1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved. 2 * 3 * This software is available to you under a choice of one of two 4 * licenses. You may choose to be licensed under the terms of the GNU 5 * General Public License (GPL) Version 2, available from the file 6 * COPYING in the main directory of this source tree, or the 7 * OpenIB.org BSD license below: 8 * 9 * Redistribution and use in source and binary forms, with or 10 * without modification, are permitted provided that the following 11 * conditions are met: 12 * 13 * - Redistributions of source code must retain the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer. 16 * 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 */ 31 32 #include <crypto/aead.h> 33 #include <linux/highmem.h> 34 #include <linux/module.h> 35 #include <linux/netdevice.h> 36 #include <net/dst.h> 37 #include <net/inet_connection_sock.h> 38 #include <net/tcp.h> 39 #include <net/tls.h> 40 41 #include "trace.h" 42 43 /* device_offload_lock is used to synchronize tls_dev_add 44 * against NETDEV_DOWN notifications. 45 */ 46 static DECLARE_RWSEM(device_offload_lock); 47 48 static void tls_device_gc_task(struct work_struct *work); 49 50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task); 51 static LIST_HEAD(tls_device_gc_list); 52 static LIST_HEAD(tls_device_list); 53 static DEFINE_SPINLOCK(tls_device_lock); 54 55 static void tls_device_free_ctx(struct tls_context *ctx) 56 { 57 if (ctx->tx_conf == TLS_HW) { 58 kfree(tls_offload_ctx_tx(ctx)); 59 kfree(ctx->tx.rec_seq); 60 kfree(ctx->tx.iv); 61 } 62 63 if (ctx->rx_conf == TLS_HW) 64 kfree(tls_offload_ctx_rx(ctx)); 65 66 tls_ctx_free(NULL, ctx); 67 } 68 69 static void tls_device_gc_task(struct work_struct *work) 70 { 71 struct tls_context *ctx, *tmp; 72 unsigned long flags; 73 LIST_HEAD(gc_list); 74 75 spin_lock_irqsave(&tls_device_lock, flags); 76 list_splice_init(&tls_device_gc_list, &gc_list); 77 spin_unlock_irqrestore(&tls_device_lock, flags); 78 79 list_for_each_entry_safe(ctx, tmp, &gc_list, list) { 80 struct net_device *netdev = ctx->netdev; 81 82 if (netdev && ctx->tx_conf == TLS_HW) { 83 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 84 TLS_OFFLOAD_CTX_DIR_TX); 85 dev_put(netdev); 86 ctx->netdev = NULL; 87 } 88 89 list_del(&ctx->list); 90 tls_device_free_ctx(ctx); 91 } 92 } 93 94 static void tls_device_queue_ctx_destruction(struct tls_context *ctx) 95 { 96 unsigned long flags; 97 98 spin_lock_irqsave(&tls_device_lock, flags); 99 list_move_tail(&ctx->list, &tls_device_gc_list); 100 101 /* schedule_work inside the spinlock 102 * to make sure tls_device_down waits for that work. 103 */ 104 schedule_work(&tls_device_gc_work); 105 106 spin_unlock_irqrestore(&tls_device_lock, flags); 107 } 108 109 /* We assume that the socket is already connected */ 110 static struct net_device *get_netdev_for_sock(struct sock *sk) 111 { 112 struct dst_entry *dst = sk_dst_get(sk); 113 struct net_device *netdev = NULL; 114 115 if (likely(dst)) { 116 netdev = dst->dev; 117 dev_hold(netdev); 118 } 119 120 dst_release(dst); 121 122 return netdev; 123 } 124 125 static void destroy_record(struct tls_record_info *record) 126 { 127 int i; 128 129 for (i = 0; i < record->num_frags; i++) 130 __skb_frag_unref(&record->frags[i]); 131 kfree(record); 132 } 133 134 static void delete_all_records(struct tls_offload_context_tx *offload_ctx) 135 { 136 struct tls_record_info *info, *temp; 137 138 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { 139 list_del(&info->list); 140 destroy_record(info); 141 } 142 143 offload_ctx->retransmit_hint = NULL; 144 } 145 146 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) 147 { 148 struct tls_context *tls_ctx = tls_get_ctx(sk); 149 struct tls_record_info *info, *temp; 150 struct tls_offload_context_tx *ctx; 151 u64 deleted_records = 0; 152 unsigned long flags; 153 154 if (!tls_ctx) 155 return; 156 157 ctx = tls_offload_ctx_tx(tls_ctx); 158 159 spin_lock_irqsave(&ctx->lock, flags); 160 info = ctx->retransmit_hint; 161 if (info && !before(acked_seq, info->end_seq)) 162 ctx->retransmit_hint = NULL; 163 164 list_for_each_entry_safe(info, temp, &ctx->records_list, list) { 165 if (before(acked_seq, info->end_seq)) 166 break; 167 list_del(&info->list); 168 169 destroy_record(info); 170 deleted_records++; 171 } 172 173 ctx->unacked_record_sn += deleted_records; 174 spin_unlock_irqrestore(&ctx->lock, flags); 175 } 176 177 /* At this point, there should be no references on this 178 * socket and no in-flight SKBs associated with this 179 * socket, so it is safe to free all the resources. 