1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 #include "tls.h"
49
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54
55 enum {
56 TLSV4,
57 TLSV6,
58 TLS_NUM_PROTS,
59 };
60
61 #define CHECK_CIPHER_DESC(cipher,ci) \
62 static_assert(cipher ## _IV_SIZE <= MAX_IV_SIZE); \
63 static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE); \
64 static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE); \
65 static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE); \
66 static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE); \
67 static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE); \
68 static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
69
70 #define __CIPHER_DESC(ci) \
71 .iv_offset = offsetof(struct ci, iv), \
72 .key_offset = offsetof(struct ci, key), \
73 .salt_offset = offsetof(struct ci, salt), \
74 .rec_seq_offset = offsetof(struct ci, rec_seq), \
75 .crypto_info = sizeof(struct ci)
76
77 #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
78 .nonce = cipher ## _IV_SIZE, \
79 .iv = cipher ## _IV_SIZE, \
80 .key = cipher ## _KEY_SIZE, \
81 .salt = cipher ## _SALT_SIZE, \
82 .tag = cipher ## _TAG_SIZE, \
83 .rec_seq = cipher ## _REC_SEQ_SIZE, \
84 .cipher_name = algname, \
85 .offloadable = _offloadable, \
86 __CIPHER_DESC(ci), \
87 }
88
89 #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
90 .nonce = 0, \
91 .iv = cipher ## _IV_SIZE, \
92 .key = cipher ## _KEY_SIZE, \
93 .salt = cipher ## _SALT_SIZE, \
94 .tag = cipher ## _TAG_SIZE, \
95 .rec_seq = cipher ## _REC_SEQ_SIZE, \
96 .cipher_name = algname, \
97 .offloadable = _offloadable, \
98 __CIPHER_DESC(ci), \
99 }
100
101 const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
102 CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
103 CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
104 CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
105 CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
106 CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
107 CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
108 CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
109 CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
110 };
111
112 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
113 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
114 CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
115 CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
116 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
117 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
118 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
119 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
120
121 static const struct proto *saved_tcpv6_prot;
122 static DEFINE_MUTEX(tcpv6_prot_mutex);
123 static const struct proto *saved_tcpv4_prot;
124 static DEFINE_MUTEX(tcpv4_prot_mutex);
125 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
126 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
128 const struct proto *base);
129
update_sk_prot(struct sock * sk,struct tls_context * ctx)130 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
131 {
132 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
133
134 WRITE_ONCE(sk->sk_prot,
135 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
136 WRITE_ONCE(sk->sk_socket->ops,
137 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
138 }
139
wait_on_pending_writer(struct sock * sk,long * timeo)140 int wait_on_pending_writer(struct sock *sk, long *timeo)
141 {
142 DEFINE_WAIT_FUNC(wait, woken_wake_function);
143 int ret, rc = 0;
144
145 add_wait_queue(sk_sleep(sk), &wait);
146 while (1) {
147 if (!*timeo) {
148 rc = -EAGAIN;
149 break;
150 }
151
152 if (signal_pending(current)) {
153 rc = sock_intr_errno(*timeo);
154 break;
155 }
156
157 ret = sk_wait_event(sk, timeo,
158 !READ_ONCE(sk->sk_write_pending), &wait);
159 if (ret) {
160 if (ret < 0)
161 rc = ret;
162 break;
163 }
164 }
165 remove_wait_queue(sk_sleep(sk), &wait);
166 return rc;
167 }
168
