1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved. 2 * 3 * This software is available to you under a choice of one of two 4 * licenses. You may choose to be licensed under the terms of the GNU 5 * General Public License (GPL) Version 2, available from the file 6 * COPYING in the main directory of this source tree, or the 7 * OpenIB.org BSD license below: 8 * 9 * Redistribution and use in source and binary forms, with or 10 * without modification, are permitted provided that the following 11 * conditions are met: 12 * 13 * - Redistributions of source code must retain the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer. 16 * 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 */ 31 32 #include <crypto/aead.h> 33 #include <linux/highmem.h> 34 #include <linux/module.h> 35 #include <linux/netdevice.h> 36 #include <net/dst.h> 37 #include <net/inet_connection_sock.h> 38 #include <net/tcp.h> 39 #include <net/tls.h> 40 41 /* device_offload_lock is used to synchronize tls_dev_add 42 * against NETDEV_DOWN notifications. 43 */ 44 static DECLARE_RWSEM(device_offload_lock); 45 46 static void tls_device_gc_task(struct work_struct *work); 47 48 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task); 49 static LIST_HEAD(tls_device_gc_list); 50 static LIST_HEAD(tls_device_list); 51 static DEFINE_SPINLOCK(tls_device_lock); 52 53 static void tls_device_free_ctx(struct tls_context *ctx) 54 { 55 if (ctx->tx_conf == TLS_HW) { 56 kfree(tls_offload_ctx_tx(ctx)); 57 kfree(ctx->tx.rec_seq); 58 kfree(ctx->tx.iv); 59 } 60 61 if (ctx->rx_conf == TLS_HW) 62 kfree(tls_offload_ctx_rx(ctx)); 63 64 kfree(ctx); 65 } 66 67 static void tls_device_gc_task(struct work_struct *work) 68 { 69 struct tls_context *ctx, *tmp; 70 unsigned long flags; 71 LIST_HEAD(gc_list); 72 73 spin_lock_irqsave(&tls_device_lock, flags); 74 list_splice_init(&tls_device_gc_list, &gc_list); 75 spin_unlock_irqrestore(&tls_device_lock, flags); 76 77 list_for_each_entry_safe(ctx, tmp, &gc_list, list) { 78 struct net_device *netdev = ctx->netdev; 79 80 if (netdev && ctx->tx_conf == TLS_HW) { 81 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 82 TLS_OFFLOAD_CTX_DIR_TX); 83 dev_put(netdev); 84 ctx->netdev = NULL; 85 } 86 87 list_del(&ctx->list); 88 tls_device_free_ctx(ctx); 89 } 90 } 91 92 static void tls_device_queue_ctx_destruction(struct tls_context *ctx) 93 { 94 unsigned long flags; 95 96 spin_lock_irqsave(&tls_device_lock, flags); 97 list_move_tail(&ctx->list, &tls_device_gc_list); 98 99 /* schedule_work inside the spinlock 100 * to make sure tls_device_down waits for that work. 101 */ 102 schedule_work(&tls_device_gc_work); 103 104 spin_unlock_irqrestore(&tls_device_lock, flags); 105 } 106 107 /* We assume that the socket is already connected */ 108 static struct net_device *get_netdev_for_sock(struct sock *sk) 109 { 110 struct dst_entry *dst = sk_dst_get(sk); 111 struct net_device *netdev = NULL; 112 113 if (likely(dst)) { 114 netdev = dst->dev; 115 dev_hold(netdev); 116 } 117 118 dst_release(dst); 119 120 return netdev; 121 } 122 123 static void destroy_record(struct tls_record_info *record) 124 { 125 int nr_frags = record->num_frags; 126 skb_frag_t *frag; 127 128 while (nr_frags-- > 0) { 129 frag = &record->frags[nr_frags]; 130 __skb_frag_unref(frag); 131 } 132 kfree(record); 133 } 134 135 static void delete_all_records(struct tls_offload_context_tx *offload_ctx) 136 { 137 struct tls_record_info *info, *temp; 138 139 