1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved. 2 * 3 * This software is available to you under a choice of one of two 4 * licenses. You may choose to be licensed under the terms of the GNU 5 * General Public License (GPL) Version 2, available from the file 6 * COPYING in the main directory of this source tree, or the 7 * OpenIB.org BSD license below: 8 * 9 * Redistribution and use in source and binary forms, with or 10 * without modification, are permitted provided that the following 11 * conditions are met: 12 * 13 * - Redistributions of source code must retain the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer. 16 * 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 */ 31 32 #include <crypto/aead.h> 33 #include <linux/highmem.h> 34 #include <linux/module.h> 35 #include <linux/netdevice.h> 36 #include <net/dst.h> 37 #include <net/inet_connection_sock.h> 38 #include <net/tcp.h> 39 #include <net/tls.h> 40 41 #include "trace.h" 42 43 /* device_offload_lock is used to synchronize tls_dev_add 44 * against NETDEV_DOWN notifications. 45 */ 46 static DECLARE_RWSEM(device_offload_lock); 47 48 static void tls_device_gc_task(struct work_struct *work); 49 50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task); 51 static LIST_HEAD(tls_device_gc_list); 52 static LIST_HEAD(tls_device_list); 53 static LIST_HEAD(tls_device_down_list); 54 static DEFINE_SPINLOCK(tls_device_lock); 55 56 static void tls_device_free_ctx(struct tls_context *ctx) 57 { 58 if (ctx->tx_conf == TLS_HW) { 59 kfree(tls_offload_ctx_tx(ctx)); 60 kfree(ctx->tx.rec_seq); 61 kfree(ctx->tx.iv); 62 } 63 64 if (ctx->rx_conf == TLS_HW) 65 kfree(tls_offload_ctx_rx(ctx)); 66 67 tls_ctx_free(NULL, ctx); 68 } 69 70 static void tls_device_gc_task(struct work_struct *work) 71 { 72 struct tls_context *ctx, *tmp; 73 unsigned long flags; 74 LIST_HEAD(gc_list); 75 76 spin_lock_irqsave(&tls_device_lock, flags); 77 list_splice_init(&tls_device_gc_list, &gc_list); 78 spin_unlock_irqrestore(&tls_device_lock, flags); 79 80 list_for_each_entry_safe(ctx, tmp, &gc_list, list) { 81 struct net_device *netdev = ctx->netdev; 82 83 if (netdev && ctx->tx_conf == TLS_HW) { 84 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 85 TLS_OFFLOAD_CTX_DIR_TX); 86 dev_put(netdev); 87 ctx->netdev = NULL; 88 } 89 90 list_del(&ctx->list); 91 tls_device_free_ctx(ctx); 92 } 93 } 94 95 static void tls_device_queue_ctx_destruction(struct tls_context *ctx) 96 { 97 unsigned long flags; 98 99 spin_lock_irqsave(&tls_device_lock, flags); 100 if (unlikely(!refcount_dec_and_test(&ctx->refcount))) 101 goto unlock; 102 103 list_move_tail(&ctx->list, &tls_device_gc_list); 104 105 /* schedule_work inside the spinlock 106 * to make sure tls_device_down waits for that work. 107 */ 108 schedule_work(&tls_device_gc_work); 109 unlock: 110 spin_unlock_irqrestore(&tls_device_lock, flags); 111 } 112 113 /* We assume that the socket is already connected */ 114 static struct net_device *get_netdev_for_sock(struct sock *sk) 115 { 116 struct dst_entry *dst = sk_dst_get(sk); 117 struct net_device *netdev = NULL; 118 119 if (likely(dst)) { 120 netdev = netdev_sk_get_lowest_dev(dst->dev, sk); 121 dev_hold(netdev); 122 } 123 124 dst_release(dst); 125 126 return netdev; 127 } 128 129 static void destroy_record(struct tls_record_info *record) 130 { 131 int i; 132 133 for (i = 0; i < record->num_frags; i++) 134 __skb_frag_unref(&record->frags[i], false); 135 kfree(record); 136 } 137 138 static void delete_all_records(struct tls_offload_context_tx *offload_ctx) 139 { 140 struct tls_record_info *info, *temp; 141 142 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { 143 list_del(&info->list); 144 destroy_record(info); 145 } 146 147 offload_ctx->retransmit_hint = NULL; 148 } 149 150 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) 151 { 152 struct tls_context *tls_ctx = tls_get_ctx(sk); 153 struct tls_record_info *info, *temp; 154 struct tls_offload_context_tx *ctx; 155 u64 deleted_records = 0; 156 unsigned long flags; 157 158 if (!tls_ctx) 159 return; 160 161 ctx = tls_offload_ctx_tx(tls_ctx); 162 163 spin_lock_irqsave(&ctx->lock, flags); 164 info = ctx->retransmit_hint; 165 if (info && !before(acked_seq, info->end_seq)) 166 ctx->retransmit_hint = NULL; 167 168 list_for_each_entry_safe(info, temp, &ctx->records_list, list) { 169 if (before(acked_seq, info->end_seq)) 170 break; 171 list_del(&info->list); 172 173 destroy_record(info); 174 deleted_records++; 175 } 176 177 ctx->unacked_record_sn += deleted_records; 178 spin_unlock_irqrestore(&ctx->lock, flags); 179 } 180 181 /* At this point, there should be no references on this 182 * socket and no in-flight SKBs associated with this 183 * socket, so it is safe to free all the resources. 