xref: /openbmc/linux/net/tls/tls_device_fallback.c (revision 2154aca21408752eaa3eeaf2ba6e942724ff2a4d)
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 
32 #include <net/tls.h>
33 #include <crypto/aead.h>
34 #include <crypto/scatterwalk.h>
35 #include <net/ip6_checksum.h>
36 
37 #include "tls.h"
38 
39 static void chain_to_walk(struct scatterlist *sg, struct scatter_walk *walk)
40 {
41 	struct scatterlist *src = walk->sg;
42 	int diff = walk->offset - src->offset;
43 
44 	sg_set_page(sg, sg_page(src),
45 		    src->length - diff, walk->offset);
46 
47 	scatterwalk_crypto_chain(sg, sg_next(src), 2);
48 }
49 
50 static int tls_enc_record(struct aead_request *aead_req,
51 			  struct crypto_aead *aead, char *aad,
52 			  char *iv, __be64 rcd_sn,
53 			  struct scatter_walk *in,
54 			  struct scatter_walk *out, int *in_len,
55 			  struct tls_prot_info *prot)
56 {
57 	unsigned char buf[TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE];
58 	struct scatterlist sg_in[3];
59 	struct scatterlist sg_out[3];
60 	u16 len;
61 	int rc;
62 
63 	len = min_t(int, *in_len, ARRAY_SIZE(buf));
64 
65 	scatterwalk_copychunks(buf, in, len, 0);
66 	scatterwalk_copychunks(buf, out, len, 1);
67 
68 	*in_len -= len;
69 	if (!*in_len)
70 		return 0;
71 
72 	scatterwalk_pagedone(in, 0, 1);
73 	scatterwalk_pagedone(out, 1, 1);
74 
75 	len = buf[4] | (buf[3] << 8);
76 	len -= TLS_CIPHER_AES_GCM_128_IV_SIZE;
77 
78 	tls_make_aad(aad, len - TLS_CIPHER_AES_GCM_128_TAG_SIZE,
79 		(char *)&rcd_sn, buf[0], prot);
80 
81 	memcpy(iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, buf + TLS_HEADER_SIZE,
82 	       TLS_CIPHER_AES_GCM_128_IV_SIZE);
83 
84 	sg_init_table(sg_in, ARRAY_SIZE(sg_in));
85 	sg_init_table(sg_out, ARRAY_SIZE(sg_out));
86 	sg_set_buf(sg_in, aad, TLS_AAD_SPACE_SIZE);
87 	sg_set_buf(sg_out, aad, TLS_AAD_SPACE_SIZE);
88 	chain_to_walk(sg_in + 1, in);
89 	chain_to_walk(sg_out + 1, out);
90 
91 	*in_len -= len;
92 	if (*in_len < 0) {
93 		*in_len += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
94 		/* the input buffer doesn't contain the entire record.
95 		 * trim len accordingly. The resulting authentication tag
96 		 * will contain garbage, but we don't care, so we won't
97 		 * include any of it in the output skb
98 		 * Note that we assume the output buffer length
99 		 * is larger then input buffer length + tag size
100 		 */
101 		if (*in_len < 0)
102 			len += *in_len;
103 
104 		*in_len = 0;
105 	}
106 
107 	if (*in_len) {
108 		scatterwalk_copychunks(NULL, in, len, 2);
109 		scatterwalk_pagedone(in, 0, 1);
110 		scatterwalk_copychunks(NULL, out, len, 2);
111 		scatterwalk_pagedone(out, 1, 1);
112 	}
113 
114 	len -= TLS_CIPHER_AES_GCM_128_TAG_SIZE;
115 	aead_request_set_crypt(aead_req, sg_in, sg_out, len, iv);
116 
117 	rc = crypto_aead_encrypt(aead_req);
118 
119 	return rc;
120 }
121 
122 static void tls_init_aead_request(struct aead_request *aead_req,
123 				  struct crypto_aead *aead)
124 {
125 	aead_request_set_tfm(aead_req, aead);
126 	aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
127 }
128 
129 static struct aead_request *tls_alloc_aead_request(struct crypto_aead *aead,
130 						   gfp_t flags)
131 {
132 	unsigned int req_size = sizeof(struct aead_request) +
133 		crypto_aead_reqsize(aead);
134 	struct aead_request *aead_req;
135 
136 	aead_req = kzalloc(req_size, flags);
137 	if (aead_req)
138 		tls_init_aead_request(aead_req, aead);
139 	return aead_req;
140 }
141 
142 static int tls_enc_records(struct aead_request *aead_req,
143 			   struct crypto_aead *aead, struct scatterlist *sg_in,
144 			   struct scatterlist *sg_out, char *aad, char *iv,
145 			   u64 rcd_sn, int len, struct tls_prot_info *prot)
146 {
147 	struct scatter_walk out, in;
148 	int rc;
149 
150 	scatterwalk_start(&in, sg_in);
151 	scatterwalk_start(&out, sg_out);
152 
153 	do {
154 		rc = tls_enc_record(aead_req, aead, aad, iv,
155 				    cpu_to_be64(rcd_sn), &in, &out, &len, prot);
156 		rcd_sn++;
157 
158 	} while (rc == 0 && len);
159 
160 	scatterwalk_done(&in, 0, 0);
161 	scatterwalk_done(&out, 1, 0);
162 
163 	return rc;
164 }
165 
166 /* Can't use icsk->icsk_af_ops->send_check here because the ip addresses
167  * might have been changed by NAT.
