xref: /openbmc/linux/net/tls/tls_device.c (revision ec2da07c)
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40 
41 /* device_offload_lock is used to synchronize tls_dev_add
42  * against NETDEV_DOWN notifications.
43  */
44 static DECLARE_RWSEM(device_offload_lock);
45 
46 static void tls_device_gc_task(struct work_struct *work);
47 
48 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
49 static LIST_HEAD(tls_device_gc_list);
50 static LIST_HEAD(tls_device_list);
51 static DEFINE_SPINLOCK(tls_device_lock);
52 
53 static void tls_device_free_ctx(struct tls_context *ctx)
54 {
55 	if (ctx->tx_conf == TLS_HW) {
56 		kfree(tls_offload_ctx_tx(ctx));
57 		kfree(ctx->tx.rec_seq);
58 		kfree(ctx->tx.iv);
59 	}
60 
61 	if (ctx->rx_conf == TLS_HW)
62 		kfree(tls_offload_ctx_rx(ctx));
63 
64 	tls_ctx_free(ctx);
65 }
66 
67 static void tls_device_gc_task(struct work_struct *work)
68 {
69 	struct tls_context *ctx, *tmp;
70 	unsigned long flags;
71 	LIST_HEAD(gc_list);
72 
73 	spin_lock_irqsave(&tls_device_lock, flags);
74 	list_splice_init(&tls_device_gc_list, &gc_list);
75 	spin_unlock_irqrestore(&tls_device_lock, flags);
76 
77 	list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
78 		struct net_device *netdev = ctx->netdev;
79 
80 		if (netdev && ctx->tx_conf == TLS_HW) {
81 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
82 							TLS_OFFLOAD_CTX_DIR_TX);
83 			dev_put(netdev);
84 			ctx->netdev = NULL;
85 		}
86 
87 		list_del(&ctx->list);
88 		tls_device_free_ctx(ctx);
89 	}
90 }
91 
92 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
93 {
94 	unsigned long flags;
95 
96 	spin_lock_irqsave(&tls_device_lock, flags);
97 	list_move_tail(&ctx->list, &tls_device_gc_list);
98 
99 	/* schedule_work inside the spinlock
100 	 * to make sure tls_device_down waits for that work.
101 	 */
102 	schedule_work(&tls_device_gc_work);
103 
104 	spin_unlock_irqrestore(&tls_device_lock, flags);
105 }
106 
107 /* We assume that the socket is already connected */
108 static struct net_device *get_netdev_for_sock(struct sock *sk)
109 {
110 	struct dst_entry *dst = sk_dst_get(sk);
111 	struct net_device *netdev = NULL;
112 
113 	if (likely(dst)) {
114 		netdev = dst->dev;
115 		dev_hold(netdev);
116 	}
117 
118 	dst_release(dst);
119 
120 	return netdev;
121 }
122 
123 static void destroy_record(struct tls_record_info *record)
124 {
125 	int nr_frags = record->num_frags;
126 	skb_frag_t *frag;
127 
128 	while (nr_frags-- > 0) {
129 		frag = &record->frags[nr_frags];
130 		__skb_frag_unref(frag);
131 	}
132 	kfree(record);
133 }
134 
135 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
136 {
137 	struct tls_record_info *info, *temp;
138 
139 	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
140 		list_del(&info->list);
141 		destroy_record(info);
142 	}
143 
144 	offload_ctx->retransmit_hint = NULL;
145 }
146 
147 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
148 {
149 	struct tls_context *tls_ctx = tls_get_ctx(sk);
150 	struct tls_record_info *info, *temp;
151 	struct tls_offload_context_tx *ctx;
152 	u64 deleted_records = 0;
153 	unsigned long flags;
154 
155 	if (!tls_ctx)
156 		return;
157 
158 	ctx = tls_offload_ctx_tx(tls_ctx);
159 
160 	spin_lock_irqsave(&ctx->lock, flags);
161 	info = ctx->retransmit_hint;
162 	if (info && !before(acked_seq, info->end_seq)) {
163 		ctx->retransmit_hint = NULL;
164 		list_del(&info->list);
165 		destroy_record(info);
166 		deleted_records++;
167 	}
168 
169 	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
170 		if (before(acked_seq, info->end_seq))
171 			break;
172 		list_del(&info->list);
173 
174 		destroy_record(info);
175 		deleted_records++;
176 	}
177 
178 	ctx->unacked_record_sn += deleted_records;
179 	spin_unlock_irqrestore(&ctx->lock, flags);
180 }
181 
182 /* At this point, there should be no references on this
183  * socket and no in-flight SKBs associated with this
184  * socket, so it is safe to free all the resources.