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { 140 list_del(&info->list); 141 destroy_record(info); 142 } 143 144 offload_ctx->retransmit_hint = NULL; 145 } 146 147 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) 148 { 149 struct tls_context *tls_ctx = tls_get_ctx(sk); 150 struct tls_record_info *info, *temp; 151 struct tls_offload_context_tx *ctx; 152 u64 deleted_records = 0; 153 unsigned long flags; 154 155 if (!tls_ctx) 156 return; 157 158 ctx = tls_offload_ctx_tx(tls_ctx); 159 160 spin_lock_irqsave(&ctx->lock, flags); 161 info = ctx->retransmit_hint; 162 if (info && !before(acked_seq, info->end_seq)) { 163 ctx->retransmit_hint = NULL; 164 list_del(&info->list); 165 destroy_record(info); 166 deleted_records++; 167 } 168 169 list_for_each_entry_safe(info, temp, &ctx->records_list, list) { 170 if (before(acked_seq, info->end_seq)) 171 break; 172 list_del(&info->list); 173 174 destroy_record(info); 175 deleted_records++; 176 } 177 178 ctx->unacked_record_sn += deleted_records; 179 spin_unlock_irqrestore(&ctx->lock, flags); 180 } 181 182 /* At this point, there should be no references on this 183 * socket and no in-flight SKBs associated with this 184 * socket, so it is safe to free all the resources. 185 */ 186 static void tls_device_sk_destruct(struct sock *sk) 187 { 188 struct tls_context *tls_ctx = tls_get_ctx(sk); 189 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 190 191 tls_ctx->sk_destruct(sk); 192 193 if (tls_ctx->tx_conf == TLS_HW) { 194 if (ctx->open_record) 195 destroy_record(ctx->open_record); 196 delete_all_records(ctx); 197 crypto_free_aead(ctx->aead_send); 198 clean_acked_data_disable(inet_csk(sk)); 199 } 200 201 if (refcount_dec_and_test(&tls_ctx->refcount)) 202 tls_device_queue_ctx_destruction(tls_ctx); 203 } 204 205 void tls_device_free_resources_tx(struct sock *sk) 206 { 207 struct tls_context *tls_ctx = tls_get_ctx(sk); 208 209 tls_free_partial_record(sk, tls_ctx); 210 } 211 212 static void tls_append_frag(struct tls_record_info *record, 213 struct page_frag *pfrag, 214 int size) 215 { 216 skb_frag_t *frag; 217 218 frag = &record->frags[record->num_frags - 1]; 219 if (frag->page.p == pfrag->page && 220 frag->page_offset + frag->size == pfrag->offset) { 221 frag->size += size; 222 } else { 223 ++frag; 224 frag->page.p = pfrag->page; 225 frag->page_offset = pfrag->offset; 226 frag->size = size; 227 ++record->num_frags; 228 get_page(pfrag->page); 229 } 230 231 pfrag->offset += size; 232 record->len += size; 233 } 234 235 static int tls_push_record(struct sock *sk, 236 struct tls_context *ctx, 237 struct tls_offload_context_tx *offload_ctx, 238 struct tls_record_info *record, 239 struct page_frag *pfrag, 240 int flags, 241 unsigned char record_type) 242 { 243 struct tls_prot_info *prot = &ctx->prot_info; 244 struct tcp_sock *tp = tcp_sk(sk); 245 struct page_frag dummy_tag_frag; 246 skb_frag_t *frag; 247 int i; 248 249 /* fill prepend */ 250 frag = &record->frags[0]; 251 tls_fill_prepend(ctx, 252 skb_frag_address(frag), 253 record->len - prot->prepend_size, 254 record_type, 255 ctx->crypto_send.info.version); 256 257 /* HW doesn't care about the data in the tag, because it fills it. */ 258 dummy_tag_frag.page = skb_frag_page(frag); 259 dummy_tag_frag.offset = 0; 260 261 tls_append_frag(record, &dummy_tag_frag, prot->tag_size); 262 record->end_seq = tp->write_seq + record->len; 263 spin_lock_irq(&offload_ctx->lock); 264 list_add_tail(&record->list, &offload_ctx->records_list); 