168  */
169 static void update_chksum(struct sk_buff *skb, int headln)
170 {
171 	struct tcphdr *th = tcp_hdr(skb);
172 	int datalen = skb->len - headln;
173 	const struct ipv6hdr *ipv6h;
174 	const struct iphdr *iph;
175 
176 	/* We only changed the payload so if we are using partial we don't
177 	 * need to update anything.
178 	 */
179 	if (likely(skb->ip_summed == CHECKSUM_PARTIAL))
180 		return;
181 
182 	skb->ip_summed = CHECKSUM_PARTIAL;
183 	skb->csum_start = skb_transport_header(skb) - skb->head;
184 	skb->csum_offset = offsetof(struct tcphdr, check);
185 
186 	if (skb->sk->sk_family == AF_INET6) {
187 		ipv6h = ipv6_hdr(skb);
188 		th->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
189 					     datalen, IPPROTO_TCP, 0);
190 	} else {
191 		iph = ip_hdr(skb);
192 		th->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, datalen,
193 					       IPPROTO_TCP, 0);
194 	}
195 }
196 
197 static void complete_skb(struct sk_buff *nskb, struct sk_buff *skb, int headln)
198 {
199 	struct sock *sk = skb->sk;
200 	int delta;
201 
202 	skb_copy_header(nskb, skb);
203 
204 	skb_put(nskb, skb->len);
205 	memcpy(nskb->data, skb->data, headln);
206 
207 	nskb->destructor = skb->destructor;
208 	nskb->sk = sk;
209 	skb->destructor = NULL;
210 	skb->sk = NULL;
211 
212 	update_chksum(nskb, headln);
213 
214 	/* sock_efree means skb must gone through skb_orphan_partial() */
215 	if (nskb->destructor == sock_efree)
216 		return;
217 
218 	delta = nskb->truesize - skb->truesize;
219 	if (likely(delta < 0))
220 		WARN_ON_ONCE(refcount_sub_and_test(-delta, &sk->sk_wmem_alloc));
221 	else if (delta)
222 		refcount_add(delta, &sk->sk_wmem_alloc);
223 }
224 
225 /* This function may be called after the user socket is already
226  * closed so make sure we don't use anything freed during
227  * tls_sk_proto_close here
228  */
229 
230 static int fill_sg_in(struct scatterlist *sg_in,
231 		      struct sk_buff *skb,
232 		      struct tls_offload_context_tx *ctx,
233 		      u64 *rcd_sn,
234 		      s32 *sync_size,
235 		      int *resync_sgs)
236 {
237 	int tcp_payload_offset = skb_tcp_all_headers(skb);
238 	int payload_len = skb->len - tcp_payload_offset;
239 	u32 tcp_seq = ntohl(tcp_hdr(skb)->seq);
240 	struct tls_record_info *record;
241 	unsigned long flags;
242 	int remaining;
243 	int i;
244 
245 	spin_lock_irqsave(&ctx->lock, flags);
246 	record = tls_get_record(ctx, tcp_seq, rcd_sn);
247 	if (!record) {
248 		spin_unlock_irqrestore(&ctx->lock, flags);
249 		return -EINVAL;
250 	}
251 
252 	*sync_size = tcp_seq - tls_record_start_seq(record);
253 	if (*sync_size < 0) {
254 		int is_start_marker = tls_record_is_start_marker(record);
255 
256 		spin_unlock_irqrestore(&ctx->lock, flags);
257 		/* This should only occur if the relevant record was
258 		 * already acked. In that case it should be ok
259 		 * to drop the packet and avoid retransmission.