184 */ 185 void tls_device_sk_destruct(struct sock *sk) 186 { 187 struct tls_context *tls_ctx = tls_get_ctx(sk); 188 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 189 190 tls_ctx->sk_destruct(sk); 191 192 if (tls_ctx->tx_conf == TLS_HW) { 193 if (ctx->open_record) 194 destroy_record(ctx->open_record); 195 delete_all_records(ctx); 196 crypto_free_aead(ctx->aead_send); 197 clean_acked_data_disable(inet_csk(sk)); 198 } 199 200 tls_device_queue_ctx_destruction(tls_ctx); 201 } 202 EXPORT_SYMBOL_GPL(tls_device_sk_destruct); 203 204 void tls_device_free_resources_tx(struct sock *sk) 205 { 206 struct tls_context *tls_ctx = tls_get_ctx(sk); 207 208 tls_free_partial_record(sk, tls_ctx); 209 } 210 211 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) 212 { 213 struct tls_context *tls_ctx = tls_get_ctx(sk); 214 215 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); 216 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 217 } 218 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); 219 220 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, 221 u32 seq) 222 { 223 struct net_device *netdev; 224 struct sk_buff *skb; 225 int err = 0; 226 u8 *rcd_sn; 227 228 skb = tcp_write_queue_tail(sk); 229 if (skb) 230 TCP_SKB_CB(skb)->eor = 1; 231 232 rcd_sn = tls_ctx->tx.rec_seq; 233 234 trace_tls_device_tx_resync_send(sk, seq, rcd_sn); 235 down_read(&device_offload_lock); 236 netdev = tls_ctx->netdev; 237 if (netdev) 238 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, 239 rcd_sn, 240 TLS_OFFLOAD_CTX_DIR_TX); 241 up_read(&device_offload_lock); 242 if (err) 243 return; 244 245 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 246 } 247 248 static void tls_append_frag(struct tls_record_info *record, 249 struct page_frag *pfrag, 250 int size) 251 { 252 skb_frag_t *frag; 253 254 frag = &record->frags[record->num_frags - 1]; 255 if (skb_frag_page(frag) == pfrag->page && 256 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { 257 skb_frag_size_add(frag, size); 258 } else { 259 ++frag; 260 __skb_frag_set_page(frag, pfrag->page); 261 skb_frag_off_set(frag, pfrag->offset); 262 skb_frag_size_set(frag, size); 263 ++record->num_frags; 264 get_page(pfrag->page); 265 } 266 267 pfrag->offset += size; 268 record->len += size; 269 } 270 271 static int tls_push_record(struct sock *sk, 272 struct tls_context *ctx, 273 struct tls_offload_context_tx *offload_ctx, 274 struct tls_record_info *record, 275 int flags) 276 { 277 struct tls_prot_info *prot = &ctx->prot_info; 278 struct tcp_sock *tp = tcp_sk(sk); 279 skb_frag_t *frag; 280 int i; 281 282 record->end_seq = tp->write_seq + record->len; 283 list_add_tail_rcu(&record->list, &offload_ctx->records_list); 284 offload_ctx->open_record = NULL; 285 286 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) 287 tls_device_resync_tx(sk, ctx, tp->write_seq); 288 289 tls_advance_record_sn(sk, prot, &ctx->tx); 290 291 for (i = 0; i < record->num_frags; i++) { 292 frag = &record->frags[i]; 293 sg_unmark_end(&offload_ctx->sg_tx_data[i]); 294 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), 295 skb_frag_size(frag), skb_frag_off(frag)); 296 sk_mem_charge(sk, skb_frag_size(frag)); 297 get_page(skb_frag_page(frag)); 298 } 299 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); 300 301 /* all ready, send */ 302 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); 303 } 304 305 static int tls_device_record_close(struct sock *sk, 306 struct tls_context *ctx, 307 struct tls_record_info *record, 308 struct page_frag *pfrag, 309 unsigned char record_type) 310 { 311 struct tls_prot_info *prot = &ctx->prot_info; 312 int ret; 313 314 /* append tag 315 * device will fill in the tag, we just need to append a placeholder 316 * use socket memory to improve coalescing (re-using a single buffer 317 * increases frag count) 318 * if we can't allocate memory now, steal some back from data 319 */ 320 if (likely(skb_page_frag_refill(prot->tag_size, pfrag, 321 sk->sk_allocation))) { 322 ret = 0; 323 tls_append_frag(record, pfrag, prot->tag_size); 324 } else { 325 ret = prot->tag_size; 326 if (record->len <= prot->overhead_size) 327 return -ENOMEM; 328 } 329 330 /* fill prepend */ 331 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), 332 record->len - prot->overhead_size, 333 record_type); 334 return ret; 335 } 336 337 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, 338 struct page_frag *pfrag, 339 size_t prepend_size) 340 { 341 struct tls_record_info *record; 342 skb_frag_t *frag; 343 344 record = kmalloc(sizeof(*record), GFP_KERNEL); 345 if (!record) 346 return -ENOMEM; 347 348 frag = &record->frags[0]; 349 __skb_frag_set_page(frag, pfrag->page); 350 skb_frag_off_set(frag, pfrag->offset); 351 skb_frag_size_set(frag, prepend_size); 352 353 get_page(pfrag->page); 354 pfrag->offset += prepend_size; 355 356 record->num_frags = 1; 357 record->len = prepend_size; 358 offload_ctx->open_record = record; 359 return 0; 360 } 361 362 static int tls_do_allocation(struct sock *sk, 363 struct tls_offload_context_tx *offload_ctx, 364 struct page_frag *pfrag, 365 size_t prepend_size) 366 { 367 int ret; 368 369 if (!offload_ctx->open_record) { 370 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, 371 sk->sk_allocation))) { 372 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); 