436 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq, 437 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 438 release_sock(sk); 439 if (copy_to_user(optval, 440 crypto_info_aes_gcm_256, 441 sizeof(*crypto_info_aes_gcm_256))) 442 rc = -EFAULT; 443 break; 444 } 445 case TLS_CIPHER_AES_CCM_128: { 446 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 = 447 container_of(crypto_info, 448 struct tls12_crypto_info_aes_ccm_128, info); 449 450 if (len != sizeof(*aes_ccm_128)) { 451 rc = -EINVAL; 452 goto out; 453 } 454 lock_sock(sk); 455 memcpy(aes_ccm_128->iv, 456 cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE, 457 TLS_CIPHER_AES_CCM_128_IV_SIZE); 458 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq, 459 TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE); 460 release_sock(sk); 461 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128))) 462 rc = -EFAULT; 463 break; 464 } 465 case TLS_CIPHER_CHACHA20_POLY1305: { 466 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 = 467 container_of(crypto_info, 468 struct tls12_crypto_info_chacha20_poly1305, 469 info); 470 471 if (len != sizeof(*chacha20_poly1305)) { 472 rc = -EINVAL; 473 goto out; 474 } 475 lock_sock(sk); 476 memcpy(chacha20_poly1305->iv, 477 cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE, 478 TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE); 479 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq, 480 TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE); 481 release_sock(sk); 482 if (copy_to_user(optval, chacha20_poly1305, 483 sizeof(*chacha20_poly1305))) 484 rc = -EFAULT; 485 break; 486 } 487 case TLS_CIPHER_SM4_GCM: { 488 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info = 489 container_of(crypto_info, 490 struct tls12_crypto_info_sm4_gcm, info); 491 492 if (len != sizeof(*sm4_gcm_info)) { 493 rc = -EINVAL; 494 goto out; 495 } 496 lock_sock(sk); 497 memcpy(sm4_gcm_info->iv, 498 cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE, 499 TLS_CIPHER_SM4_GCM_IV_SIZE); 500 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq, 501 TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE); 502 release_sock(sk); 503 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info))) 504 rc = -EFAULT; 505 break; 506 } 507 case TLS_CIPHER_SM4_CCM: { 508 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info = 509 container_of(crypto_info, 510 struct tls12_crypto_info_sm4_ccm, info); 511 512 if (len != sizeof(*sm4_ccm_info)) { 513 rc = -EINVAL; 514 goto out; 515 } 516 lock_sock(sk); 517 memcpy(sm4_ccm_info->iv, 518 cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE, 519 TLS_CIPHER_SM4_CCM_IV_SIZE); 520 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq, 521 TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE); 522 release_sock(sk); 523 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info))) 524 rc = -EFAULT; 525 break; 526 } 527 case TLS_CIPHER_ARIA_GCM_128: { 528 struct tls12_crypto_info_aria_gcm_128 * 529 crypto_info_aria_gcm_128 = 530 container_of(crypto_info, 531 struct tls12_crypto_info_aria_gcm_128, 532 info); 533 534 if (len != sizeof(*crypto_info_aria_gcm_128)) { 535 rc = -EINVAL; 536 goto out; 537 } 538 lock_sock(sk); 539 memcpy(crypto_info_aria_gcm_128->iv, 540 cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE, 541 TLS_CIPHER_ARIA_GCM_128_IV_SIZE); 542 memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq, 543 TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE); 544 release_sock(sk); 545 if (copy_to_user(optval, 546 crypto_info_aria_gcm_128, 547 sizeof(*crypto_info_aria_gcm_128))) 548 rc = -EFAULT; 549 break; 550 } 551 case TLS_CIPHER_ARIA_GCM_256: { 552 struct tls12_crypto_info_aria_gcm_256 * 553 crypto_info_aria_gcm_256 = 554 