185  */
186 static void tls_device_sk_destruct(struct sock *sk)
187 {
188 	struct tls_context *tls_ctx = tls_get_ctx(sk);
189 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
190 
191 	tls_ctx->sk_destruct(sk);
192 
193 	if (tls_ctx->tx_conf == TLS_HW) {
194 		if (ctx->open_record)
195 			destroy_record(ctx->open_record);
196 		delete_all_records(ctx);
197 		crypto_free_aead(ctx->aead_send);
198 		clean_acked_data_disable(inet_csk(sk));
199 	}
200 
201 	if (refcount_dec_and_test(&tls_ctx->refcount))
202 		tls_device_queue_ctx_destruction(tls_ctx);
203 }
204 
205 void tls_device_free_resources_tx(struct sock *sk)
206 {
207 	struct tls_context *tls_ctx = tls_get_ctx(sk);
208 
209 	tls_free_partial_record(sk, tls_ctx);
210 }
211 
212 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
213 				 u32 seq)
214 {
215 	struct net_device *netdev;
216 	struct sk_buff *skb;
217 	int err = 0;
218 	u8 *rcd_sn;
219 
220 	skb = tcp_write_queue_tail(sk);
221 	if (skb)
222 		TCP_SKB_CB(skb)->eor = 1;
223 
224 	rcd_sn = tls_ctx->tx.rec_seq;
225 
226 	down_read(&device_offload_lock);
227 	netdev = tls_ctx->netdev;
228 	if (netdev)
229 		err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
230 							 rcd_sn,
231 							 TLS_OFFLOAD_CTX_DIR_TX);
232 	up_read(&device_offload_lock);
233 	if (err)
234 		return;
235 
236 	clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
237 }
238 
239 static void tls_append_frag(struct tls_record_info *record,
240 			    struct page_frag *pfrag,
241 			    int size)
242 {
243 	skb_frag_t *frag;
244 
245 	frag = &record->frags[record->num_frags - 1];
246 	if (frag->page.p == pfrag->page &&
247 	    frag->page_offset + frag->size == pfrag->offset) {
248 		frag->size += size;
249 	} else {
250 		++frag;
251 		frag->page.p = pfrag->page;
252 		frag->page_offset = pfrag->offset;
253 		frag->size = size;
254 		++record->num_frags;
255 		get_page(pfrag->page);
256 	}
257 
258 	pfrag->offset += size;
259 	record->len += size;
260 }
261 
262 static int tls_push_record(struct sock *sk,
263 			   struct tls_context *ctx,
264 			   struct tls_offload_context_tx *offload_ctx,
265 			   struct tls_record_info *record,
266 			   struct page_frag *pfrag,
267 			   int flags,
268 			   unsigned char record_type)
269 {
270 	struct tls_prot_info *prot = &ctx->prot_info;
271 	struct tcp_sock *tp = tcp_sk(sk);
272 	struct page_frag dummy_tag_frag;
273 	skb_frag_t *frag;
274 	int i;
275 
276 	/* fill prepend */
277 	frag = &record->frags[0];
278 	tls_fill_prepend(ctx,
279 			 skb_frag_address(frag),
280 			 record->len - prot->prepend_size,
281 			 record_type,
282 			 prot->version);
283 
284 	/* HW doesn't care about the data in the tag, because it fills it. */
285 	dummy_tag_frag.page = skb_frag_page(frag);
286 	dummy_tag_frag.offset = 0;
287 
288 	tls_append_frag(record, &dummy_tag_frag, prot->tag_size);
289 	record->end_seq = tp->write_seq + record->len;
290 	spin_lock_irq(&offload_ctx->lock);
291 	list_add_tail(&record->list, &offload_ctx->records_list);
292 	spin_unlock_irq(&offload_ctx->lock);
293 	offload_ctx->open_record = NULL;
294 
295 	if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
296 		tls_device_resync_tx(sk, ctx, tp->write_seq);
297 
298 	tls_advance_record_sn(sk, prot, &ctx->tx);
299 
300 	for (i = 0; i < record->num_frags; i++) {
301 		frag = &record->frags[i];
302 		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
303 		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
304 			    frag->size, frag->page_offset);
305 		sk_mem_charge(sk, frag->size);
306 		get_page(skb_frag_page(frag));
307 	}
308 	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
309 
310 	/* all ready, send */
311 	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
312 }
313 
314 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
315 				 struct page_frag *pfrag,
316 				 size_t prepend_size)
317 {
318 	struct tls_record_info *record;
319 	skb_frag_t *frag;
320 
321 	record = kmalloc(sizeof(*record), GFP_KERNEL);
322 	if (!record)
323 		return -ENOMEM;