373 sk_stream_moderate_sndbuf(sk); 374 return -ENOMEM; 375 } 376 377 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); 378 if (ret) 379 return ret; 380 381 if (pfrag->size > pfrag->offset) 382 return 0; 383 } 384 385 if (!sk_page_frag_refill(sk, pfrag)) 386 return -ENOMEM; 387 388 return 0; 389 } 390 391 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) 392 { 393 size_t pre_copy, nocache; 394 395 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); 396 if (pre_copy) { 397 pre_copy = min(pre_copy, bytes); 398 if (copy_from_iter(addr, pre_copy, i) != pre_copy) 399 return -EFAULT; 400 bytes -= pre_copy; 401 addr += pre_copy; 402 } 403 404 nocache = round_down(bytes, SMP_CACHE_BYTES); 405 if (copy_from_iter_nocache(addr, nocache, i) != nocache) 406 return -EFAULT; 407 bytes -= nocache; 408 addr += nocache; 409 410 if (bytes && copy_from_iter(addr, bytes, i) != bytes) 411 return -EFAULT; 412 413 return 0; 414 } 415 416 union tls_iter_offset { 417 struct iov_iter *msg_iter; 418 int offset; 419 }; 420 421 static int tls_push_data(struct sock *sk, 422 union tls_iter_offset iter_offset, 423 size_t size, int flags, 424 unsigned char record_type, 425 struct page *zc_page) 426 { 427 struct tls_context *tls_ctx = tls_get_ctx(sk); 428 struct tls_prot_info *prot = &tls_ctx->prot_info; 429 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 430 struct tls_record_info *record; 431 int tls_push_record_flags; 432 struct page_frag *pfrag; 433 size_t orig_size = size; 434 u32 max_open_record_len; 435 bool more = false; 436 bool done = false; 437 int copy, rc = 0; 438 long timeo; 439 440 if (flags & 441 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) 442 return -EOPNOTSUPP; 443 444 if (unlikely(sk->sk_err)) 445 return -sk->sk_err; 446 447 flags |= MSG_SENDPAGE_DECRYPTED; 448 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST; 449 450 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 451 if (tls_is_partially_sent_record(tls_ctx)) { 452 rc = tls_push_partial_record(sk, tls_ctx, flags); 453 if (rc < 0) 454 return rc; 455 } 456 457 pfrag = sk_page_frag(sk); 458 459 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and 460 * we need to leave room for an authentication tag. 461 */ 462 max_open_record_len = TLS_MAX_PAYLOAD_SIZE + 463 prot->prepend_size; 464 do { 465 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); 466 if (unlikely(rc)) { 467 rc = sk_stream_wait_memory(sk, &timeo); 468 if (!rc) 469 continue; 470 471 record = ctx->open_record; 472 if (!record) 473 break; 474 handle_error: 475 if (record_type != TLS_RECORD_TYPE_DATA) { 476 /* avoid sending partial 477 * record with type != 478 * application_data 479 */ 480 size = orig_size; 481 destroy_record(record); 482 ctx->open_record = NULL; 483 } else if (record->len > prot->prepend_size) { 484 goto last_record; 485 } 486 487 break; 488 } 489 490 record = ctx->open_record; 491 492 copy = min_t(size_t, size, max_open_record_len - record->len); 493 if (copy && zc_page) { 494 struct page_frag zc_pfrag; 495 496 zc_pfrag.page = zc_page; 497 zc_pfrag.offset = iter_offset.offset; 498 zc_pfrag.size = copy; 499 tls_append_frag(record, &zc_pfrag, copy); 500 } else if (copy) { 501 copy = min_t(size_t, copy, pfrag->size - pfrag->offset); 502 503 rc = tls_device_copy_data(page_address(pfrag->page) + 504 pfrag->offset, copy, 505 iter_offset.msg_iter); 506 if (rc) 507 goto handle_error; 508 tls_append_frag(record, pfrag, copy); 509 } 510 511 size -= copy; 512 if (!size) { 513 last_record: 514 tls_push_record_flags = flags; 515 if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) { 516 more = true; 517 break; 518 } 519 520 done = true; 521 } 522 523 if (done || record->len >= max_open_record_len || 524 (record->num_frags >= MAX_SKB_FRAGS - 1)) { 525 rc = tls_device_record_close(sk, tls_ctx, record, 526 pfrag, record_type); 527 if (rc) { 528 if (rc > 0) { 529 size += rc; 530 } else { 531 size = orig_size; 532 destroy_record(record); 533 ctx->open_record = NULL; 534 break; 535 } 536 } 537 538 rc = tls_push_record(sk, 539 tls_ctx, 540 ctx, 541 record, 542 tls_push_record_flags); 543 if (rc < 0) 544 break; 545 } 546 } while (!done); 547 548 tls_ctx->pending_open_record_frags = more; 549 550 if (orig_size - size > 0) 551 rc = orig_size - size; 552 553 return rc; 554 } 555 556 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 557 { 558 unsigned char record_type = TLS_RECORD_TYPE_DATA; 559 struct tls_context *tls_ctx = tls_get_ctx(sk); 560 union tls_iter_offset iter; 561 int rc; 562 563 mutex_lock(&tls_ctx->tx_lock); 564 lock_sock(sk); 565 566 if (unlikely(msg->msg_controllen)) { 567 rc = tls_proccess_cmsg(sk, msg, &record_type); 568 if (rc) 569 goto out; 570 } 571 572 iter.msg_iter = &msg->msg_iter; 573 rc = tls_push_data(sk, iter, size, msg->msg_flags, record_type, NULL); 574 575 out: 576 release_sock(sk); 577 mutex_unlock(&tls_ctx->tx_lock); 578 return rc; 579 } 580 581 int tls_device_sendpage(struct sock *sk, struct page *page, 582 int offset, size_t size, int