tls_push_sg(struct sock * sk,struct tls_context * ctx,struct scatterlist * sg,u16 first_offset,int flags)169 int tls_push_sg(struct sock *sk,
170 struct tls_context *ctx,
171 struct scatterlist *sg,
172 u16 first_offset,
173 int flags)
174 {
175 struct bio_vec bvec;
176 struct msghdr msg = {
177 .msg_flags = MSG_SPLICE_PAGES | flags,
178 };
179 int ret = 0;
180 struct page *p;
181 size_t size;
182 int offset = first_offset;
183
184 size = sg->length - offset;
185 offset += sg->offset;
186
187 ctx->splicing_pages = true;
188 while (1) {
189 /* is sending application-limited? */
190 tcp_rate_check_app_limited(sk);
191 p = sg_page(sg);
192 retry:
193 bvec_set_page(&bvec, p, size, offset);
194 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
195
196 ret = tcp_sendmsg_locked(sk, &msg, size);
197
198 if (ret != size) {
199 if (ret > 0) {
200 offset += ret;
201 size -= ret;
202 goto retry;
203 }
204
205 offset -= sg->offset;
206 ctx->partially_sent_offset = offset;
207 ctx->partially_sent_record = (void *)sg;
208 ctx->splicing_pages = false;
209 return ret;
210 }
211
212 put_page(p);
213 sk_mem_uncharge(sk, sg->length);
214 sg = sg_next(sg);
215 if (!sg)
216 break;
217
218 offset = sg->offset;
219 size = sg->length;
220 }
221
222 ctx->splicing_pages = false;
223
224 return 0;
225 }
226
tls_handle_open_record(struct sock * sk,int flags)227 static int tls_handle_open_record(struct sock *sk, int flags)
228 {
229 struct tls_context *ctx = tls_get_ctx(sk);
230
231 if (tls_is_pending_open_record(ctx))
232 return ctx->push_pending_record(sk, flags);
233
234 return 0;
235 }
236
tls_process_cmsg(struct sock * sk,struct msghdr * msg,unsigned char * record_type)237 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
238 unsigned char *record_type)
239 {
240 struct cmsghdr *cmsg;
241 int rc = -EINVAL;
242
243 for_each_cmsghdr(cmsg, msg) {
244 if (!CMSG_OK(msg, cmsg))
245 return -EINVAL;
246 if (cmsg->cmsg_level != SOL_TLS)
247 continue;
248
249 switch (cmsg->cmsg_type) {
250 case TLS_SET_RECORD_TYPE:
251 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
252 return -EINVAL;
253
254 if (msg->msg_flags & MSG_MORE)
255 return -EINVAL;
256
257 rc = tls_handle_open_record(sk, msg->msg_flags);
258 if (rc)
259 return rc;
260
261 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
262 rc = 0;
263 break;
264 default:
265 return -EINVAL;
266 }
267 }
268
269 return rc;
270 }
271
tls_push_partial_record(struct sock * sk,struct tls_context * ctx,int flags)272 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
273 int flags)
274 {
275 struct scatterlist *sg;
276 u16 offset;
277
278 sg = ctx->partially_sent_record;
279 offset = ctx->partially_sent_offset;
280
281 ctx->partially_sent_record = NULL;
282 return tls_push_sg(sk, ctx, sg, offset, flags);
283 }
284
tls_free_partial_record(struct sock * sk,struct tls_context * ctx)285 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
286 {
287 struct scatterlist *sg;
288
289 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
290 put_page(sg_page(sg));
291 sk_mem_uncharge(sk, sg->length);
292 }
293 ctx->partially_sent_record = NULL;
294 }
295
tls_write_space(struct sock * sk)296 static void tls_write_space(struct sock *sk)
297 {
298 struct tls_context *ctx = tls_get_ctx(sk);
299
300 /* If splicing_pages call lower protocol write space handler
301 * to ensure we wake up any waiting operations there. For example
302 * if splicing pages where to call sk_wait_event.
303 */
304 if (ctx->splicing_pages) {
305 ctx->sk_write_space(sk);
306 return;
307 }
308
309 #ifdef CONFIG_TLS_DEVICE
310 if (ctx->tx_conf == TLS_HW)
311 tls_device_write_space(sk, ctx);
312 else
313 #endif
314 tls_sw_write_space(sk, ctx);
315
316 ctx->sk_write_space(sk);
317 }
318
319 /**
320 * tls_ctx_free() - free TLS ULP context
321 * @sk: socket to with @ctx is attached
322 * @ctx: TLS context structure
323 *
324 * Free TLS context. If @sk is %NULL caller guarantees that the socket
325 * to which @ctx was attached has no outstanding references.