container_of(crypto_info, 555 struct tls12_crypto_info_aria_gcm_256, 556 info); 557 558 if (len != sizeof(*crypto_info_aria_gcm_256)) { 559 rc = -EINVAL; 560 goto out; 561 } 562 lock_sock(sk); 563 memcpy(crypto_info_aria_gcm_256->iv, 564 cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE, 565 TLS_CIPHER_ARIA_GCM_256_IV_SIZE); 566 memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq, 567 TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE); 568 release_sock(sk); 569 if (copy_to_user(optval, 570 crypto_info_aria_gcm_256, 571 sizeof(*crypto_info_aria_gcm_256))) 572 rc = -EFAULT; 573 break; 574 } 575 default: 576 rc = -EINVAL; 577 } 578 579 out: 580 return rc; 581 } 582 583 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval, 584 int __user *optlen) 585 { 586 struct tls_context *ctx = tls_get_ctx(sk); 587 unsigned int value; 588 int len; 589 590 if (get_user(len, optlen)) 591 return -EFAULT; 592 593 if (len != sizeof(value)) 594 return -EINVAL; 595 596 value = ctx->zerocopy_sendfile; 597 if (copy_to_user(optval, &value, sizeof(value))) 598 return -EFAULT; 599 600 return 0; 601 } 602 603 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval, 604 int __user *optlen) 605 { 606 struct tls_context *ctx = tls_get_ctx(sk); 607 int value, len; 608 609 if (ctx->prot_info.version != TLS_1_3_VERSION) 610 return -EINVAL; 611 612 if (get_user(len, optlen)) 613 return -EFAULT; 614 if (len < sizeof(value)) 615 return -EINVAL; 616 617 lock_sock(sk); 618 value = -EINVAL; 619 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 620 value = ctx->rx_no_pad; 621 release_sock(sk); 622 if (value < 0) 623 return value; 624 625 if (put_user(sizeof(value), optlen)) 626 return -EFAULT; 627 if (copy_to_user(optval, &value, sizeof(value))) 628 return -EFAULT; 629 630 return 0; 631 } 632 633 static int do_tls_getsockopt(struct sock *sk, int optname, 634 char __user *optval, int __user *optlen) 635 { 636 int rc = 0; 637 638 switch (optname) { 639 case TLS_TX: 640 case TLS_RX: 641 rc = do_tls_getsockopt_conf(sk, optval, optlen, 642 optname == TLS_TX); 643 break; 644 case TLS_TX_ZEROCOPY_RO: 645 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen); 646 break; 647 case TLS_RX_EXPECT_NO_PAD: 648 rc = do_tls_getsockopt_no_pad(sk, optval, optlen); 649 break; 650 default: 651 rc = -ENOPROTOOPT; 652 break; 653 } 654 return rc; 655 } 656 657 static int tls_getsockopt(struct sock *sk, int level, int optname, 658 char __user *optval, int __user *optlen) 659 { 660 struct tls_context *ctx = tls_get_ctx(sk); 661 662 if (level != SOL_TLS) 663 return ctx->sk_proto->getsockopt(sk, level, 664 optname, optval, optlen); 665 666 return do_tls_getsockopt(sk, optname, optval, optlen); 667 } 668 669 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, 670 unsigned int optlen, int tx) 671 { 672 struct tls_crypto_info *crypto_info; 673 struct tls_crypto_info *alt_crypto_info; 674 struct tls_context *ctx = tls_get_ctx(sk); 675 size_t optsize; 676 int rc = 0; 677 int conf; 678 679 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) 680 return -EINVAL; 681 682 if (tx) { 683 crypto_info = &ctx->crypto_send.info; 684 alt_crypto_info = &ctx->crypto_recv.info; 685 } else { 686 crypto_info = &ctx->crypto_recv.info; 687 alt_crypto_info = &ctx->crypto_send.info; 688 } 689 690 /* Currently we don't support set crypto info more than one time */ 691 if (TLS_CRYPTO_INFO_READY(crypto_info)) 692 return -EBUSY; 693 694 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info)); 695 if (rc) { 696 rc = -EFAULT; 697 goto err_crypto_info; 698 } 699 700 /* check version */ 701 if (crypto_info->version != TLS_1_2_VERSION && 702 crypto_info->version != TLS_1_3_VERSION) { 703 rc = -EINVAL; 704 goto err_crypto_info; 705 } 706 707 /* Ensure