flags) 583 { 584 struct tls_context *tls_ctx = tls_get_ctx(sk); 585 union tls_iter_offset iter_offset; 586 struct iov_iter msg_iter; 587 char *kaddr; 588 struct kvec iov; 589 int rc; 590 591 if (flags & MSG_SENDPAGE_NOTLAST) 592 flags |= MSG_MORE; 593 594 mutex_lock(&tls_ctx->tx_lock); 595 lock_sock(sk); 596 597 if (flags & MSG_OOB) { 598 rc = -EOPNOTSUPP; 599 goto out; 600 } 601 602 if (tls_ctx->zerocopy_sendfile) { 603 iter_offset.offset = offset; 604 rc = tls_push_data(sk, iter_offset, size, 605 flags, TLS_RECORD_TYPE_DATA, page); 606 goto out; 607 } 608 609 kaddr = kmap(page); 610 iov.iov_base = kaddr + offset; 611 iov.iov_len = size; 612 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size); 613 iter_offset.msg_iter = &msg_iter; 614 rc = tls_push_data(sk, iter_offset, size, flags, TLS_RECORD_TYPE_DATA, 615 NULL); 616 kunmap(page); 617 618 out: 619 release_sock(sk); 620 mutex_unlock(&tls_ctx->tx_lock); 621 return rc; 622 } 623 624 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 625 u32 seq, u64 *p_record_sn) 626 { 627 u64 record_sn = context->hint_record_sn; 628 struct tls_record_info *info, *last; 629 630 info = context->retransmit_hint; 631 if (!info || 632 before(seq, info->end_seq - info->len)) { 633 /* if retransmit_hint is irrelevant start 634 * from the beginning of the list 635 */ 636 info = list_first_entry_or_null(&context->records_list, 637 struct tls_record_info, list); 638 if (!info) 639 return NULL; 640 /* send the start_marker record if seq number is before the 641 * tls offload start marker sequence number. This record is 642 * required to handle TCP packets which are before TLS offload 643 * started. 644 * And if it's not start marker, look if this seq number 645 * belongs to the list. 646 */ 647 if (likely(!tls_record_is_start_marker(info))) { 648 /* we have the first record, get the last record to see 649 * if this seq number belongs to the list. 650 */ 651 last = list_last_entry(&context->records_list, 652 struct tls_record_info, list); 653 654 if (!between(seq, tls_record_start_seq(info), 655 last->end_seq)) 656 return NULL; 657 } 658 record_sn = context->unacked_record_sn; 659 } 660 661 /* We just need the _rcu for the READ_ONCE() */ 662 rcu_read_lock(); 663 list_for_each_entry_from_rcu(info, &context->records_list, list) { 664 if (before(seq, info->end_seq)) { 665 if (!context->retransmit_hint || 666 after(info->end_seq, 667 context->retransmit_hint->end_seq)) { 668 context->hint_record_sn = record_sn; 669 context->retransmit_hint = info; 670 } 671 *p_record_sn = record_sn; 672 goto exit_rcu_unlock; 673 } 674 record_sn++; 675 } 676 info = NULL; 677 678 exit_rcu_unlock: 679 rcu_read_unlock(); 680 return info; 681 } 682 EXPORT_SYMBOL(tls_get_record); 683 684 static int tls_device_push_pending_record(struct sock *sk, int flags) 685 { 686 union tls_iter_offset iter; 687 struct iov_iter msg_iter; 688 689 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0); 690 iter.msg_iter = &msg_iter; 691 return tls_push_data(sk, iter, 0, flags, TLS_RECORD_TYPE_DATA, NULL); 692 } 693 694 void tls_device_write_space(struct sock *sk, struct tls_context *ctx) 695 { 696 if (tls_is_partially_sent_record(ctx)) { 697 gfp_t sk_allocation = sk->sk_allocation; 698 699 WARN_ON_ONCE(sk->sk_write_pending); 700 701 sk->sk_allocation = GFP_ATOMIC; 702 tls_push_partial_record(sk, ctx, 703 MSG_DONTWAIT | MSG_NOSIGNAL | 704 MSG_SENDPAGE_DECRYPTED); 705 sk->sk_allocation = sk_allocation; 706 } 707 } 708 709 static void tls_device_resync_rx(struct tls_context *tls_ctx, 710 struct sock *sk, u32 seq, u8 *rcd_sn) 711 { 712 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 713 struct net_device *netdev; 714 715 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); 716 rcu_read_lock(); 717 netdev = READ_ONCE(tls_ctx->netdev); 718 if (netdev) 719 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, 720 TLS_OFFLOAD_CTX_DIR_RX); 721 rcu_read_unlock(); 722 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); 723 } 724 725 static bool 726 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, 727 s64 resync_req, u32 *seq, u16 *rcd_delta) 728 { 729 u32 is_async = resync_req & RESYNC_REQ_ASYNC; 730 u32 req_seq = resync_req >> 32; 731 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); 732 u16 i; 733 734 *rcd_delta = 0; 735 736 if (is_async) { 737 /* shouldn't get to wraparound: 738 * too long in async stage, something bad happened 739 */ 740 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) 741 return false; 742 743 /* asynchronous stage: log all headers seq such that 744 * req_seq <= seq <= end_seq, and wait for real resync request 745 */ 746 if (before(*seq, req_seq)) 747 return false; 748 if (!after(*seq, req_end) && 749 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) 750 resync_async->log[resync_async->loglen++] = *seq; 751 752 resync_async->rcd_delta++; 753 754 return false; 755 } 756 757 /* synchronous stage: check against the logged entries and 758 * proceed to check the next entries if no match