265 spin_unlock_irq(&offload_ctx->lock); 266 offload_ctx->open_record = NULL; 267 tls_advance_record_sn(sk, &ctx->tx, ctx->crypto_send.info.version); 268 269 for (i = 0; i < record->num_frags; i++) { 270 frag = &record->frags[i]; 271 sg_unmark_end(&offload_ctx->sg_tx_data[i]); 272 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), 273 frag->size, frag->page_offset); 274 sk_mem_charge(sk, frag->size); 275 get_page(skb_frag_page(frag)); 276 } 277 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); 278 279 /* all ready, send */ 280 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); 281 } 282 283 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, 284 struct page_frag *pfrag, 285 size_t prepend_size) 286 { 287 struct tls_record_info *record; 288 skb_frag_t *frag; 289 290 record = kmalloc(sizeof(*record), GFP_KERNEL); 291 if (!record) 292 return -ENOMEM; 293 294 frag = &record->frags[0]; 295 __skb_frag_set_page(frag, pfrag->page); 296 frag->page_offset = pfrag->offset; 297 skb_frag_size_set(frag, prepend_size); 298 299 get_page(pfrag->page); 300 pfrag->offset += prepend_size; 301 302 record->num_frags = 1; 303 record->len = prepend_size; 304 offload_ctx->open_record = record; 305 return 0; 306 } 307 308 static int tls_do_allocation(struct sock *sk, 309 struct tls_offload_context_tx *offload_ctx, 310 struct page_frag *pfrag, 311 size_t prepend_size) 312 { 313 int ret; 314 315 if (!offload_ctx->open_record) { 316 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, 317 sk->sk_allocation))) { 318 sk->sk_prot->enter_memory_pressure(sk); 319 sk_stream_moderate_sndbuf(sk); 320 return -ENOMEM; 321 } 322 323 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); 324 if (ret) 325 return ret; 326 327 if (pfrag->size > pfrag->offset) 328 return 0; 329 } 330 331 if (!sk_page_frag_refill(sk, pfrag)) 332 return -ENOMEM; 333 334 return 0; 335 } 336 337 static int tls_push_data(struct sock *sk, 338 struct iov_iter *msg_iter, 339 size_t size, int flags, 340 unsigned char record_type) 341 { 342 struct tls_context *tls_ctx = tls_get_ctx(sk); 343 struct tls_prot_info *prot = &tls_ctx->prot_info; 344 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 345 int tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST; 346 int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE); 347 struct tls_record_info *record = ctx->open_record; 348 struct page_frag *pfrag; 349 size_t orig_size = size; 350 u32 max_open_record_len; 351 int copy, rc = 0; 352 bool done = false; 353 long timeo; 354 355 if (flags & 356 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) 357 return -ENOTSUPP; 358 359 if (sk->sk_err) 360 return -sk->sk_err; 361 362 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 363 if (tls_is_partially_sent_record(tls_ctx)) { 364 rc = tls_push_partial_record(sk, tls_ctx, flags); 365 if (rc < 0) 366 return rc; 367 } 368 369 pfrag = sk_page_frag(sk); 370 371 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and 372 * we need to leave room for an authentication tag. 373 */ 374 max_open_record_len = TLS_MAX_PAYLOAD_SIZE + 375 prot->prepend_size; 376 do { 377 rc = tls_do_allocation(sk, ctx, pfrag, 378 prot->prepend_size); 379 if (rc) { 380 rc = sk_stream_wait_memory(sk, &timeo); 381 if (!rc) 382 continue; 383 384 record = ctx->open_record; 385 if (!record) 386 break; 387 handle_error: 388 if (record_type != TLS_RECORD_TYPE_DATA) { 389 /* avoid sending partial 390 * record with type != 