that TLS version and ciphers are same in both directions */ 708 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 709 if (alt_crypto_info->version != crypto_info->version || 710 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 711 rc = -EINVAL; 712 goto err_crypto_info; 713 } 714 } 715 716 switch (crypto_info->cipher_type) { 717 case TLS_CIPHER_AES_GCM_128: 718 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 719 break; 720 case TLS_CIPHER_AES_GCM_256: { 721 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 722 break; 723 } 724 case TLS_CIPHER_AES_CCM_128: 725 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 726 break; 727 case TLS_CIPHER_CHACHA20_POLY1305: 728 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305); 729 break; 730 case TLS_CIPHER_SM4_GCM: 731 optsize = sizeof(struct tls12_crypto_info_sm4_gcm); 732 break; 733 case TLS_CIPHER_SM4_CCM: 734 optsize = sizeof(struct tls12_crypto_info_sm4_ccm); 735 break; 736 case TLS_CIPHER_ARIA_GCM_128: 737 if (crypto_info->version != TLS_1_2_VERSION) { 738 rc = -EINVAL; 739 goto err_crypto_info; 740 } 741 optsize = sizeof(struct tls12_crypto_info_aria_gcm_128); 742 break; 743 case TLS_CIPHER_ARIA_GCM_256: 744 if (crypto_info->version != TLS_1_2_VERSION) { 745 rc = -EINVAL; 746 goto err_crypto_info; 747 } 748 optsize = sizeof(struct tls12_crypto_info_aria_gcm_256); 749 break; 750 default: 751 rc = -EINVAL; 752 goto err_crypto_info; 753 } 754 755 if (optlen != optsize) { 756 rc = -EINVAL; 757 goto err_crypto_info; 758 } 759 760 rc = copy_from_sockptr_offset(crypto_info + 1, optval, 761 sizeof(*crypto_info), 762 optlen - sizeof(*crypto_info)); 763 if (rc) { 764 rc = -EFAULT; 765 goto err_crypto_info; 766 } 767 768 if (tx) { 769 rc = tls_set_device_offload(sk, ctx); 770 conf = TLS_HW; 771 if (!rc) { 772 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); 773 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 774 } else { 775 rc = tls_set_sw_offload(sk, ctx, 1); 776 if (rc) 777 goto err_crypto_info; 778 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); 779 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 780 conf = TLS_SW; 781 } 782 } else { 783 rc = tls_set_device_offload_rx(sk, ctx); 784 conf = TLS_HW; 785 if (!rc) { 786 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); 787 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 788 } else { 789 rc = tls_set_sw_offload(sk, ctx, 0); 790 if (rc) 791 goto err_crypto_info; 792 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); 793 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 794 conf = TLS_SW; 795 } 796 tls_sw_strparser_arm(sk, ctx); 797 } 798 799 if (tx) 800 ctx->tx_conf = conf; 801 else 802 ctx->rx_conf = conf; 803 update_sk_prot(sk, ctx); 804 if (tx) { 805 ctx->sk_write_space = sk->sk_write_space; 806 sk->sk_write_space = tls_write_space; 807 } else { 808 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx); 809 810 tls_strp_check_rcv(&rx_ctx->strp); 811 } 812 return 0; 813 814 err_crypto_info: 815 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 816 return rc; 817 } 818 819 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval, 820 unsigned int optlen) 821 { 822 struct tls_context *ctx = tls_get_ctx(sk); 823 unsigned int value; 824 825 if (sockptr_is_null(optval) || optlen != sizeof(value)) 826 return -EINVAL; 827 828 if (copy_from_sockptr(&value, optval, sizeof(value))) 829 return -EFAULT; 830 831 if (value > 1) 832 return -EINVAL; 833 834 ctx->zerocopy_sendfile = value; 835 836 return 0; 837 } 838 839 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval, 840 unsigned int optlen) 841 { 842 struct tls_context *ctx = tls_get_ctx(sk); 843 u32 val; 844 int rc; 845 846 if (ctx->prot_info.version != TLS_1_3_VERSION || 847 