was found 759 */ 760 for (i = 0; i < resync_async->loglen; i++) 761 if (req_seq == resync_async->log[i] && 762 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) { 763 *rcd_delta = resync_async->rcd_delta - i; 764 *seq = req_seq; 765 resync_async->loglen = 0; 766 resync_async->rcd_delta = 0; 767 return true; 768 } 769 770 resync_async->loglen = 0; 771 resync_async->rcd_delta = 0; 772 773 if (req_seq == *seq && 774 atomic64_try_cmpxchg(&resync_async->req, 775 &resync_req, 0)) 776 return true; 777 778 return false; 779 } 780 781 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) 782 { 783 struct tls_context *tls_ctx = tls_get_ctx(sk); 784 struct tls_offload_context_rx *rx_ctx; 785 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 786 u32 sock_data, is_req_pending; 787 struct tls_prot_info *prot; 788 s64 resync_req; 789 u16 rcd_delta; 790 u32 req_seq; 791 792 if (tls_ctx->rx_conf != TLS_HW) 793 return; 794 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) 795 return; 796 797 prot = &tls_ctx->prot_info; 798 rx_ctx = tls_offload_ctx_rx(tls_ctx); 799 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 800 801 switch (rx_ctx->resync_type) { 802 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: 803 resync_req = atomic64_read(&rx_ctx->resync_req); 804 req_seq = resync_req >> 32; 805 seq += TLS_HEADER_SIZE - 1; 806 is_req_pending = resync_req; 807 808 if (likely(!is_req_pending) || req_seq != seq || 809 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) 810 return; 811 break; 812 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: 813 if (likely(!rx_ctx->resync_nh_do_now)) 814 return; 815 816 /* head of next rec is already in, note that the sock_inq will 817 * include the currently parsed message when called from parser 818 */ 819 sock_data = tcp_inq(sk); 820 if (sock_data > rcd_len) { 821 trace_tls_device_rx_resync_nh_delay(sk, sock_data, 822 rcd_len); 823 return; 824 } 825 826 rx_ctx->resync_nh_do_now = 0; 827 seq += rcd_len; 828 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 829 break; 830 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: 831 resync_req = atomic64_read(&rx_ctx->resync_async->req); 832 is_req_pending = resync_req; 833 if (likely(!is_req_pending)) 834 return; 835 836 if (!tls_device_rx_resync_async(rx_ctx->resync_async, 837 resync_req, &seq, &rcd_delta)) 838 return; 839 tls_bigint_subtract(rcd_sn, rcd_delta); 840 break; 841 } 842 843 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); 844 } 845 846 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, 847 struct tls_offload_context_rx *ctx, 848 struct sock *sk, struct sk_buff *skb) 849 { 850 struct strp_msg *rxm; 851 852 /* device will request resyncs by itself based on stream scan */ 853 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) 854 return; 855 /* already scheduled */ 856 if (ctx->resync_nh_do_now) 857 return; 858 /* seen decrypted fragments since last fully-failed record */ 859 if (ctx->resync_nh_reset) { 860 ctx->resync_nh_reset = 0; 861 ctx->resync_nh.decrypted_failed = 1; 862 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; 863 return; 864 } 865 866 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) 867 return; 868 869 /* doing resync, bump the next target in case it fails */ 870 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) 871 ctx->resync_nh.decrypted_tgt *= 2; 872 else 873 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; 874 875 rxm = strp_msg(skb); 876 877 /* head of next rec is already in, parser will sync for us */ 878 if (tcp_inq(sk) > rxm->full_len) { 879 trace_tls_device_rx_resync_nh_schedule(sk); 880 ctx->resync_nh_do_now = 1; 881 } else { 882 struct tls_prot_info *prot = &tls_ctx->prot_info; 883 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 884 885 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 886 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 887 888 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, 889 rcd_sn); 890 } 891 } 892 893 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb) 894 { 895 struct strp_msg *rxm = strp_msg(skb); 896 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos; 897 struct sk_buff *skb_iter, *unused; 898 struct scatterlist sg[1]; 899 char *orig_buf, *buf; 900 901 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + 902 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation); 903 if (!orig_buf) 904 return -ENOMEM; 905 buf = orig_buf; 906 907 nsg = skb_cow_data(skb, 0, &unused); 908 if (unlikely(nsg < 0)) { 909 err = nsg; 910 goto free_buf; 911 } 912 913 sg_init_table(sg, 1); 914 sg_set_buf(&sg[0], buf, 915 rxm->full_len + TLS_HEADER_SIZE + 916 TLS_CIPHER_AES_GCM_128_IV_SIZE); 917 err = skb_copy_bits(skb, offset, buf, 918 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE); 919 if (err) 920 goto free_buf; 921 922 /* We are interested only in the decrypted data not the auth */ 923 err = decrypt_skb(sk, skb, sg); 924 if (err != -EBADMSG) 925 goto free_buf; 926 else 927 err = 0; 928 929 