324 
325 	frag = &record->frags[0];
326 	__skb_frag_set_page(frag, pfrag->page);
327 	frag->page_offset = pfrag->offset;
328 	skb_frag_size_set(frag, prepend_size);
329 
330 	get_page(pfrag->page);
331 	pfrag->offset += prepend_size;
332 
333 	record->num_frags = 1;
334 	record->len = prepend_size;
335 	offload_ctx->open_record = record;
336 	return 0;
337 }
338 
339 static int tls_do_allocation(struct sock *sk,
340 			     struct tls_offload_context_tx *offload_ctx,
341 			     struct page_frag *pfrag,
342 			     size_t prepend_size)
343 {
344 	int ret;
345 
346 	if (!offload_ctx->open_record) {
347 		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
348 						   sk->sk_allocation))) {
349 			sk->sk_prot->enter_memory_pressure(sk);
350 			sk_stream_moderate_sndbuf(sk);
351 			return -ENOMEM;
352 		}
353 
354 		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
355 		if (ret)
356 			return ret;
357 
358 		if (pfrag->size > pfrag->offset)
359 			return 0;
360 	}
361 
362 	if (!sk_page_frag_refill(sk, pfrag))
363 		return -ENOMEM;
364 
365 	return 0;
366 }
367 
368 static int tls_push_data(struct sock *sk,
369 			 struct iov_iter *msg_iter,
370 			 size_t size, int flags,
371 			 unsigned char record_type)
372 {
373 	struct tls_context *tls_ctx = tls_get_ctx(sk);
374 	struct tls_prot_info *prot = &tls_ctx->prot_info;
375 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
376 	int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
377 	struct tls_record_info *record = ctx->open_record;
378 	int tls_push_record_flags;
379 	struct page_frag *pfrag;
380 	size_t orig_size = size;
381 	u32 max_open_record_len;
382 	int copy, rc = 0;
383 	bool done = false;
384 	long timeo;
385 
386 	if (flags &
387 	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
388 		return -ENOTSUPP;
389 
390 	if (sk->sk_err)
391 		return -sk->sk_err;
392 
393 	flags |= MSG_SENDPAGE_DECRYPTED;
394 	tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
395 
396 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
397 	if (tls_is_partially_sent_record(tls_ctx)) {
398 		rc = tls_push_partial_record(sk, tls_ctx, flags);
399 		if (rc < 0)
400 			return rc;
401 	}
402 
403 	pfrag = sk_page_frag(sk);
404 
405 	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
406 	 * we need to leave room for an authentication tag.
407 	 */
408 	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
409 			      prot->prepend_size;
410 	do {
411 		rc = tls_do_allocation(sk, ctx, pfrag,
412 				       prot->prepend_size);
413 		if (rc) {
414 			rc = sk_stream_wait_memory(sk, &timeo);
415 			if (!rc)
416 				continue;
417 
418 			record = ctx->open_record;
419 			if (!record)
420 				break;
421 handle_error:
422 			if (record_type != TLS_RECORD_TYPE_DATA) {
423 				/* avoid sending partial
424 				 * record with type !=
425 				 * application_data
426 				 */
427 				size = orig_size;
428 				destroy_record(record);
429 				ctx->open_record = NULL;
430 			} else if (record->len > prot->prepend_size) {
431 				goto last_record;
432 			}
433 
434 			break;
435 		}
436 
437 		record = ctx->open_record;
438 		copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
439 		copy = min_t(size_t, copy, (max_open_record_len - record->len));
440 
441 		if (copy_from_iter_nocache(page_address(pfrag->page) +
442 					       pfrag->offset,
443 					   copy, msg_iter) != copy) {
444 			rc = -EFAULT;
445 			goto handle_error;
446 		}
447 		tls_append_frag(record, pfrag, copy);
448 
449 		size -= copy;
450 		if (!size) {
451 last_record:
452 			tls_push_record_flags = flags;
453 			if (more) {
454 				tls_ctx->pending_open_record_frags =
455 						!!record->num_frags;
456 				break;
457 			}
458 
459 			done = true;
460 		}
461 
462 		if (done || record->len >= max_open_record_len ||
463 		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
464 			rc = tls_push_record(sk,
465 					     tls_ctx,
466 					     ctx,
467 					     record,
468 					     pfrag,
469 					     tls_push_record_flags,
470 					     record_type);