391 * application_data 392 */ 393 size = orig_size; 394 destroy_record(record); 395 ctx->open_record = NULL; 396 } else if (record->len > prot->prepend_size) { 397 goto last_record; 398 } 399 400 break; 401 } 402 403 record = ctx->open_record; 404 copy = min_t(size_t, size, (pfrag->size - pfrag->offset)); 405 copy = min_t(size_t, copy, (max_open_record_len - record->len)); 406 407 if (copy_from_iter_nocache(page_address(pfrag->page) + 408 pfrag->offset, 409 copy, msg_iter) != copy) { 410 rc = -EFAULT; 411 goto handle_error; 412 } 413 tls_append_frag(record, pfrag, copy); 414 415 size -= copy; 416 if (!size) { 417 last_record: 418 tls_push_record_flags = flags; 419 if (more) { 420 tls_ctx->pending_open_record_frags = 421 !!record->num_frags; 422 break; 423 } 424 425 done = true; 426 } 427 428 if (done || record->len >= max_open_record_len || 429 (record->num_frags >= MAX_SKB_FRAGS - 1)) { 430 rc = tls_push_record(sk, 431 tls_ctx, 432 ctx, 433 record, 434 pfrag, 435 tls_push_record_flags, 436 record_type); 437 if (rc < 0) 438 break; 439 } 440 } while (!done); 441 442 if (orig_size - size > 0) 443 rc = orig_size - size; 444 445 return rc; 446 } 447 448 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 449 { 450 unsigned char record_type = TLS_RECORD_TYPE_DATA; 451 int rc; 452 453 lock_sock(sk); 454 455 if (unlikely(msg->msg_controllen)) { 456 rc = tls_proccess_cmsg(sk, msg, &record_type); 457 if (rc) 458 goto out; 459 } 460 461 rc = tls_push_data(sk, &msg->msg_iter, size, 462 msg->msg_flags, record_type); 463 464 out: 465 release_sock(sk); 466 return rc; 467 } 468 469 int tls_device_sendpage(struct sock *sk, struct page *page, 470 int offset, size_t size, int flags) 471 { 472 struct iov_iter msg_iter; 473 char *kaddr = kmap(page); 474 struct kvec iov; 475 int rc; 476 477 if (flags & MSG_SENDPAGE_NOTLAST) 478 flags |= MSG_MORE; 479 480 lock_sock(sk); 481 482 if (flags & MSG_OOB) { 483 rc = -ENOTSUPP; 484 goto out; 485 } 486 487 iov.iov_base = kaddr + offset; 488 iov.iov_len = size; 489 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size); 490 rc = tls_push_data(sk, &msg_iter, size, 491 flags, TLS_RECORD_TYPE_DATA); 492 kunmap(page); 493 494 out: 495 release_sock(sk); 496 return rc; 497 } 498 499 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 500 u32 seq, u64 *p_record_sn) 501 { 502 u64 record_sn = context->hint_record_sn; 503 struct tls_record_info *info; 504 505 info = context->retransmit_hint; 506 if (!info || 507 before(seq, info->end_seq - info->len)) { 508 /* if retransmit_hint is irrelevant start 509 * from the beggining of the list 510 */ 511 info = list_first_entry(&context->records_list, 512 struct tls_record_info, list); 513 record_sn = context->unacked_record_sn; 514 } 515 516 list_for_each_entry_from(info, &context->records_list, list) { 517 if (before(seq, info->end_seq)) { 518 if (!context->retransmit_hint || 519 after(info->end_seq, 520 context->retransmit_hint->end_seq)) { 521 context->hint_record_sn = record_sn; 522 context->retransmit_hint = info; 523 } 524 *p_record_sn = record_sn; 525 return info; 526 } 527 record_sn++; 528 } 529 530 return NULL; 531 } 532 EXPORT_SYMBOL(tls_get_record); 533 534 static int tls_device_push_pending_record(struct sock *sk, int flags) 535 { 536 struct iov_iter msg_iter; 537 538 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0); 539 return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA); 540 } 541 542 void tls_device_write_space(struct