326 */
tls_ctx_free(struct sock * sk,struct tls_context * ctx)327 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
328 {
329 if (!ctx)
330 return;
331
332 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
333 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
334 mutex_destroy(&ctx->tx_lock);
335
336 if (sk)
337 kfree_rcu(ctx, rcu);
338 else
339 kfree(ctx);
340 }
341
tls_sk_proto_cleanup(struct sock * sk,struct tls_context * ctx,long timeo)342 static void tls_sk_proto_cleanup(struct sock *sk,
343 struct tls_context *ctx, long timeo)
344 {
345 if (unlikely(sk->sk_write_pending) &&
346 !wait_on_pending_writer(sk, &timeo))
347 tls_handle_open_record(sk, 0);
348
349 /* We need these for tls_sw_fallback handling of other packets */
350 if (ctx->tx_conf == TLS_SW) {
351 kfree(ctx->tx.rec_seq);
352 kfree(ctx->tx.iv);
353 tls_sw_release_resources_tx(sk);
354 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
355 } else if (ctx->tx_conf == TLS_HW) {
356 tls_device_free_resources_tx(sk);
357 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
358 }
359
360 if (ctx->rx_conf == TLS_SW) {
361 tls_sw_release_resources_rx(sk);
362 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
363 } else if (ctx->rx_conf == TLS_HW) {
364 tls_device_offload_cleanup_rx(sk);
365 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
366 }
367 }
368
tls_sk_proto_close(struct sock * sk,long timeout)369 static void tls_sk_proto_close(struct sock *sk, long timeout)
370 {
371 struct inet_connection_sock *icsk = inet_csk(sk);
372 struct tls_context *ctx = tls_get_ctx(sk);
373 long timeo = sock_sndtimeo(sk, 0);
374 bool free_ctx;
375
376 if (ctx->tx_conf == TLS_SW)
377 tls_sw_cancel_work_tx(ctx);
378
379 lock_sock(sk);
380 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
381
382 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
383 tls_sk_proto_cleanup(sk, ctx, timeo);
384
385 write_lock_bh(&sk->sk_callback_lock);
386 if (free_ctx)
387 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
388 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
389 if (sk->sk_write_space == tls_write_space)
390 sk->sk_write_space = ctx->sk_write_space;
391 write_unlock_bh(&sk->sk_callback_lock);
392 release_sock(sk);
393 if (ctx->tx_conf == TLS_SW)
394 tls_sw_free_ctx_tx(ctx);
395 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
396 tls_sw_strparser_done(ctx);
397 if (ctx->rx_conf == TLS_SW)
398 tls_sw_free_ctx_rx(ctx);
399 ctx->sk_proto->close(sk, timeout);
400
401 if (free_ctx)
402 tls_ctx_free(sk, ctx);
403 }
404
tls_sk_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)405 static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
406 struct poll_table_struct *wait)
407 {
408 struct tls_sw_context_rx *ctx;
409 struct tls_context *tls_ctx;
410 struct sock *sk = sock->sk;
411 struct sk_psock *psock;
412 __poll_t mask = 0;
413 u8 shutdown;
414 int state;
415
416 mask = tcp_poll(file, sock, wait);
417
418 state = inet_sk_state_load(sk);
419 shutdown = READ_ONCE(sk->sk_shutdown);
420 if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
421 return mask;
422
423 tls_ctx = tls_get_ctx(sk);
424 ctx = tls_sw_ctx_rx(tls_ctx);
425 psock = sk_psock_get(sk);
426
427 if (skb_queue_empty_lockless(&ctx->rx_list) &&
428 !tls_strp_msg_ready(ctx) &&
429 sk_psock_queue_empty(psock))
430 mask &= ~(EPOLLIN | EPOLLRDNORM);
431
432 if (psock)
433 sk_psock_put(sk, psock);
434
435 return mask;
436 }
437