471 			if (rc < 0)
472 				break;
473 		}
474 	} while (!done);
475 
476 	if (orig_size - size > 0)
477 		rc = orig_size - size;
478 
479 	return rc;
480 }
481 
482 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
483 {
484 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
485 	int rc;
486 
487 	lock_sock(sk);
488 
489 	if (unlikely(msg->msg_controllen)) {
490 		rc = tls_proccess_cmsg(sk, msg, &record_type);
491 		if (rc)
492 			goto out;
493 	}
494 
495 	rc = tls_push_data(sk, &msg->msg_iter, size,
496 			   msg->msg_flags, record_type);
497 
498 out:
499 	release_sock(sk);
500 	return rc;
501 }
502 
503 int tls_device_sendpage(struct sock *sk, struct page *page,
504 			int offset, size_t size, int flags)
505 {
506 	struct iov_iter	msg_iter;
507 	char *kaddr = kmap(page);
508 	struct kvec iov;
509 	int rc;
510 
511 	if (flags & MSG_SENDPAGE_NOTLAST)
512 		flags |= MSG_MORE;
513 
514 	lock_sock(sk);
515 
516 	if (flags & MSG_OOB) {
517 		rc = -ENOTSUPP;
518 		goto out;
519 	}
520 
521 	iov.iov_base = kaddr + offset;
522 	iov.iov_len = size;
523 	iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
524 	rc = tls_push_data(sk, &msg_iter, size,
525 			   flags, TLS_RECORD_TYPE_DATA);
526 	kunmap(page);
527 
528 out:
529 	release_sock(sk);
530 	return rc;
531 }
532 
533 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
534 				       u32 seq, u64 *p_record_sn)
535 {
536 	u64 record_sn = context->hint_record_sn;
537 	struct tls_record_info *info;
538 
539 	info = context->retransmit_hint;
540 	if (!info ||
541 	    before(seq, info->end_seq - info->len)) {
542 		/* if retransmit_hint is irrelevant start
543 		 * from the beggining of the list
544 		 */
545 		info = list_first_entry(&context->records_list,
546 					struct tls_record_info, list);
547 		record_sn = context->unacked_record_sn;
548 	}
549 
550 	list_for_each_entry_from(info, &context->records_list, list) {
551 		if (before(seq, info->end_seq)) {
552 			if (!context->retransmit_hint ||
553 			    after(info->end_seq,
554 				  context->retransmit_hint->end_seq)) {
555 				context->hint_record_sn = record_sn;
556 				context->retransmit_hint = info;
557 			}
558 			*p_record_sn = record_sn;
559 			return info;
560 		}
561 		record_sn++;
562 	}
563 
564 	return NULL;
565 }
566 EXPORT_SYMBOL(tls_get_record);
567 
568 static int tls_device_push_pending_record(struct sock *sk, int flags)
569 {
570 	struct iov_iter	msg_iter;
571 
572 	iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
573 	return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
574 }
575 
576 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
577 {
578 	if (!sk->sk_write_pending && tls_is_partially_sent_record(ctx)) {
579 		gfp_t sk_allocation = sk->sk_allocation;
580 
581 		sk->sk_allocation = GFP_ATOMIC;
582 		tls_push_partial_record(sk, ctx,
583 					MSG_DONTWAIT | MSG_NOSIGNAL |
584 					MSG_SENDPAGE_DECRYPTED);
585 		sk->sk_allocation = sk_allocation;
586 	}
587 }
588 
589 static void tls_device_resync_rx(struct tls_context *tls_ctx,
590 				 struct sock *sk, u32 seq, u8 *rcd_sn)
591 {
592 	struct net_device *netdev;
593 
594 	if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
595 		return;
596 	netdev = READ_ONCE(tls_ctx->netdev);
597 	if (netdev)
598 		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
599 						   TLS_OFFLOAD_CTX_DIR_RX);
600 	clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
601 }
602 
603 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
604 {
605 	struct tls_context *tls_ctx = tls_get_ctx(sk);
606 	struct tls_offload_context_rx *rx_ctx;
607 	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
608 	struct tls_prot_info *prot;
609 	u32 is_req_pending;
610 	s64 resync_req;
611 	u32 req_seq;
612 
613 	if (tls_ctx->rx_conf != TLS_HW)
614 		return;
615 
616 	prot = &tls_ctx->prot_info;
617 	rx_ctx = tls_offload_ctx_rx(tls_ctx);
618 	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
619 
620 	switch (rx_ctx->resync_type) {
621 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