sockptr_is_null(optval) || optlen < sizeof(val)) 848 return -EINVAL; 849 850 rc = copy_from_sockptr(&val, optval, sizeof(val)); 851 if (rc) 852 return -EFAULT; 853 if (val > 1) 854 return -EINVAL; 855 rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val)); 856 if (rc < 1) 857 return rc == 0 ? -EINVAL : rc; 858 859 lock_sock(sk); 860 rc = -EINVAL; 861 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) { 862 ctx->rx_no_pad = val; 863 tls_update_rx_zc_capable(ctx); 864 rc = 0; 865 } 866 release_sock(sk); 867 868 return rc; 869 } 870 871 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, 872 unsigned int optlen) 873 { 874 int rc = 0; 875 876 switch (optname) { 877 case TLS_TX: 878 case TLS_RX: 879 lock_sock(sk); 880 rc = do_tls_setsockopt_conf(sk, optval, optlen, 881 optname == TLS_TX); 882 release_sock(sk); 883 break; 884 case TLS_TX_ZEROCOPY_RO: 885 lock_sock(sk); 886 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen); 887 release_sock(sk); 888 break; 889 case TLS_RX_EXPECT_NO_PAD: 890 rc = do_tls_setsockopt_no_pad(sk, optval, optlen); 891 break; 892 default: 893 rc = -ENOPROTOOPT; 894 break; 895 } 896 return rc; 897 } 898 899 static int tls_setsockopt(struct sock *sk, int level, int optname, 900 sockptr_t optval, unsigned int optlen) 901 { 902 struct tls_context *ctx = tls_get_ctx(sk); 903 904 if (level != SOL_TLS) 905 return ctx->sk_proto->setsockopt(sk, level, optname, optval, 906 optlen); 907 908 return do_tls_setsockopt(sk, optname, optval, optlen); 909 } 910 911 struct tls_context *tls_ctx_create(struct sock *sk) 912 { 913 struct inet_connection_sock *icsk = inet_csk(sk); 914 struct tls_context *ctx; 915 916 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 917 if (!ctx) 918 return NULL; 919 920 mutex_init(&ctx->tx_lock); 921 rcu_assign_pointer(icsk->icsk_ulp_data, ctx); 922 ctx->sk_proto = READ_ONCE(sk->sk_prot); 923 ctx->sk = sk; 924 return ctx; 925 } 926 927 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 928 const struct proto_ops *base) 929 { 930 ops[TLS_BASE][TLS_BASE] = *base; 931 932 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; 933 ops[TLS_SW ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked; 934 935 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE]; 936 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read; 937 938 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE]; 939 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read; 940 941 #ifdef CONFIG_TLS_DEVICE 942 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; 943 ops[TLS_HW ][TLS_BASE].sendpage_locked = NULL; 944 945 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ]; 946 ops[TLS_HW ][TLS_SW ].sendpage_locked = NULL; 947 948 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ]; 949 950 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ]; 951 952 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ]; 953 ops[TLS_HW ][TLS_HW ].sendpage_locked = NULL; 954 #endif 955 #ifdef CONFIG_TLS_TOE 956 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 957 #endif 958 } 959 960 static void tls_build_proto(struct sock *sk) 961 { 962 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 963 struct proto *prot = READ_ONCE(sk->sk_prot); 964 965 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 966 if (ip_ver == TLSV6 && 967 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { 968 mutex_lock(&tcpv6_prot_mutex); 969 if (likely(prot != saved_tcpv6_prot)) { 970 build_protos(tls_prots[TLSV6], prot); 971 build_proto_ops(tls_proto_ops[TLSV6], 972 sk->sk_socket->ops); 973 smp_store_release(&saved_tcpv6_prot, prot); 974 } 975 mutex_unlock(&tcpv6_prot_mutex); 976 } 977 978 if (ip_ver == TLSV4 && 979 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { 980 