260 		 *
261 		 * There is a corner case where the packet contains
262 		 * both an acked and a non-acked record.
263 		 * We currently don't handle that case and rely
264 		 * on TCP to retranmit a packet that doesn't contain
265 		 * already acked payload.
266 		 */
267 		if (!is_start_marker)
268 			*sync_size = 0;
269 		return -EINVAL;
270 	}
271 
272 	remaining = *sync_size;
273 	for (i = 0; remaining > 0; i++) {
274 		skb_frag_t *frag = &record->frags[i];
275 
276 		__skb_frag_ref(frag);
277 		sg_set_page(sg_in + i, skb_frag_page(frag),
278 			    skb_frag_size(frag), skb_frag_off(frag));
279 
280 		remaining -= skb_frag_size(frag);
281 
282 		if (remaining < 0)
283 			sg_in[i].length += remaining;
284 	}
285 	*resync_sgs = i;
286 
287 	spin_unlock_irqrestore(&ctx->lock, flags);
288 	if (skb_to_sgvec(skb, &sg_in[i], tcp_payload_offset, payload_len) < 0)
289 		return -EINVAL;
290 
291 	return 0;
292 }
293 
294 static void fill_sg_out(struct scatterlist sg_out[3], void *buf,
295 			struct tls_context *tls_ctx,
296 			struct sk_buff *nskb,
297 			int tcp_payload_offset,
298 			int payload_len,
299 			int sync_size,
300 			void *dummy_buf)
301 {
302 	sg_set_buf(&sg_out[0], dummy_buf, sync_size);
303 	sg_set_buf(&sg_out[1], nskb->data + tcp_payload_offset, payload_len);
304 	/* Add room for authentication tag produced by crypto */
305 	dummy_buf += sync_size;
306 	sg_set_buf(&sg_out[2], dummy_buf, TLS_CIPHER_AES_GCM_128_TAG_SIZE);
307 }
308 
309 static struct sk_buff *tls_enc_skb(struct tls_context *tls_ctx,
310 				   struct scatterlist sg_out[3],
311 				   struct scatterlist *sg_in,
312 				   struct sk_buff *skb,
313 				   s32 sync_size, u64 rcd_sn)
314 {
315 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
316 	int tcp_payload_offset = skb_tcp_all_headers(skb);
317 	int payload_len = skb->len - tcp_payload_offset;
318 	void *buf, *iv, *aad, *dummy_buf;
319 	struct aead_request *aead_req;
320 	struct sk_buff *nskb = NULL;
321 	int buf_len;
322 
323 	aead_req = tls_alloc_aead_request(ctx->aead_send, GFP_ATOMIC);
324 	if (!aead_req)
325 		return NULL;
326 
327 	buf_len = TLS_CIPHER_AES_GCM_128_SALT_SIZE +
328 		  TLS_CIPHER_AES_GCM_128_IV_SIZE +
329 		  TLS_AAD_SPACE_SIZE +
330 		  sync_size +
331 		  TLS_CIPHER_AES_GCM_128_TAG_SIZE;
332 	buf = kmalloc(buf_len, GFP_ATOMIC);
333 	if (!buf)
334 		goto free_req;
335 
336 	iv = buf;
337 	memcpy(iv, tls_ctx->crypto_send.aes_gcm_128.salt,
338 	       TLS_CIPHER_AES_GCM_128_SALT_SIZE);
339 	aad = buf + TLS_CIPHER_AES_GCM_128_SALT_SIZE +
340 	      TLS_CIPHER_AES_GCM_128_IV_SIZE;
341 	dummy_buf = aad + TLS_AAD_SPACE_SIZE;
342 
343 	nskb = alloc_skb(skb_headroom(skb) + skb->len, GFP_ATOMIC);
344 	if (!nskb)
345 		goto free_buf;
346 
347 	skb_reserve(nskb, skb_headroom(skb));
348 
349 	fill_sg_out(sg_out, buf, tls_ctx, nskb, tcp_payload_offset,
350 		    payload_len, sync_size, dummy_buf);
351 
352 	if (tls_enc_records(aead_req, ctx->aead_send, sg_in, sg_out, aad, iv,
353 			    rcd_sn, sync_size + payload_len,
354 			    &tls_ctx->prot_info) < 0)
355 		goto free_nskb;
356 
357 	complete_skb(nskb, skb, tcp_payload_offset);
358 
359 	/* validate_xmit_skb_list assumes that if the skb wasn't segmented
360 	 * nskb->prev will point to the skb itself
361 	 */
362 	nskb->prev = nskb;
363 
364 free_buf:
365 	kfree(buf);
366 free_req:
367 	kfree(aead_req);
368 	return nskb;
369 free_nskb:
370 	kfree_skb(nskb);
371 	nskb = NULL;
372 	goto free_buf;
373 }
374 
375 static struct sk_buff *tls_sw_fallback(struct sock *sk, struct sk_buff *skb)
376 {
377 	int tcp_payload_offset = skb_tcp_all_headers(skb);
378 	struct tls_context *tls_ctx = tls_get_ctx(sk);
379 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
380 	int payload_len = skb->len - tcp_payload_offset;
381 	struct scatterlist *sg_in, sg_out[3];
382 	struct sk_buff *nskb = NULL;
383 	int sg_in_max_elements;
384 	int resync_sgs = 0;
385 	s32 sync_size = 0;
386 	u64 rcd_sn;
387 
388 	/* worst case is:
389 	 * MAX_SKB_FRAGS in tls_record_info
390 	 * MAX_SKB_FRAGS + 1 in SKB head and frags.