622 		resync_req = atomic64_read(&rx_ctx->resync_req);
623 		req_seq = resync_req >> 32;
624 		seq += TLS_HEADER_SIZE - 1;
625 		is_req_pending = resync_req;
626 
627 		if (likely(!is_req_pending) || req_seq != seq ||
628 		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
629 			return;
630 		break;
631 	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
632 		if (likely(!rx_ctx->resync_nh_do_now))
633 			return;
634 
635 		/* head of next rec is already in, note that the sock_inq will
636 		 * include the currently parsed message when called from parser
637 		 */
638 		if (tcp_inq(sk) > rcd_len)
639 			return;
640 
641 		rx_ctx->resync_nh_do_now = 0;
642 		seq += rcd_len;
643 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
644 		break;
645 	}
646 
647 	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
648 }
649 
650 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
651 					   struct tls_offload_context_rx *ctx,
652 					   struct sock *sk, struct sk_buff *skb)
653 {
654 	struct strp_msg *rxm;
655 
656 	/* device will request resyncs by itself based on stream scan */
657 	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
658 		return;
659 	/* already scheduled */
660 	if (ctx->resync_nh_do_now)
661 		return;
662 	/* seen decrypted fragments since last fully-failed record */
663 	if (ctx->resync_nh_reset) {
664 		ctx->resync_nh_reset = 0;
665 		ctx->resync_nh.decrypted_failed = 1;
666 		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
667 		return;
668 	}
669 
670 	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
671 		return;
672 
673 	/* doing resync, bump the next target in case it fails */
674 	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
675 		ctx->resync_nh.decrypted_tgt *= 2;
676 	else
677 		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
678 
679 	rxm = strp_msg(skb);
680 
681 	/* head of next rec is already in, parser will sync for us */
682 	if (tcp_inq(sk) > rxm->full_len) {
683 		ctx->resync_nh_do_now = 1;
684 	} else {
685 		struct tls_prot_info *prot = &tls_ctx->prot_info;
686 		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
687 
688 		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
689 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
690 
691 		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
692 				     rcd_sn);
693 	}
694 }
695 
696 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
697 {
698 	struct strp_msg *rxm = strp_msg(skb);
699 	int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
700 	struct sk_buff *skb_iter, *unused;
701 	struct scatterlist sg[1];
702 	char *orig_buf, *buf;
703 
704 	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
705 			   TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
706 	if (!orig_buf)
707 		return -ENOMEM;
708 	buf = orig_buf;
709 
710 	nsg = skb_cow_data(skb, 0, &unused);
711 	if (unlikely(nsg < 0)) {
712 		err = nsg;
713 		goto free_buf;
714 	}
715 
716 	sg_init_table(sg, 1);
717 	sg_set_buf(&sg[0], buf,
718 		   rxm->full_len + TLS_HEADER_SIZE +
719 		   TLS_CIPHER_AES_GCM_128_IV_SIZE);
720 	err = skb_copy_bits(skb, offset, buf,
721 			    TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
722 	if (err)
723 		goto free_buf;
724 
725 	/* We are interested only in the decrypted data not the auth */
726 	err = decrypt_skb(sk, skb, sg);
727 	if (err != -EBADMSG)
728 		goto free_buf;
729 	else
730 		err = 0;
731 
732 	data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
733 
734 	if (skb_pagelen(skb) > offset) {
735 		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
736 
737 		if (skb->decrypted) {
738 			err = skb_store_bits(skb, offset, buf, copy);
739 			if (err)
740 				goto free_buf;
741 		}
742 
743 		offset += copy;
744 		buf += copy;
745 	}
746 
747 	pos = skb_pagelen(skb);
748 	skb_walk_frags(skb, skb_iter) {
749 		int frag_pos;
750 
751 		/* Practically all frags must belong to msg if reencrypt
752 		 * is needed with current strparser and coalescing logic,
753 		 * but strparser may "get optimized", so let's be safe.