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE; 930 931 if (skb_pagelen(skb) > offset) { 932 copy = min_t(int, skb_pagelen(skb) - offset, data_len); 933 934 if (skb->decrypted) { 935 err = skb_store_bits(skb, offset, buf, copy); 936 if (err) 937 goto free_buf; 938 } 939 940 offset += copy; 941 buf += copy; 942 } 943 944 pos = skb_pagelen(skb); 945 skb_walk_frags(skb, skb_iter) { 946 int frag_pos; 947 948 /* Practically all frags must belong to msg if reencrypt 949 * is needed with current strparser and coalescing logic, 950 * but strparser may "get optimized", so let's be safe. 951 */ 952 if (pos + skb_iter->len <= offset) 953 goto done_with_frag; 954 if (pos >= data_len + rxm->offset) 955 break; 956 957 frag_pos = offset - pos; 958 copy = min_t(int, skb_iter->len - frag_pos, 959 data_len + rxm->offset - offset); 960 961 if (skb_iter->decrypted) { 962 err = skb_store_bits(skb_iter, frag_pos, buf, copy); 963 if (err) 964 goto free_buf; 965 } 966 967 offset += copy; 968 buf += copy; 969 done_with_frag: 970 pos += skb_iter->len; 971 } 972 973 free_buf: 974 kfree(orig_buf); 975 return err; 976 } 977 978 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 979 struct sk_buff *skb, struct strp_msg *rxm) 980 { 981 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); 982 int is_decrypted = skb->decrypted; 983 int is_encrypted = !is_decrypted; 984 struct sk_buff *skb_iter; 985 986 /* Check if all the data is decrypted already */ 987 skb_walk_frags(skb, skb_iter) { 988 is_decrypted &= skb_iter->decrypted; 989 is_encrypted &= !skb_iter->decrypted; 990 } 991 992 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, 993 tls_ctx->rx.rec_seq, rxm->full_len, 994 is_encrypted, is_decrypted); 995 996 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) { 997 if (likely(is_encrypted || is_decrypted)) 998 return is_decrypted; 999 1000 /* After tls_device_down disables the offload, the next SKB will 1001 * likely have initial fragments decrypted, and final ones not 1002 * decrypted. We need to reencrypt that single SKB. 1003 */ 1004 return tls_device_reencrypt(sk, skb); 1005 } 1006 1007 /* Return immediately if the record is either entirely plaintext or 1008 * entirely ciphertext. Otherwise handle reencrypt partially decrypted 1009 * record. 1010 */ 1011 if (is_decrypted) { 1012 ctx->resync_nh_reset = 1; 1013 return is_decrypted; 1014 } 1015 if (is_encrypted) { 1016 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); 1017 return 0; 1018 } 1019 1020 ctx->resync_nh_reset = 1; 1021 return tls_device_reencrypt(sk, skb); 1022 } 1023 1024 static void tls_device_attach(struct tls_context *ctx, struct sock *sk, 1025 struct net_device *netdev) 1026 { 1027 if (sk->sk_destruct != tls_device_sk_destruct) { 1028 refcount_set(&ctx->refcount, 1); 1029 dev_hold(netdev); 1030 ctx->netdev = netdev; 1031 spin_lock_irq(&tls_device_lock); 1032 list_add_tail(&ctx->list, &tls_device_list); 1033 spin_unlock_irq(&tls_device_lock); 1034 1035 ctx->sk_destruct = sk->sk_destruct; 1036 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); 1037 } 1038 } 1039 1040 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 1041 { 1042 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 1043 struct tls_context *tls_ctx = tls_get_ctx(sk); 1044 struct tls_prot_info *prot = &tls_ctx->prot_info; 1045 struct tls_record_info *start_marker_record; 1046 struct tls_offload_context_tx *offload_ctx; 1047 struct tls_crypto_info *crypto_info; 1048 struct net_device *netdev; 1049 char *iv, *rec_seq; 1050 struct sk_buff *skb; 1051 __be64 rcd_sn; 1052 int rc; 1053 1054 if (!ctx) 1055 return -EINVAL; 1056 1057 if (ctx->priv_ctx_tx) 1058 return -EEXIST; 1059 1060 netdev = get_netdev_for_sock(sk); 1061 if (!netdev) { 1062 pr_err_ratelimited("%s: netdev not found\n", __func__); 1063 return -EINVAL; 1064 } 1065 1066 if (!(netdev->features & NETIF_F_HW_TLS_TX)) { 1067 rc = -EOPNOTSUPP; 1068 goto release_netdev; 1069 } 1070 1071 crypto_info = &ctx->crypto_send.info; 1072 if (crypto_info->version != TLS_1_2_VERSION) { 1073 rc = -EOPNOTSUPP; 1074 goto release_netdev; 1075 } 1076 1077 switch (crypto_info->cipher_type) { 1078 case TLS_CIPHER_AES_GCM_128: 1079 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1080 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 1081 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1082 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 1083 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 1084 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 1085 rec_seq = 1086 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 1087 break; 1088 default: 1089 rc = -EINVAL; 1090 goto release_netdev; 1091 } 1092 1093 /* Sanity-check the rec_seq_size for stack allocations */ 1094 if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 1095 rc = -EINVAL; 1096 goto release_netdev; 1097 } 1098 1099 prot->version = crypto_info->version; 1100 prot->cipher_type = crypto_info->cipher_type; 1101 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 1102 prot->tag_size = tag_size; 1103 prot->overhead_size = prot->prepend_size + prot->tag_size; 1104 prot->iv_size = iv_size; 1105 prot->salt_size = salt_size; 1106 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 1107 GFP_KERNEL); 1108 if (!ctx->tx.iv) { 1109 rc = -ENOMEM; 1110 goto release_netdev; 1111 } 1112 1113 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 1114 1115 prot->rec_seq_size = rec_seq_size; 1116 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 1117 if (!ctx->tx.rec_seq) { 1118 rc = -ENOMEM; 1119 goto free_iv; 1120 } 1121 1122 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); 1123 if (!start_marker_record) { 1124 rc = -ENOMEM; 1125 goto free_rec_seq; 1126 } 1127 1128 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); 1129 if (!offload_ctx) { 1130 rc = -ENOMEM; 1131 goto free_marker_record; 1132 } 1133 1134 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); 1135 if (rc) 1136 goto free_offload_ctx; 1137 1138 /* start at rec_seq - 1 to account for the start marker record */ 1139 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); 1140 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; 1141 1142 start_marker_record->end_seq = tcp_sk(sk)->write_seq; 1143 start_marker_record->len = 0; 1144 start_marker_record->num_frags = 0; 1145 1146 INIT_LIST_HEAD(&offload_ctx->records_list); 1147 list_add_tail(&start_marker_record->list, &offload_ctx->records_list); 1148 spin_lock_init(&offload_ctx->lock); 1149 sg_init_table(offload_ctx->sg_tx_data, 1150 ARRAY_SIZE(offload_ctx->sg_tx_data)); 1151 1152 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); 1153 ctx->push_pending_record = tls_device_push_pending_record; 1154 1155 /* TLS offload is greatly simplified if we don't send 1156 * SKBs where only part of the payload needs to be encrypted. 1157 * So mark the last skb in the write queue as end of record. 1158 */ 1159 skb = tcp_write_queue_tail(sk); 1160 if (skb) 1161 TCP_SKB_CB(skb)->eor = 1; 1162 1163 /* Avoid offloading if the device is down 1164 * We don't want to offload new flows after 1165 * the NETDEV_DOWN event 1166 * 1167 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1168 * handler thus protecting from the device going down before 1169 * ctx was added to tls_device_list. 1170 */ 1171 down_read(&device_offload_lock); 1172 if (!(netdev->flags & IFF_UP)) { 1173 rc = -EINVAL; 1174 goto release_lock; 1175 } 1176 1177 ctx->priv_ctx_tx = offload_ctx; 1178 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, 1179 &ctx->crypto_send.info, 1180 tcp_sk(sk)->write_seq); 1181 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, 1182 tcp_sk(sk)->write_seq, rec_seq, rc); 1183 if (rc) 1184 goto release_lock; 1185 1186 tls_device_attach(ctx, sk, netdev); 1187 up_read(&device_offload_lock); 1188 1189 /* following this assignment tls_is_sk_tx_device_offloaded 1190 * will return true and the context might be accessed 1191 * by the netdev's xmit function. 1192 */ 1193 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); 1194 dev_put(netdev); 1195 1196 return 0; 1197 1198 release_lock: 1199 up_read(&device_offload_lock); 1200 clean_acked_data_disable(inet_csk(sk)); 1201 crypto_free_aead(offload_ctx->aead_send); 1202 free_offload_ctx: 1203 kfree(offload_ctx); 1204 ctx->priv_ctx_tx = NULL; 1205 free_marker_record: 1206 kfree(start_marker_record); 1207 free_rec_seq: 1208 kfree(ctx->tx.rec_seq); 1209 free_iv: 1210 kfree(ctx->tx.iv); 1211 release_netdev: 1212 dev_put(netdev); 1213 return rc; 1214 } 1215 1216 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 1217 { 1218 struct tls12_crypto_info_aes_gcm_128 *info; 1219 struct tls_offload_context_rx *context; 1220 struct net_device *netdev; 1221 int rc = 0; 1222 1223 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) 1224 return -EOPNOTSUPP; 1225 1226 netdev = get_netdev_for_sock(sk); 1227 if (!netdev) { 1228 pr_err_ratelimited("%s: netdev not found\n", __func__); 1229 return -EINVAL; 1230 } 1231 1232 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 1233 rc = -EOPNOTSUPP; 1234 goto release_netdev; 1235 } 1236 1237 /* Avoid offloading if the device is down 1238 * We don't want to offload new flows after 1239 * the NETDEV_DOWN event 1240 * 1241 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1242 * handler thus protecting from the device going down before 1243 * ctx was added to tls_device_list. 1244 */ 1245 down_read(&device_offload_lock); 1246 if (!