do_tls_getsockopt_conf(struct sock * sk,char __user * optval,int __user * optlen,int tx)438 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
439 int __user *optlen, int tx)
440 {
441 int rc = 0;
442 const struct tls_cipher_desc *cipher_desc;
443 struct tls_context *ctx = tls_get_ctx(sk);
444 struct tls_crypto_info *crypto_info;
445 struct cipher_context *cctx;
446 int len;
447
448 if (get_user(len, optlen))
449 return -EFAULT;
450
451 if (!optval || (len < sizeof(*crypto_info))) {
452 rc = -EINVAL;
453 goto out;
454 }
455
456 if (!ctx) {
457 rc = -EBUSY;
458 goto out;
459 }
460
461 /* get user crypto info */
462 if (tx) {
463 crypto_info = &ctx->crypto_send.info;
464 cctx = &ctx->tx;
465 } else {
466 crypto_info = &ctx->crypto_recv.info;
467 cctx = &ctx->rx;
468 }
469
470 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
471 rc = -EBUSY;
472 goto out;
473 }
474
475 if (len == sizeof(*crypto_info)) {
476 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
477 rc = -EFAULT;
478 goto out;
479 }
480
481 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
482 if (!cipher_desc || len != cipher_desc->crypto_info) {
483 rc = -EINVAL;
484 goto out;
485 }
486
487 memcpy(crypto_info_iv(crypto_info, cipher_desc),
488 cctx->iv + cipher_desc->salt, cipher_desc->iv);
489 memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
490 cctx->rec_seq, cipher_desc->rec_seq);
491
492 if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
493 rc = -EFAULT;
494
495 out:
496 return rc;
497 }
498
do_tls_getsockopt_tx_zc(struct sock * sk,char __user * optval,int __user * optlen)499 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
500 int __user *optlen)
501 {
502 struct tls_context *ctx = tls_get_ctx(sk);
503 unsigned int value;
504 int len;
505
506 if (get_user(len, optlen))
507 return -EFAULT;
508
509 if (len != sizeof(value))
510 return -EINVAL;
511
512 value = ctx->zerocopy_sendfile;
513 if (copy_to_user(optval, &value, sizeof(value)))
514 return -EFAULT;
515
516 return 0;
517 }
518
do_tls_getsockopt_no_pad(struct sock * sk,char __user * optval,int __user * optlen)519 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
520 int __user *optlen)
521 {
522 struct tls_context *ctx = tls_get_ctx(sk);
523 int value, len;
524
525 if (ctx->prot_info.version != TLS_1_3_VERSION)
526 return -EINVAL;
527
528 if (get_user(len, optlen))
529 return -EFAULT;
530 if (len < sizeof(value))
531 return -EINVAL;
532
533 value = -EINVAL;
534 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
535 value = ctx->rx_no_pad;
536 if (value < 0)
537 return value;
538
539 if (put_user(sizeof(value), optlen))
540 return -EFAULT;
541 if (copy_to_user(optval, &value, sizeof(value)))
542 return -EFAULT;
543
544 return 0;
545 }
546
do_tls_getsockopt(struct sock * sk,int optname,char __user * optval,int __user * optlen)547 static int do_tls_getsockopt(struct sock *sk, int optname,
548 char __user *optval, int __user *optlen)
549 {
550 int rc = 0;
551
552 lock_sock(sk);
553
554 switch (optname) {
555 case TLS_TX:
556 case TLS_RX:
557 rc = do_tls_getsockopt_conf(sk, optval, optlen,
558 optname == TLS_TX);
559 break;
560 case TLS_TX_ZEROCOPY_RO:
561 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
562 break;
563 case TLS_RX_EXPECT_NO_PAD:
564 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
565 break;
566 default:
567 rc = -ENOPROTOOPT;
568 break;
569 }
570
571 release_sock(sk);
572
573 return rc;
574 }
575
tls_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)576 static int tls_getsockopt(struct sock *sk, int level, int optname,