754 		 */
755 		if (pos + skb_iter->len <= offset)
756 			goto done_with_frag;
757 		if (pos >= data_len + rxm->offset)
758 			break;
759 
760 		frag_pos = offset - pos;
761 		copy = min_t(int, skb_iter->len - frag_pos,
762 			     data_len + rxm->offset - offset);
763 
764 		if (skb_iter->decrypted) {
765 			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
766 			if (err)
767 				goto free_buf;
768 		}
769 
770 		offset += copy;
771 		buf += copy;
772 done_with_frag:
773 		pos += skb_iter->len;
774 	}
775 
776 free_buf:
777 	kfree(orig_buf);
778 	return err;
779 }
780 
781 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
782 {
783 	struct tls_context *tls_ctx = tls_get_ctx(sk);
784 	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
785 	int is_decrypted = skb->decrypted;
786 	int is_encrypted = !is_decrypted;
787 	struct sk_buff *skb_iter;
788 
789 	/* Check if all the data is decrypted already */
790 	skb_walk_frags(skb, skb_iter) {
791 		is_decrypted &= skb_iter->decrypted;
792 		is_encrypted &= !skb_iter->decrypted;
793 	}
794 
795 	ctx->sw.decrypted |= is_decrypted;
796 
797 	/* Return immediately if the record is either entirely plaintext or
798 	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
799 	 * record.
800 	 */
801 	if (is_decrypted) {
802 		ctx->resync_nh_reset = 1;
803 		return 0;
804 	}
805 	if (is_encrypted) {
806 		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
807 		return 0;
808 	}
809 
810 	ctx->resync_nh_reset = 1;
811 	return tls_device_reencrypt(sk, skb);
812 }
813 
814 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
815 			      struct net_device *netdev)
816 {
817 	if (sk->sk_destruct != tls_device_sk_destruct) {
818 		refcount_set(&ctx->refcount, 1);
819 		dev_hold(netdev);
820 		ctx->netdev = netdev;
821 		spin_lock_irq(&tls_device_lock);
822 		list_add_tail(&ctx->list, &tls_device_list);
823 		spin_unlock_irq(&tls_device_lock);
824 
825 		ctx->sk_destruct = sk->sk_destruct;
826 		sk->sk_destruct = tls_device_sk_destruct;
827 	}
828 }
829 
830 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
831 {
832 	u16 nonce_size, tag_size, iv_size, rec_seq_size;
833 	struct tls_context *tls_ctx = tls_get_ctx(sk);
834 	struct tls_prot_info *prot = &tls_ctx->prot_info;
835 	struct tls_record_info *start_marker_record;
836 	struct tls_offload_context_tx *offload_ctx;
837 	struct tls_crypto_info *crypto_info;
838 	struct net_device *netdev;
839 	char *iv, *rec_seq;
840 	struct sk_buff *skb;
841 	int rc = -EINVAL;
842 	__be64 rcd_sn;
843 
844 	if (!ctx)
845 		goto out;
846 
847 	if (ctx->priv_ctx_tx) {
848 		rc = -EEXIST;
849 		goto out;
850 	}
851 
852 	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
853 	if (!start_marker_record) {
854 		rc = -ENOMEM;
855 		goto out;
856 	}
857 
858 	offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
859 	if (!offload_ctx) {
860 		rc = -ENOMEM;
861 		goto free_marker_record;
862 	}
863 
864 	crypto_info = &ctx->crypto_send.info;
865 	if (crypto_info->version != TLS_1_2_VERSION) {
866 		rc = -EOPNOTSUPP;
867 		goto free_offload_ctx;
868 	}
869 
870 	switch (crypto_info->cipher_type) {
871 	case TLS_CIPHER_AES_GCM_128:
872 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
873 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
874 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
875 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
876 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
877 		rec_seq =
878 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
879 		break;
880 	default:
881 		rc = -EINVAL;
882 		goto free_offload_ctx;
883 	}
884 
885 	/* Sanity-check the rec_seq_size for stack allocations */
886 	if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
887 		rc = -EINVAL;
888 		goto free_offload_ctx;
889 	}
890 
891 	prot->version = crypto_info->version;
892 	prot->cipher_type = crypto_info->cipher_type;
893 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
894 	prot->tag_size = tag_size;
895 	prot->overhead_size = prot->prepend_size + prot->tag_size;
896 	prot->iv_size = iv_size;
897 	ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
898 			     GFP_KERNEL);
899 	if (!ctx->tx.iv) {
900 		rc = -ENOMEM;
901 		goto free_offload_ctx;
902 	}
903 
904 	memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
905 
906 	prot->rec_seq_size = rec_seq_size;
907 	ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
908 	if (!ctx->tx.rec_seq) {
909 		rc = -ENOMEM;
910 		goto free_iv;
911 	}
912 
913 	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
914 	if (rc)
915 		goto free_rec_seq;
916 
917 	/* start at rec_seq - 1 to account for the start marker record */
918 	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
919 	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
920 
921 	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
922 	start_marker_record->len = 0;
923 	start_marker_record->num_frags = 0;
924 
925 	INIT_LIST_HEAD(&offload_ctx->records_list);
926 	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
927 	spin_lock_init(&offload_ctx->lock);
928 	sg_init_table(offload_ctx->sg_tx_data,
929 		      ARRAY_SIZE(offload_ctx->sg_tx_data));
930 
931 	clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
932 	ctx->push_pending_record = tls_device_push_pending_record;
933 
934 	/* TLS offload is greatly simplified if we don't send
935 	 * SKBs where only part of the payload needs to be encrypted.