mutex_lock(&tcpv4_prot_mutex); 981 if (likely(prot != saved_tcpv4_prot)) { 982 build_protos(tls_prots[TLSV4], prot); 983 build_proto_ops(tls_proto_ops[TLSV4], 984 sk->sk_socket->ops); 985 smp_store_release(&saved_tcpv4_prot, prot); 986 } 987 mutex_unlock(&tcpv4_prot_mutex); 988 } 989 } 990 991 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 992 const struct proto *base) 993 { 994 prot[TLS_BASE][TLS_BASE] = *base; 995 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 996 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 997 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 998 999 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 1000 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 1001 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 1002 1003 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 1004 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 1005 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; 1006 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 1007 1008 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 1009 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 1010 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; 1011 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 1012 1013 #ifdef CONFIG_TLS_DEVICE 1014 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 1015 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 1016 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 1017 1018 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 1019 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 1020 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 1021 1022 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 1023 1024 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 1025 1026 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 1027 #endif 1028 #ifdef CONFIG_TLS_TOE 1029 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 1030 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; 1031 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; 1032 #endif 1033 } 1034 1035 static int tls_init(struct sock *sk) 1036 { 1037 struct tls_context *ctx; 1038 int rc = 0; 1039 1040 tls_build_proto(sk); 1041 1042 #ifdef CONFIG_TLS_TOE 1043 if (tls_toe_bypass(sk)) 1044 return 0; 1045 #endif 1046 1047 /* The TLS ulp is currently supported only for TCP sockets 1048 * in ESTABLISHED state. 1049 * Supporting sockets in LISTEN state will require us 1050 * to modify the accept implementation to clone rather then 1051 * share the ulp context. 1052 */ 1053 if (sk->sk_state != TCP_ESTABLISHED) 1054 return -ENOTCONN; 1055 1056 /* allocate tls context */ 1057 write_lock_bh(&sk->sk_callback_lock); 1058 ctx = tls_ctx_create(sk); 1059 if (!ctx) { 1060 rc = -ENOMEM; 1061 goto out; 1062 } 1063 1064 ctx->tx_conf = TLS_BASE; 1065 ctx->rx_conf = TLS_BASE; 1066 update_sk_prot(sk, ctx); 1067 out: 1068 write_unlock_bh(&sk->sk_callback_lock); 1069 return rc; 1070 } 1071 1072 static void tls_update(struct sock *sk, struct proto *p, 1073 void (*write_space)(struct sock *sk)) 1074 { 1075 struct tls_context *ctx; 1076 1077 WARN_ON_ONCE(sk->sk_prot == p); 1078 1079 ctx = tls_get_ctx(sk); 1080 if (likely(ctx)) { 1081 ctx->sk_write_space = write_space; 1082 ctx->sk_proto = p; 1083 } else { 1084 /* Pairs with lockless read in sk_clone_lock(). */ 1085 WRITE_ONCE(sk->sk_prot, p); 1086 sk->sk_write_space = write_space; 1087 } 1088 } 1089 1090 static u16 tls_user_config(struct tls_context *ctx, bool tx) 1091 { 1092 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; 1093 1094 switch (config) { 1095 case TLS_BASE: 1096 return TLS_CONF_BASE; 1097 case TLS_SW: 1098 return TLS_CONF_SW; 1099 case TLS_HW: 1100 return TLS_CONF_HW; 1101 case TLS_HW_RECORD: 