577 char __user *optval, int __user *optlen)
578 {
579 struct tls_context *ctx = tls_get_ctx(sk);
580
581 if (level != SOL_TLS)
582 return ctx->sk_proto->getsockopt(sk, level,
583 optname, optval, optlen);
584
585 return do_tls_getsockopt(sk, optname, optval, optlen);
586 }
587
do_tls_setsockopt_conf(struct sock * sk,sockptr_t optval,unsigned int optlen,int tx)588 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
589 unsigned int optlen, int tx)
590 {
591 struct tls_crypto_info *crypto_info;
592 struct tls_crypto_info *alt_crypto_info;
593 struct tls_context *ctx = tls_get_ctx(sk);
594 const struct tls_cipher_desc *cipher_desc;
595 int rc = 0;
596 int conf;
597
598 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
599 return -EINVAL;
600
601 if (tx) {
602 crypto_info = &ctx->crypto_send.info;
603 alt_crypto_info = &ctx->crypto_recv.info;
604 } else {
605 crypto_info = &ctx->crypto_recv.info;
606 alt_crypto_info = &ctx->crypto_send.info;
607 }
608
609 /* Currently we don't support set crypto info more than one time */
610 if (TLS_CRYPTO_INFO_READY(crypto_info))
611 return -EBUSY;
612
613 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
614 if (rc) {
615 rc = -EFAULT;
616 goto err_crypto_info;
617 }
618
619 /* check version */
620 if (crypto_info->version != TLS_1_2_VERSION &&
621 crypto_info->version != TLS_1_3_VERSION) {
622 rc = -EINVAL;
623 goto err_crypto_info;
624 }
625
626 /* Ensure that TLS version and ciphers are same in both directions */
627 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
628 if (alt_crypto_info->version != crypto_info->version ||
629 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
630 rc = -EINVAL;
631 goto err_crypto_info;
632 }
633 }
634
635 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
636 if (!cipher_desc) {
637 rc = -EINVAL;
638 goto err_crypto_info;
639 }
640
641 switch (crypto_info->cipher_type) {
642 case TLS_CIPHER_ARIA_GCM_128:
643 case TLS_CIPHER_ARIA_GCM_256:
644 if (crypto_info->version != TLS_1_2_VERSION) {
645 rc = -EINVAL;
646 goto err_crypto_info;
647 }
648 break;
649 }
650
651 if (optlen != cipher_desc->crypto_info) {
652 rc = -EINVAL;
653 goto err_crypto_info;
654 }
655
656 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
657 sizeof(*crypto_info),
658 optlen - sizeof(*crypto_info));
659 if (rc) {
660 rc = -EFAULT;
661 goto err_crypto_info;
662 }
663
664 if (tx) {
665 rc = tls_set_device_offload(sk, ctx);
666 conf = TLS_HW;
667 if (!rc) {
668 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
669 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
670 } else {
671 rc = tls_set_sw_offload(sk, ctx, 1);
672 if (rc)
673 goto err_crypto_info;
674 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
675 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
676 conf = TLS_SW;
677 }
678 } else {
679 rc = tls_set_device_offload_rx(sk, ctx);
680 conf = TLS_HW;
681 if (!rc) {
682 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
683 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
684 } else {
685 rc = tls_set_sw_offload(sk, ctx, 0);
686 if (rc)
687 goto err_crypto_info;
688 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
689 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
690 conf = TLS_SW;
691 }
692 tls_sw_strparser_arm(sk, ctx);
693 }
694
695 if (tx)
696 ctx->tx_conf = conf;
697 else
698 ctx->rx_conf = conf;
699 update_sk_prot(sk, ctx);
700 if (tx) {
701 ctx->sk_write_space = sk->sk_write_space;