936 	 * So mark the last skb in the write queue as end of record.
937 	 */
938 	skb = tcp_write_queue_tail(sk);
939 	if (skb)
940 		TCP_SKB_CB(skb)->eor = 1;
941 
942 	/* We support starting offload on multiple sockets
943 	 * concurrently, so we only need a read lock here.
944 	 * This lock must precede get_netdev_for_sock to prevent races between
945 	 * NETDEV_DOWN and setsockopt.
946 	 */
947 	down_read(&device_offload_lock);
948 	netdev = get_netdev_for_sock(sk);
949 	if (!netdev) {
950 		pr_err_ratelimited("%s: netdev not found\n", __func__);
951 		rc = -EINVAL;
952 		goto release_lock;
953 	}
954 
955 	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
956 		rc = -ENOTSUPP;
957 		goto release_netdev;
958 	}
959 
960 	/* Avoid offloading if the device is down
961 	 * We don't want to offload new flows after
962 	 * the NETDEV_DOWN event
963 	 */
964 	if (!(netdev->flags & IFF_UP)) {
965 		rc = -EINVAL;
966 		goto release_netdev;
967 	}
968 
969 	ctx->priv_ctx_tx = offload_ctx;
970 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
971 					     &ctx->crypto_send.info,
972 					     tcp_sk(sk)->write_seq);
973 	if (rc)
974 		goto release_netdev;
975 
976 	tls_device_attach(ctx, sk, netdev);
977 
978 	/* following this assignment tls_is_sk_tx_device_offloaded
979 	 * will return true and the context might be accessed
980 	 * by the netdev's xmit function.
981 	 */
982 	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
983 	dev_put(netdev);
984 	up_read(&device_offload_lock);
985 	goto out;
986 
987 release_netdev:
988 	dev_put(netdev);
989 release_lock:
990 	up_read(&device_offload_lock);
991 	clean_acked_data_disable(inet_csk(sk));
992 	crypto_free_aead(offload_ctx->aead_send);
993 free_rec_seq:
994 	kfree(ctx->tx.rec_seq);
995 free_iv:
996 	kfree(ctx->tx.iv);
997 free_offload_ctx:
998 	kfree(offload_ctx);
999 	ctx->priv_ctx_tx = NULL;
1000 free_marker_record:
1001 	kfree(start_marker_record);
1002 out:
1003 	return rc;
1004 }
1005 
1006 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1007 {
1008 	struct tls_offload_context_rx *context;
1009 	struct net_device *netdev;
1010 	int rc = 0;
1011 
1012 	if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1013 		return -EOPNOTSUPP;
1014 
1015 	/* We support starting offload on multiple sockets
1016 	 * concurrently, so we only need a read lock here.
1017 	 * This lock must precede get_netdev_for_sock to prevent races between
1018 	 * NETDEV_DOWN and setsockopt.