sock *sk, struct tls_context *ctx) 543 { 544 if (!sk->sk_write_pending && tls_is_partially_sent_record(ctx)) { 545 gfp_t sk_allocation = sk->sk_allocation; 546 547 sk->sk_allocation = GFP_ATOMIC; 548 tls_push_partial_record(sk, ctx, MSG_DONTWAIT | MSG_NOSIGNAL); 549 sk->sk_allocation = sk_allocation; 550 } 551 } 552 553 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn) 554 { 555 struct tls_context *tls_ctx = tls_get_ctx(sk); 556 struct net_device *netdev = tls_ctx->netdev; 557 struct tls_offload_context_rx *rx_ctx; 558 u32 is_req_pending; 559 s64 resync_req; 560 u32 req_seq; 561 562 if (tls_ctx->rx_conf != TLS_HW) 563 return; 564 565 rx_ctx = tls_offload_ctx_rx(tls_ctx); 566 resync_req = atomic64_read(&rx_ctx->resync_req); 567 req_seq = (resync_req >> 32) - ((u32)TLS_HEADER_SIZE - 1); 568 is_req_pending = resync_req; 569 570 if (unlikely(is_req_pending) && req_seq == seq && 571 atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) 572 netdev->tlsdev_ops->tls_dev_resync_rx(netdev, sk, 573 seq + TLS_HEADER_SIZE - 1, 574 rcd_sn); 575 } 576 577 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb) 578 { 579 struct strp_msg *rxm = strp_msg(skb); 580 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos; 581 struct sk_buff *skb_iter, *unused; 582 struct scatterlist sg[1]; 583 char *orig_buf, *buf; 584 585 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + 586 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation); 587 if (!orig_buf) 588 return -ENOMEM; 589 buf = orig_buf; 590 591 nsg = skb_cow_data(skb, 0, &unused); 592 if (unlikely(nsg < 0)) { 593 err = nsg; 594 goto free_buf; 595 } 596 597 sg_init_table(sg, 1); 598 sg_set_buf(&sg[0], buf, 599 rxm->full_len + TLS_HEADER_SIZE + 600 TLS_CIPHER_AES_GCM_128_IV_SIZE); 601 skb_copy_bits(skb, offset, buf, 602 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE); 603 604 /* We are interested only in the decrypted data not the auth */ 605 err = decrypt_skb(sk, skb, sg); 606 if (err != -EBADMSG) 607 goto free_buf; 608 else 609 err = 0; 610 611 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE; 612 613 if (skb_pagelen(skb) > offset) { 614 copy = min_t(int, skb_pagelen(skb) - offset, data_len); 615 616 if (skb->decrypted) 617 skb_store_bits(skb, offset, buf, copy); 618 619 offset += copy; 620 buf += copy; 621 } 622 623 pos = skb_pagelen(skb); 624 skb_walk_frags(skb, skb_iter) { 625 int frag_pos; 626 627 /* Practically all frags must belong to msg if reencrypt 628 * is needed with current strparser and coalescing logic, 629 * but strparser may "get optimized", so let's be safe. 630 */ 631 if (pos + skb_iter->len <= offset) 632 goto done_with_frag; 633 if (pos >= data_len + rxm->offset) 634 break; 635 636 frag_pos = offset - pos; 637 copy = min_t(int, skb_iter->len - frag_pos, 638 data_len + rxm->offset - offset); 639 640 if (skb_iter->decrypted) 641 skb_store_bits(skb_iter, frag_pos, buf, copy); 642 643 offset += copy; 644 buf += copy; 645 done_with_frag: 646 pos += skb_iter->len; 647 } 648 649 free_buf: 650 kfree(orig_buf); 651 return err; 652 } 653 654 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb) 655 { 656 struct tls_context *tls_ctx = tls_get_ctx(sk); 657 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); 658 int is_decrypted = skb->decrypted; 659 int is_encrypted = !is_decrypted; 660 struct sk_buff *skb_iter; 661 662 /* Skip if it is already decrypted */ 663 if (ctx->sw.decrypted) 664 return 0; 665 666 /* Check if all the data is decrypted already */ 667 skb_walk_frags(skb, skb_iter) { 668 is_decrypted &= skb_iter->decrypted; 669 is_encrypted &= !skb_iter->decrypted; 670 } 671 672 ctx->sw.decrypted |= is_decrypted; 673 674 /* Return immedeatly if the record is either entirely plaintext or 675 * entirely ciphertext. Otherwise handle reencrypt partially decrypted 676 * record. 