702 sk->sk_write_space = tls_write_space;
703 } else {
704 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
705
706 tls_strp_check_rcv(&rx_ctx->strp);
707 }
708 return 0;
709
710 err_crypto_info:
711 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
712 return rc;
713 }
714
do_tls_setsockopt_tx_zc(struct sock * sk,sockptr_t optval,unsigned int optlen)715 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
716 unsigned int optlen)
717 {
718 struct tls_context *ctx = tls_get_ctx(sk);
719 unsigned int value;
720
721 if (sockptr_is_null(optval) || optlen != sizeof(value))
722 return -EINVAL;
723
724 if (copy_from_sockptr(&value, optval, sizeof(value)))
725 return -EFAULT;
726
727 if (value > 1)
728 return -EINVAL;
729
730 ctx->zerocopy_sendfile = value;
731
732 return 0;
733 }
734
do_tls_setsockopt_no_pad(struct sock * sk,sockptr_t optval,unsigned int optlen)735 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
736 unsigned int optlen)
737 {
738 struct tls_context *ctx = tls_get_ctx(sk);
739 u32 val;
740 int rc;
741
742 if (ctx->prot_info.version != TLS_1_3_VERSION ||
743 sockptr_is_null(optval) || optlen < sizeof(val))
744 return -EINVAL;
745
746 rc = copy_from_sockptr(&val, optval, sizeof(val));
747 if (rc)
748 return -EFAULT;
749 if (val > 1)
750 return -EINVAL;
751 rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
752 if (rc < 1)
753 return rc == 0 ? -EINVAL : rc;
754
755 lock_sock(sk);
756 rc = -EINVAL;
757 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
758 ctx->rx_no_pad = val;
759 tls_update_rx_zc_capable(ctx);
760 rc = 0;
761 }
762 release_sock(sk);
763
764 return rc;
765 }
766
do_tls_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)767 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
768 unsigned int optlen)
769 {
770 int rc = 0;
771
772 switch (optname) {
773 case TLS_TX:
774 case TLS_RX:
775 lock_sock(sk);
776 rc = do_tls_setsockopt_conf(sk, optval, optlen,
777 optname == TLS_TX);
778 release_sock(sk);
779 break;
780 case TLS_TX_ZEROCOPY_RO:
781 lock_sock(sk);
782 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
783 release_sock(sk);
784 break;
785 case TLS_RX_EXPECT_NO_PAD:
786 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
787 break;
788 default:
789 rc = -ENOPROTOOPT;
790 break;
791 }
792 return rc;
793 }
794
tls_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)795 static int tls_setsockopt(struct sock *sk, int level, int optname,
796 sockptr_t optval, unsigned int optlen)
797 {
798 struct tls_context *ctx = tls_get_ctx(sk);
799
800 if (level != SOL_TLS)
801 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
802 optlen);
803
804 return do_tls_setsockopt(sk, optname, optval, optlen);
805 }
806
tls_ctx_create(struct sock * sk)807 struct tls_context *tls_ctx_create(struct sock *sk)
808 {
809 struct inet_connection_sock *icsk = inet_csk(sk);
810 struct tls_context *ctx;
811
812 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
813 if (!ctx)
814 return NULL;
815
816 mutex_init(&ctx->tx_lock);
817 ctx->sk_proto = READ_ONCE(sk->sk_prot);
818 ctx->sk = sk;
819 /* Release semantic of rcu_assign_pointer() ensures that
820 * ctx->sk_proto is visible before changing sk->sk_prot in
821 * update_sk_prot(), and prevents reading uninitialized value in
822 * tls_{getsockopt, setsockopt}. Note that we do not need a
823 * read barrier in tls_{getsockopt,setsockopt} as there is an
824 * address dependency between sk->sk_proto->{getsockopt,setsockopt}
825 * and ctx->sk_proto.