1019 	 */
1020 	down_read(&device_offload_lock);
1021 	netdev = get_netdev_for_sock(sk);
1022 	if (!netdev) {
1023 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1024 		rc = -EINVAL;
1025 		goto release_lock;
1026 	}
1027 
1028 	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1029 		rc = -ENOTSUPP;
1030 		goto release_netdev;
1031 	}
1032 
1033 	/* Avoid offloading if the device is down
1034 	 * We don't want to offload new flows after
1035 	 * the NETDEV_DOWN event
1036 	 */
1037 	if (!(netdev->flags & IFF_UP)) {
1038 		rc = -EINVAL;
1039 		goto release_netdev;
1040 	}
1041 
1042 	context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1043 	if (!context) {
1044 		rc = -ENOMEM;
1045 		goto release_netdev;
1046 	}
1047 	context->resync_nh_reset = 1;
1048 
1049 	ctx->priv_ctx_rx = context;
1050 	rc = tls_set_sw_offload(sk, ctx, 0);
1051 	if (rc)
1052 		goto release_ctx;
1053 
1054 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1055 					     &ctx->crypto_recv.info,
1056 					     tcp_sk(sk)->copied_seq);
1057 	if (rc)
1058 		goto free_sw_resources;
1059 
1060 	tls_device_attach(ctx, sk, netdev);
1061 	goto release_netdev;
1062 
1063 free_sw_resources:
1064 	up_read(&device_offload_lock);
1065 	tls_sw_free_resources_rx(sk);
1066 	down_read(&device_offload_lock);
1067 release_ctx:
1068 	ctx->priv_ctx_rx = NULL;
1069 release_netdev:
1070 	dev_put(netdev);
1071 release_lock:
1072 	up_read(&device_offload_lock);
1073 	return rc;
1074 }
1075 
1076 void tls_device_offload_cleanup_rx(struct sock *sk)
1077 {
1078 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1079 	struct net_device *netdev;
1080 
1081 	down_read(&device_offload_lock);
1082 	netdev = tls_ctx->netdev;
1083 	if (!netdev)
1084 		goto out;
1085 
1086 	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1087 					TLS_OFFLOAD_CTX_DIR_RX);
1088 
1089 	if (tls_ctx->tx_conf != TLS_HW) {
1090 		dev_put(netdev);
1091 		tls_ctx->netdev = NULL;
1092 	}
1093 out:
1094 	up_read(&device_offload_lock);
1095 	tls_sw_release_resources_rx(sk);
1096 }
1097 
1098 static int tls_device_down(struct net_device *netdev)
1099 {
1100 	struct tls_context *ctx, *tmp;
1101 	unsigned long flags;
1102 	LIST_HEAD(list);
1103 
1104 	/* Request a write lock to block new offload attempts */
1105 	down_write(&device_offload_lock);
1106 
1107 	spin_lock_irqsave(&tls_device_lock, flags);
1108 	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1109 		if (ctx->netdev != netdev ||
1110 		    !refcount_inc_not_zero(&ctx->refcount))
1111 			continue;
1112 
1113 		list_move(&ctx->list, &list);
1114 	}
1115 	spin_unlock_irqrestore(&tls_device_lock, flags);
1116 
1117 	list_for_each_entry_safe(ctx, tmp, &list, list)	{
1118 		if (ctx->tx_conf == TLS_HW)
1119 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1120 							TLS_OFFLOAD_CTX_DIR_TX);
1121 		if (ctx->rx_conf == TLS_HW)
1122 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1123 							TLS_OFFLOAD_CTX_DIR_RX);
1124 		WRITE_ONCE(ctx->netdev, NULL);
1125 		smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1126 		while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1127 			usleep_range(10, 200);
1128 		dev_put(netdev);
1129 		list_del_init(&ctx->list);
1130 
1131 		if (refcount_dec_and_test(&ctx->refcount))
1132 			tls_device_free_ctx(ctx);
1133 	}
1134 
1135 	up_write(&device_offload_lock);
1136 
1137 	flush_work(&tls_device_gc_work);
1138 
1139 	return NOTIFY_DONE;
1140 }
1141 
1142 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1143 			 void *ptr)
1144 {
1145 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1146 
1147 	if (!dev->tlsdev_ops &&
1148 	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1149 		return NOTIFY_DONE;
1150 
1151 	switch (event) {
1152 	case NETDEV_REGISTER:
1153 	case NETDEV_FEAT_CHANGE:
1154 		if ((dev->features & NETIF_F_HW_TLS_RX) &&
1155 		    !dev->tlsdev_ops->tls_dev_resync)
1156 			return NOTIFY_BAD;
1157 
1158 		if  (dev->tlsdev_ops &&
1159 		     dev->tlsdev_ops->tls_dev_add &&
1160 		     dev->tlsdev_ops->tls_dev_del)
1161 			return NOTIFY_DONE;
1162 		else
1163 			return NOTIFY_BAD;
1164 	case NETDEV_DOWN:
1165 		return tls_device_down(dev);
1166 	}
1167 	return NOTIFY_DONE;
1168 }
1169 
1170 static struct notifier_block tls_dev_notifier = {
1171 	.notifier_call	= tls_dev_event,
1172 };
1173 
1174 void __init tls_device_init(void)
1175 {
1176 	register_netdevice_notifier(&tls_dev_notifier);
1177 }
1178 
1179 void __exit tls_device_cleanup(void)
1180 {
1181 	unregister_netdevice_notifier(&tls_dev_notifier);
1182 	flush_work(&tls_device_gc_work);
1183 	clean_acked_data_flush();
1184 }
1185