677 */ 678 return (is_encrypted || is_decrypted) ? 0 : 679 tls_device_reencrypt(sk, skb); 680 } 681 682 static void tls_device_attach(struct tls_context *ctx, struct sock *sk, 683 struct net_device *netdev) 684 { 685 if (sk->sk_destruct != tls_device_sk_destruct) { 686 refcount_set(&ctx->refcount, 1); 687 dev_hold(netdev); 688 ctx->netdev = netdev; 689 spin_lock_irq(&tls_device_lock); 690 list_add_tail(&ctx->list, &tls_device_list); 691 spin_unlock_irq(&tls_device_lock); 692 693 ctx->sk_destruct = sk->sk_destruct; 694 sk->sk_destruct = tls_device_sk_destruct; 695 } 696 } 697 698 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 699 { 700 u16 nonce_size, tag_size, iv_size, rec_seq_size; 701 struct tls_context *tls_ctx = tls_get_ctx(sk); 702 struct tls_prot_info *prot = &tls_ctx->prot_info; 703 struct tls_record_info *start_marker_record; 704 struct tls_offload_context_tx *offload_ctx; 705 struct tls_crypto_info *crypto_info; 706 struct net_device *netdev; 707 char *iv, *rec_seq; 708 struct sk_buff *skb; 709 int rc = -EINVAL; 710 __be64 rcd_sn; 711 712 if (!ctx) 713 goto out; 714 715 if (ctx->priv_ctx_tx) { 716 rc = -EEXIST; 717 goto out; 718 } 719 720 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); 721 if (!start_marker_record) { 722 rc = -ENOMEM; 723 goto out; 724 } 725 726 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); 727 if (!offload_ctx) { 728 rc = -ENOMEM; 729 goto free_marker_record; 730 } 731 732 crypto_info = &ctx->crypto_send.info; 733 switch (crypto_info->cipher_type) { 734 case TLS_CIPHER_AES_GCM_128: 735 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 736 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 737 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 738 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 739 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 740 rec_seq = 741 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 742 break; 743 default: 744 rc = -EINVAL; 745 goto free_offload_ctx; 746 } 747 748 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 749 prot->tag_size = tag_size; 750 prot->overhead_size = prot->prepend_size + prot->tag_size; 751 prot->iv_size = iv_size; 752 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 753 GFP_KERNEL); 754 if (!ctx->tx.iv) { 755 rc = -ENOMEM; 756 goto free_offload_ctx; 757 } 758 759 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 760 761 prot->rec_seq_size = rec_seq_size; 762 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 763 if (!ctx->tx.rec_seq) { 764 rc = -ENOMEM; 765 goto free_iv; 766 } 767 768 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); 769 if (rc) 770 goto free_rec_seq; 771 772 /* start at rec_seq - 1 to account for the start marker record */ 773 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); 774 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; 775 776 start_marker_record->end_seq = tcp_sk(sk)->write_seq; 777 start_marker_record->len = 0; 778 start_marker_record->num_frags = 0; 779 780 INIT_LIST_HEAD(&offload_ctx->records_list); 781 list_add_tail(&start_marker_record->list, &offload_ctx->records_list); 782 spin_lock_init(&offload_ctx->lock); 783 sg_init_table(offload_ctx->sg_tx_data, 784 ARRAY_SIZE(offload_ctx->sg_tx_data)); 785 786 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); 787 ctx->push_pending_record = tls_device_push_pending_record; 788 789 /* TLS offload is greatly simplified if we don't send 790 * SKBs where only part of the payload needs to be encrypted. 