826 */
827 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
828 return ctx;
829 }
830
build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],const struct proto_ops * base)831 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
832 const struct proto_ops *base)
833 {
834 ops[TLS_BASE][TLS_BASE] = *base;
835
836 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
837 ops[TLS_SW ][TLS_BASE].splice_eof = tls_sw_splice_eof;
838
839 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE];
840 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read;
841 ops[TLS_BASE][TLS_SW ].poll = tls_sk_poll;
842 ops[TLS_BASE][TLS_SW ].read_sock = tls_sw_read_sock;
843
844 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE];
845 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read;
846 ops[TLS_SW ][TLS_SW ].poll = tls_sk_poll;
847 ops[TLS_SW ][TLS_SW ].read_sock = tls_sw_read_sock;
848
849 #ifdef CONFIG_TLS_DEVICE
850 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
851
852 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ];
853
854 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ];
855
856 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ];
857
858 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ];
859 #endif
860 #ifdef CONFIG_TLS_TOE
861 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
862 #endif
863 }
864
tls_build_proto(struct sock * sk)865 static void tls_build_proto(struct sock *sk)
866 {
867 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
868 struct proto *prot = READ_ONCE(sk->sk_prot);
869
870 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
871 if (ip_ver == TLSV6 &&
872 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
873 mutex_lock(&tcpv6_prot_mutex);
874 if (likely(prot != saved_tcpv6_prot)) {
875 build_protos(tls_prots[TLSV6], prot);
876 build_proto_ops(tls_proto_ops[TLSV6],
877 sk->sk_socket->ops);
878 smp_store_release(&saved_tcpv6_prot, prot);
879 }
880 mutex_unlock(&tcpv6_prot_mutex);
881 }
882
883 if (ip_ver == TLSV4 &&
884 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
885 mutex_lock(&tcpv4_prot_mutex);
886 if (likely(prot != saved_tcpv4_prot)) {
887 build_protos(tls_prots[TLSV4], prot);
888 build_proto_ops(tls_proto_ops[TLSV4],
889 sk->sk_socket->ops);
890 smp_store_release(&saved_tcpv4_prot, prot);
891 }
892 mutex_unlock(&tcpv4_prot_mutex);
893 }
894 }
895
build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],const struct proto * base)896 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
897 const struct proto *base)
898 {
899 prot[TLS_BASE][TLS_BASE] = *base;
900 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
901 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
902 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
903
904 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
905 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
906 prot[TLS_SW][TLS_BASE].splice_eof = tls_sw_splice_eof;
907
908 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
909 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
910 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
911 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
912
913 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
914 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
915 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
916 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
917
918 #ifdef CONFIG_TLS_DEVICE
919 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
920 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
921 prot[TLS_HW][TLS_BASE].splice_eof = tls_device_splice_eof;
922
923 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
924 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
925 prot[TLS_HW][TLS_SW].splice_eof = tls_device_splice_eof;
926
927 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
928
929 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
930
931 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
932 #endif
933 #ifdef CONFIG_TLS_TOE
934 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
935 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
936 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
937 #endif
938 }
939
tls_init(struct sock * sk)940 static int tls_init(struct sock *sk)
941 {
942 struct tls_context *ctx;
943 int rc = 0;
944
945 tls_build_proto(sk);
946
947 #ifdef CONFIG_TLS_TOE
948 if (tls_toe_bypass(sk))
949 return 0;
950 #endif
951
952 /* The TLS ulp is currently supported only for TCP sockets
953 * in ESTABLISHED state.
954 * Supporting sockets in LISTEN state will require us
955 * to modify the accept implementation to clone rather then
956 * share the ulp context.
957 */
958 if (sk->sk_state != TCP_ESTABLISHED)
959 return -ENOTCONN;
960
961 /* allocate tls context */
962 write_lock_bh(&sk->sk_callback_lock);
963 ctx = tls_ctx_create(sk);
964 if (!ctx) {
965 rc = -ENOMEM;
966 goto out;
967 }
968