(netdev->flags & IFF_UP)) { 1247 rc = -EINVAL; 1248 goto release_lock; 1249 } 1250 1251 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); 1252 if (!context) { 1253 rc = -ENOMEM; 1254 goto release_lock; 1255 } 1256 context->resync_nh_reset = 1; 1257 1258 ctx->priv_ctx_rx = context; 1259 rc = tls_set_sw_offload(sk, ctx, 0); 1260 if (rc) 1261 goto release_ctx; 1262 1263 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, 1264 &ctx->crypto_recv.info, 1265 tcp_sk(sk)->copied_seq); 1266 info = (void *)&ctx->crypto_recv.info; 1267 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, 1268 tcp_sk(sk)->copied_seq, info->rec_seq, rc); 1269 if (rc) 1270 goto free_sw_resources; 1271 1272 tls_device_attach(ctx, sk, netdev); 1273 up_read(&device_offload_lock); 1274 1275 dev_put(netdev); 1276 1277 return 0; 1278 1279 free_sw_resources: 1280 up_read(&device_offload_lock); 1281 tls_sw_free_resources_rx(sk); 1282 down_read(&device_offload_lock); 1283 release_ctx: 1284 ctx->priv_ctx_rx = NULL; 1285 release_lock: 1286 up_read(&device_offload_lock); 1287 release_netdev: 1288 dev_put(netdev); 1289 return rc; 1290 } 1291 1292 void tls_device_offload_cleanup_rx(struct sock *sk) 1293 { 1294 struct tls_context *tls_ctx = tls_get_ctx(sk); 1295 struct net_device *netdev; 1296 1297 down_read(&device_offload_lock); 1298 netdev = tls_ctx->netdev; 1299 if (!netdev) 1300 goto out; 1301 1302 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, 1303 TLS_OFFLOAD_CTX_DIR_RX); 1304 1305 if (tls_ctx->tx_conf != TLS_HW) { 1306 dev_put(netdev); 1307 tls_ctx->netdev = NULL; 1308 } else { 1309 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags); 1310 } 1311 out: 1312 up_read(&device_offload_lock); 1313 tls_sw_release_resources_rx(sk); 1314 } 1315 1316 static int tls_device_down(struct net_device *netdev) 1317 { 1318 struct tls_context *ctx, *tmp; 1319 unsigned long flags; 1320 LIST_HEAD(list); 1321 1322 /* Request a write lock to block new offload attempts */ 1323 down_write(&device_offload_lock); 1324 1325 spin_lock_irqsave(&tls_device_lock, flags); 1326 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { 1327 if (ctx->netdev != netdev || 1328 !refcount_inc_not_zero(&ctx->refcount)) 1329 continue; 1330 1331 list_move(&ctx->list, &list); 1332 } 1333 spin_unlock_irqrestore(&tls_device_lock, flags); 1334 1335 list_for_each_entry_safe(ctx, tmp, &list, list) { 1336 /* Stop offloaded TX and switch to the fallback. 1337 * tls_is_sk_tx_device_offloaded will return false. 1338 */ 1339 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw); 1340 1341 /* Stop the RX and TX resync. 1342 * tls_dev_resync must not be called after tls_dev_del. 1343 */ 1344 WRITE_ONCE(ctx->netdev, NULL); 1345 1346 /* Start skipping the RX resync logic completely. */ 1347 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags); 1348 1349 /* Sync with inflight packets. After this point: 1350 * TX: no non-encrypted packets will be passed to the driver. 1351 * RX: resync requests from the driver will be ignored. 1352 */ 1353 synchronize_net(); 1354 1355 /* Release the offload context on the driver side. */ 1356 if (ctx->tx_conf == TLS_HW) 1357 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1358 TLS_OFFLOAD_CTX_DIR_TX); 1359 if (ctx->rx_conf == TLS_HW && 1360 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags)) 1361 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1362 TLS_OFFLOAD_CTX_DIR_RX); 1363 1364 dev_put(netdev); 1365 1366 /* Move the context to a separate list for two reasons: 1367 * 1. When the context is deallocated, list_del is called. 1368 * 2. It's no longer an offloaded context, so we don't want to 1369 * run offload-specific code on this context. 1370 */ 1371 spin_lock_irqsave(&tls_device_lock, flags); 1372 list_move_tail(&ctx->list, &tls_device_down_list); 1373 spin_unlock_irqrestore(&tls_device_lock, flags); 1374 1375 /* Device contexts for RX and TX will be freed in on sk_destruct 1376 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW. 1377 * Now release the ref taken above. 1378 */ 1379 if (refcount_dec_and_test(&ctx->refcount)) { 1380 /* sk_destruct ran after tls_device_down took a ref, and 1381 * it returned early. Complete the destruction here. 1382 */ 1383 list_del(&ctx->list); 1384 tls_device_free_ctx(ctx); 1385 } 1386 } 1387 1388 up_write(&device_offload_lock); 1389 1390 flush_work(&tls_device_gc_work); 1391 1392 return NOTIFY_DONE; 1393 } 1394 1395 static int tls_dev_event(struct notifier_block *this, unsigned long event, 1396 void *ptr) 1397 { 1398 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1399 1400 if (!dev->tlsdev_ops && 1401 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) 1402 return NOTIFY_DONE; 1403 1404 switch (event) { 1405 case NETDEV_REGISTER: 1406 case NETDEV_FEAT_CHANGE: 1407 if (netif_is_bond_master(dev)) 1408 return NOTIFY_DONE; 1409 if ((dev->features & NETIF_F_HW_TLS_RX) && 1410 !dev->tlsdev_ops->tls_dev_resync) 1411 return NOTIFY_BAD; 1412 1413 if (dev->tlsdev_ops && 1414 dev->tlsdev_ops->tls_dev_add && 1415 dev->tlsdev_ops->tls_dev_del) 1416 return NOTIFY_DONE; 1417 else 1418 return NOTIFY_BAD; 1419 case NETDEV_DOWN: 1420 return tls_device_down(dev); 1421 } 1422 return NOTIFY_DONE; 1423 } 1424 1425 static struct notifier_block tls_dev_notifier = { 1426 .notifier_call = tls_dev_event, 1427 }; 1428 1429 int __init tls_device_init(void) 1430 { 1431 return register_netdevice_notifier(&tls_dev_notifier); 1432 } 1433 1434 void __exit tls_device_cleanup(void) 1435 { 1436 unregister_netdevice_notifier(&tls_dev_notifier); 1437 flush_work(&tls_device_gc_work); 1438 clean_acked_data_flush(); 1439 } 1440