791 * So mark the last skb in the write queue as end of record. 792 */ 793 skb = tcp_write_queue_tail(sk); 794 if (skb) 795 TCP_SKB_CB(skb)->eor = 1; 796 797 /* We support starting offload on multiple sockets 798 * concurrently, so we only need a read lock here. 799 * This lock must precede get_netdev_for_sock to prevent races between 800 * NETDEV_DOWN and setsockopt. 801 */ 802 down_read(&device_offload_lock); 803 netdev = get_netdev_for_sock(sk); 804 if (!netdev) { 805 pr_err_ratelimited("%s: netdev not found\n", __func__); 806 rc = -EINVAL; 807 goto release_lock; 808 } 809 810 if (!(netdev->features & NETIF_F_HW_TLS_TX)) { 811 rc = -ENOTSUPP; 812 goto release_netdev; 813 } 814 815 /* Avoid offloading if the device is down 816 * We don't want to offload new flows after 817 * the NETDEV_DOWN event 818 */ 819 if (!(netdev->flags & IFF_UP)) { 820 rc = -EINVAL; 821 goto release_netdev; 822 } 823 824 ctx->priv_ctx_tx = offload_ctx; 825 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, 826 &ctx->crypto_send.info, 827 tcp_sk(sk)->write_seq); 828 if (rc) 829 goto release_netdev; 830 831 tls_device_attach(ctx, sk, netdev); 832 833 /* following this assignment tls_is_sk_tx_device_offloaded 834 * will return true and the context might be accessed 835 * by the netdev's xmit function. 836 */ 837 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); 838 dev_put(netdev); 839 up_read(&device_offload_lock); 840 goto out; 841 842 release_netdev: 843 dev_put(netdev); 844 release_lock: 845 up_read(&device_offload_lock); 846 clean_acked_data_disable(inet_csk(sk)); 847 crypto_free_aead(offload_ctx->aead_send); 848 free_rec_seq: 849 kfree(ctx->tx.rec_seq); 850 free_iv: 851 kfree(ctx->tx.iv); 852 free_offload_ctx: 853 kfree(offload_ctx); 854 ctx->priv_ctx_tx = NULL; 855 free_marker_record: 856 kfree(start_marker_record); 857 out: 858 return rc; 859 } 860 861 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 862 { 863 struct tls_offload_context_rx *context; 864 struct net_device *netdev; 865 int rc = 0; 866 867 /* We support starting offload on multiple sockets 868 * concurrently, so we only need a read lock here. 869 * This lock must precede get_netdev_for_sock to prevent races between 870 * NETDEV_DOWN and setsockopt. 871 */ 872 down_read(&device_offload_lock); 873 netdev = get_netdev_for_sock(sk); 874 if (!netdev) { 875 pr_err_ratelimited("%s: netdev not found\n", __func__); 876 rc = -EINVAL; 877 goto release_lock; 878 } 879 880 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 881 rc = -ENOTSUPP; 882 goto release_netdev; 883 } 884 885 /* Avoid offloading if the device is down 886 * We don't want to offload new flows after 887 * the NETDEV_DOWN event 888 */ 889 if (!