1102 return TLS_CONF_HW_RECORD; 1103 } 1104 return 0; 1105 } 1106 1107 static int tls_get_info(const struct sock *sk, struct sk_buff *skb) 1108 { 1109 u16 version, cipher_type; 1110 struct tls_context *ctx; 1111 struct nlattr *start; 1112 int err; 1113 1114 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); 1115 if (!start) 1116 return -EMSGSIZE; 1117 1118 rcu_read_lock(); 1119 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); 1120 if (!ctx) { 1121 err = 0; 1122 goto nla_failure; 1123 } 1124 version = ctx->prot_info.version; 1125 if (version) { 1126 err = nla_put_u16(skb, TLS_INFO_VERSION, version); 1127 if (err) 1128 goto nla_failure; 1129 } 1130 cipher_type = ctx->prot_info.cipher_type; 1131 if (cipher_type) { 1132 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); 1133 if (err) 1134 goto nla_failure; 1135 } 1136 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); 1137 if (err) 1138 goto nla_failure; 1139 1140 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); 1141 if (err) 1142 goto nla_failure; 1143 1144 if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) { 1145 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX); 1146 if (err) 1147 goto nla_failure; 1148 } 1149 if (ctx->rx_no_pad) { 1150 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD); 1151 if (err) 1152 goto nla_failure; 1153 } 1154 1155 rcu_read_unlock(); 1156 nla_nest_end(skb, start); 1157 return 0; 1158 1159 nla_failure: 1160 rcu_read_unlock(); 1161 nla_nest_cancel(skb, start); 1162 return err; 1163 } 1164 1165 static size_t tls_get_info_size(const struct sock *sk) 1166 { 1167 size_t size = 0; 1168 1169 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ 1170 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ 1171 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ 1172 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ 1173 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 1174 nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */ 1175 nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */ 1176 0; 1177 1178 return size; 1179 } 1180 1181 static int __net_init tls_init_net(struct net *net) 1182 { 1183 int err; 1184 1185 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); 1186 if (!net->mib.tls_statistics) 1187 return -ENOMEM; 1188 1189 err = tls_proc_init(net); 1190 if (err) 1191 goto err_free_stats; 1192 1193 return 0; 1194 err_free_stats: 1195 free_percpu(net->mib.tls_statistics); 1196 return err; 1197 } 1198 1199 static void __net_exit tls_exit_net(struct net *net) 1200 { 1201 tls_proc_fini(net); 1202 free_percpu(net->mib.tls_statistics); 1203 } 1204 1205 static struct pernet_operations tls_proc_ops = { 1206 .init = tls_init_net, 1207 .exit = tls_exit_net, 1208 }; 1209 1210 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 1211 .name = "tls", 1212 .owner = THIS_MODULE, 1213 .init = tls_init, 1214 .update = tls_update, 1215 .get_info = tls_get_info, 1216 .get_info_size = tls_get_info_size, 1217 }; 1218 1219 static int __init tls_register(void) 1220 { 1221 int err; 1222 1223 err = register_pernet_subsys(&tls_proc_ops); 1224 if (err) 1225 return err; 1226 1227 err = tls_strp_dev_init(); 1228 if (err) 1229 goto err_pernet; 1230 1231 err = tls_device_init(); 1232 if (err) 1233 goto err_strp; 1234 1235 tcp_register_ulp(&tcp_tls_ulp_ops); 1236 1237 return 0; 1238 err_strp: 1239 tls_strp_dev_exit(); 1240 err_pernet: 1241 unregister_pernet_subsys(&tls_proc_ops); 1242 return err; 1243 } 1244 1245 static void __exit tls_unregister(void) 1246 { 1247 tcp_unregister_ulp(&tcp_tls_ulp_ops); 1248 tls_strp_dev_exit(); 1249 tls_device_cleanup(); 1250 unregister_pernet_subsys(&tls_proc_ops); 1251 } 1252 1253 module_init(tls_register); 1254 module_exit(tls_unregister); 1255