391 	 */
392 	sg_in_max_elements = 2 * MAX_SKB_FRAGS + 1;
393 
394 	if (!payload_len)
395 		return skb;
396 
397 	sg_in = kmalloc_array(sg_in_max_elements, sizeof(*sg_in), GFP_ATOMIC);
398 	if (!sg_in)
399 		goto free_orig;
400 
401 	sg_init_table(sg_in, sg_in_max_elements);
402 	sg_init_table(sg_out, ARRAY_SIZE(sg_out));
403 
404 	if (fill_sg_in(sg_in, skb, ctx, &rcd_sn, &sync_size, &resync_sgs)) {
405 		/* bypass packets before kernel TLS socket option was set */
406 		if (sync_size < 0 && payload_len <= -sync_size)
407 			nskb = skb_get(skb);
408 		goto put_sg;
409 	}
410 
411 	nskb = tls_enc_skb(tls_ctx, sg_out, sg_in, skb, sync_size, rcd_sn);
412 
413 put_sg:
414 	while (resync_sgs)
415 		put_page(sg_page(&sg_in[--resync_sgs]));
416 	kfree(sg_in);
417 free_orig:
418 	if (nskb)
419 		consume_skb(skb);
420 	else
421 		kfree_skb(skb);
422 	return nskb;
423 }
424 
425 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
426 				      struct net_device *dev,
427 				      struct sk_buff *skb)
428 {
429 	if (dev == rcu_dereference_bh(tls_get_ctx(sk)->netdev) ||
430 	    netif_is_bond_master(dev))
431 		return skb;
432 
433 	return tls_sw_fallback(sk, skb);
434 }
435 EXPORT_SYMBOL_GPL(tls_validate_xmit_skb);
436 
437 struct sk_buff *tls_validate_xmit_skb_sw(struct sock *sk,
438 					 struct net_device *dev,
439 					 struct sk_buff *skb)
440 {
441 	return tls_sw_fallback(sk, skb);
442 }
443 
444 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb)
445 {
446 	return tls_sw_fallback(skb->sk, skb);
447 }
448 EXPORT_SYMBOL_GPL(tls_encrypt_skb);
449 
450 int tls_sw_fallback_init(struct sock *sk,
451 			 struct tls_offload_context_tx *offload_ctx,
452 			 struct tls_crypto_info *crypto_info)
453 {
454 	const u8 *key;
455 	int rc;
456 
457 	offload_ctx->aead_send =
458 	    crypto_alloc_aead("gcm(aes)", 0, CRYPTO_ALG_ASYNC);
459 	if (IS_ERR(offload_ctx->aead_send)) {
460 		rc = PTR_ERR(offload_ctx->aead_send);
461 		pr_err_ratelimited("crypto_alloc_aead failed rc=%d\n", rc);
462 		offload_ctx->aead_send = NULL;
463 		goto err_out;
464 	}
465 
466 	key = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->key;
467 
468 	rc = crypto_aead_setkey(offload_ctx->aead_send, key,
469 				TLS_CIPHER_AES_GCM_128_KEY_SIZE);
470 	if (rc)
471 		goto free_aead;
472 
473 	rc = crypto_aead_setauthsize(offload_ctx->aead_send,
474 				     TLS_CIPHER_AES_GCM_128_TAG_SIZE);
475 	if (rc)
476 		goto free_aead;
477 
478 	return 0;
479 free_aead:
480 	crypto_free_aead(offload_ctx->aead_send);
481 err_out:
482 	return rc;
483 }
484