(netdev->flags & IFF_UP)) { 890 rc = -EINVAL; 891 goto release_netdev; 892 } 893 894 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); 895 if (!context) { 896 rc = -ENOMEM; 897 goto release_netdev; 898 } 899 900 ctx->priv_ctx_rx = context; 901 rc = tls_set_sw_offload(sk, ctx, 0); 902 if (rc) 903 goto release_ctx; 904 905 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, 906 &ctx->crypto_recv.info, 907 tcp_sk(sk)->copied_seq); 908 if (rc) 909 goto free_sw_resources; 910 911 tls_device_attach(ctx, sk, netdev); 912 goto release_netdev; 913 914 free_sw_resources: 915 up_read(&device_offload_lock); 916 tls_sw_free_resources_rx(sk); 917 down_read(&device_offload_lock); 918 release_ctx: 919 ctx->priv_ctx_rx = NULL; 920 release_netdev: 921 dev_put(netdev); 922 release_lock: 923 up_read(&device_offload_lock); 924 return rc; 925 } 926 927 void tls_device_offload_cleanup_rx(struct sock *sk) 928 { 929 struct tls_context *tls_ctx = tls_get_ctx(sk); 930 struct net_device *netdev; 931 932 down_read(&device_offload_lock); 933 netdev = tls_ctx->netdev; 934 if (!netdev) 935 goto out; 936 937 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 938 pr_err_ratelimited("%s: device is missing NETIF_F_HW_TLS_RX cap\n", 939 __func__); 940 goto out; 941 } 942 943 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, 944 TLS_OFFLOAD_CTX_DIR_RX); 945 946 if (tls_ctx->tx_conf != TLS_HW) { 947 dev_put(netdev); 948 tls_ctx->netdev = NULL; 949 } 950 out: 951 up_read(&device_offload_lock); 952 tls_sw_release_resources_rx(sk); 953 } 954 955 static int tls_device_down(struct net_device *netdev) 956 { 957 struct tls_context *ctx, *tmp; 958 unsigned long flags; 959 LIST_HEAD(list); 960 961 /* Request a write lock to block new offload attempts */ 962 down_write(&device_offload_lock); 963 964 spin_lock_irqsave(&tls_device_lock, flags); 965 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { 966 if (ctx->netdev != netdev || 967 !refcount_inc_not_zero(&ctx->refcount)) 968 continue; 969 970 list_move(&ctx->list, &list); 971 } 972 spin_unlock_irqrestore(&tls_device_lock, flags); 973 974 list_for_each_entry_safe(ctx, tmp, &list, list) { 975 if (ctx->tx_conf == TLS_HW) 976 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 977 TLS_OFFLOAD_CTX_DIR_TX); 978 if (ctx->rx_conf == TLS_HW) 979 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 980 TLS_OFFLOAD_CTX_DIR_RX); 981 ctx->netdev = NULL; 982 dev_put(netdev); 983 list_del_init(&ctx->list); 984 985 if (refcount_dec_and_test(&ctx->refcount)) 986 tls_device_free_ctx(ctx); 987 } 988 989 up_write(&device_offload_lock); 990 991 flush_work(&tls_device_gc_work); 992 993 return NOTIFY_DONE; 994 } 995 996 static int tls_dev_event(struct notifier_block *this, unsigned long event, 997 void *ptr) 998 { 999 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1000 1001 if (!(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) 1002 return NOTIFY_DONE; 1003 1004 switch (event) { 1005 case NETDEV_REGISTER: 1006 case NETDEV_FEAT_CHANGE: 1007 if ((dev->features & NETIF_F_HW_TLS_RX) && 1008 !dev->tlsdev_ops->tls_dev_resync_rx) 1009 return NOTIFY_BAD; 1010 1011 if (dev->tlsdev_ops && 1012 dev->tlsdev_ops->tls_dev_add && 1013 dev->tlsdev_ops->tls_dev_del) 1014 return NOTIFY_DONE; 1015 else 1016 return NOTIFY_BAD; 1017 case NETDEV_DOWN: 1018 return tls_device_down(dev); 1019 } 1020 return NOTIFY_DONE; 1021 } 1022 1023 static struct notifier_block tls_dev_notifier = { 1024 .notifier_call = tls_dev_event, 1025 }; 1026 1027 void __init tls_device_init(void) 1028 { 1029 register_netdevice_notifier(&tls_dev_notifier); 1030 } 1031 1032 void __exit tls_device_cleanup(void) 1033 { 1034 unregister_netdevice_notifier(&tls_dev_notifier); 1035 flush_work(&tls_device_gc_work); 1036 clean_acked_data_flush(); 1037 } 1038