969 ctx->tx_conf = TLS_BASE;
970 ctx->rx_conf = TLS_BASE;
971 update_sk_prot(sk, ctx);
972 out:
973 write_unlock_bh(&sk->sk_callback_lock);
974 return rc;
975 }
976
tls_update(struct sock * sk,struct proto * p,void (* write_space)(struct sock * sk))977 static void tls_update(struct sock *sk, struct proto *p,
978 void (*write_space)(struct sock *sk))
979 {
980 struct tls_context *ctx;
981
982 WARN_ON_ONCE(sk->sk_prot == p);
983
984 ctx = tls_get_ctx(sk);
985 if (likely(ctx)) {
986 ctx->sk_write_space = write_space;
987 ctx->sk_proto = p;
988 } else {
989 /* Pairs with lockless read in sk_clone_lock(). */
990 WRITE_ONCE(sk->sk_prot, p);
991 sk->sk_write_space = write_space;
992 }
993 }
994
tls_user_config(struct tls_context * ctx,bool tx)995 static u16 tls_user_config(struct tls_context *ctx, bool tx)
996 {
997 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
998
999 switch (config) {
1000 case TLS_BASE:
1001 return TLS_CONF_BASE;
1002 case TLS_SW:
1003 return TLS_CONF_SW;
1004 case TLS_HW:
1005 return TLS_CONF_HW;
1006 case TLS_HW_RECORD:
1007 return TLS_CONF_HW_RECORD;
1008 }
1009 return 0;
1010 }
1011
tls_get_info(struct sock * sk,struct sk_buff * skb)1012 static int tls_get_info(struct sock *sk, struct sk_buff *skb)
1013 {
1014 u16 version, cipher_type;
1015 struct tls_context *ctx;
1016 struct nlattr *start;
1017 int err;
1018
1019 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1020 if (!start)
1021 return -EMSGSIZE;
1022
1023 rcu_read_lock();
1024 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1025 if (!ctx) {
1026 err = 0;
1027 goto nla_failure;
1028 }
1029 version = ctx->prot_info.version;
1030 if (version) {
1031 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1032 if (err)
1033 goto nla_failure;
1034 }
1035 cipher_type = ctx->prot_info.cipher_type;
1036 if (cipher_type) {
1037 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1038 if (err)
1039 goto nla_failure;
1040 }
1041 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1042 if (err)
1043 goto nla_failure;
1044
1045 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1046 if (err)
1047 goto nla_failure;
1048
1049 if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1050 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1051 if (err)
1052 goto nla_failure;
1053 }
1054 if (ctx->rx_no_pad) {
1055 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1056 if (err)
1057 goto nla_failure;
1058 }
1059
1060 rcu_read_unlock();
1061 nla_nest_end(skb, start);
1062 return 0;
1063
1064 nla_failure:
1065 rcu_read_unlock();
1066 nla_nest_cancel(skb, start);
1067 return err;
1068 }
1069
tls_get_info_size(const struct sock * sk)1070 static size_t tls_get_info_size(const struct sock *sk)
1071 {
1072 size_t size = 0;
1073
1074 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
1075 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
1076 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
1077 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
1078 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
1079 nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */
1080 nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */
1081 0;
1082
1083 return size;
1084 }
1085
tls_init_net(struct net * net)1086 static int __net_init tls_init_net(struct net *net)
1087 {
1088 int err;
1089
1090 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1091 if (!net->mib.tls_statistics)
1092 return -ENOMEM;
1093
1094 err = tls_proc_init(net);
1095 if (err)
1096 goto err_free_stats;
1097
1098 return 0;
1099 err_free_stats:
1100 free_percpu(net->mib.tls_statistics);
1101 return err;
1102 }
1103
tls_exit_net(struct net * net)1104 static void __net_exit tls_exit_net(struct net *net)
1105 {
1106 tls_proc_fini(net);
1107 free_percpu(net->mib.tls_statistics);
1108 }
1109
1110 static struct pernet_operations tls_proc_ops = {
1111 .init = tls_init_net,
1112 .exit = tls_exit_net,
1113 };
1114
1115 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1116 .name = "tls",
1117 .owner = THIS_MODULE,
1118 .init = tls_init,
1119 .update = tls_update,
1120 .get_info = tls_get_info,
1121 .get_info_size = tls_get_info_size,
1122 };
1123
tls_register(void)1124 static int __init tls_register(void)
1125 {
1126 int err;
1127
1128 err = register_pernet_subsys(&tls_proc_ops);
1129 if (err)
1130 return err;
1131
1132 err = tls_strp_dev_init();
1133 if (err)
1134 goto err_pernet;
1135
1136 err = tls_device_init();
1137 if (err)
1138 goto err_strp;
1139
1140 tcp_register_ulp(&tcp_tls_ulp_ops);
1141
1142 return 0;
1143 err_strp:
1144 tls_strp_dev_exit();
1145 err_pernet:
1146 unregister_pernet_subsys(&tls_proc_ops);
1147 return err;
1148 }
1149
tls_unregister(void)1150 static void __exit tls_unregister(void)
1151 {
1152 tcp_unregister_ulp(&tcp_tls_ulp_ops);
1153 tls_strp_dev_exit();
1154 tls_device_cleanup();
1155 unregister_pernet_subsys(&tls_proc_ops);
1156 }
1157
1158 module_init(tls_register);
1159 module_exit(tls_unregister);
1160