180 */ 181 void tls_device_sk_destruct(struct sock *sk) 182 { 183 struct tls_context *tls_ctx = tls_get_ctx(sk); 184 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 185 186 tls_ctx->sk_destruct(sk); 187 188 if (tls_ctx->tx_conf == TLS_HW) { 189 if (ctx->open_record) 190 destroy_record(ctx->open_record); 191 delete_all_records(ctx); 192 crypto_free_aead(ctx->aead_send); 193 clean_acked_data_disable(inet_csk(sk)); 194 } 195 196 if (refcount_dec_and_test(&tls_ctx->refcount)) 197 tls_device_queue_ctx_destruction(tls_ctx); 198 } 199 EXPORT_SYMBOL_GPL(tls_device_sk_destruct); 200 201 void tls_device_free_resources_tx(struct sock *sk) 202 { 203 struct tls_context *tls_ctx = tls_get_ctx(sk); 204 205 tls_free_partial_record(sk, tls_ctx); 206 } 207 208 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) 209 { 210 struct tls_context *tls_ctx = tls_get_ctx(sk); 211 212 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); 213 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 214 } 215 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); 216 217 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, 218 u32 seq) 219 { 220 struct net_device *netdev; 221 struct sk_buff *skb; 222 int err = 0; 223 u8 *rcd_sn; 224 225 skb = tcp_write_queue_tail(sk); 226 if (skb) 227 TCP_SKB_CB(skb)->eor = 1; 228 229 rcd_sn = tls_ctx->tx.rec_seq; 230 231 trace_tls_device_tx_resync_send(sk, seq, rcd_sn); 232 down_read(&device_offload_lock); 233 netdev = tls_ctx->netdev; 234 if (netdev) 235 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, 236 rcd_sn, 237 TLS_OFFLOAD_CTX_DIR_TX); 238 up_read(&device_offload_lock); 239 if (err) 240 return; 241 242 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 243 } 244 245 static void tls_append_frag(struct tls_record_info *record, 246 struct page_frag *pfrag, 247 int size) 248 { 249 skb_frag_t *frag; 250 251 frag = &record->frags[record->num_frags - 1]; 252 if (skb_frag_page(frag) == pfrag->page && 253 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { 254 skb_frag_size_add(frag, size); 255 } else { 256 ++frag; 257 __skb_frag_set_page(frag, pfrag->page); 258 skb_frag_off_set(frag, pfrag->offset); 259 skb_frag_size_set(frag, size); 260 ++record->num_frags; 261 get_page(pfrag->page); 262 } 263 264 pfrag->offset += size; 265 record->len += size; 266 } 267 268 static int tls_push_record(struct sock *sk, 269 struct tls_context *ctx, 270 struct tls_offload_context_tx *offload_ctx, 271 struct tls_record_info *record, 272 int flags) 273 { 274 struct tls_prot_info *prot = &ctx->prot_info; 275 struct tcp_sock *tp = tcp_sk(sk); 276 skb_frag_t *frag; 277 int i; 278 279 record->end_seq = tp->write_seq + record->len; 280 list_add_tail_rcu(&record->list, &offload_ctx->records_list); 281 offload_ctx->open_record = NULL; 282 283 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) 284 tls_device_resync_tx(sk, ctx, tp->write_seq); 285 286 tls_advance_record_sn(sk, prot, &ctx->tx); 287 288 for (i = 0; i < record->num_frags; i++) { 289 frag = &record->frags[i]; 290 sg_unmark_end(&offload_ctx->sg_tx_data[i]); 291 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), 292 skb_frag_size(frag), skb_frag_off(frag)); 293 sk_mem_charge(sk, skb_frag_size(frag)); 294 get_page(skb_frag_page(frag)); 295 } 296 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); 297 298 /* all ready, send */ 299 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); 300 } 301 302 static int tls_device_record_close(struct sock *sk, 303 struct tls_context *ctx, 304 struct tls_record_info *record, 305 struct page_frag *pfrag, 306 unsigned char record_type) 307 { 308 struct tls_prot_info *prot = &ctx->prot_info; 309 int ret; 310 311 /* append tag 312 * device will fill in the tag, we just need to append a placeholder 313 * use socket memory to improve coalescing (re-using a single buffer 314 * increases frag count) 315 * if we can't allocate memory now, steal some back from data 316 */ 317 if (likely(skb_page_frag_refill(prot->tag_size, pfrag, 318 sk->sk_allocation))) { 319 ret = 0; 320 tls_append_frag(record, pfrag, prot->tag_size); 321 } else { 322 ret = prot->tag_size; 323 if (record->len <= prot->overhead_size) 324 return -ENOMEM; 325 } 326 327 /* fill prepend */ 328 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), 329 record->len - prot->overhead_size, 330 record_type, prot->version); 331 return ret; 332 } 333 334 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, 335 struct page_frag *pfrag, 336 size_t prepend_size) 337 { 338 struct tls_record_info *record; 339 skb_frag_t *frag; 340 341 record = kmalloc(sizeof(*record), GFP_KERNEL); 342 if (!record) 343 return -ENOMEM; 344 345 frag = &record->frags[0]; 346 __skb_frag_set_page(frag, pfrag->page); 347 skb_frag_off_set(frag, pfrag->offset); 348 skb_frag_size_set(frag, prepend_size); 349 350 get_page(pfrag->page); 351 pfrag->offset += prepend_size; 352 353 record->num_frags = 1; 354 record->len = prepend_size; 355 offload_ctx->open_record = record; 356 return 0; 357 } 358 359 static int tls_do_allocation(struct sock *sk, 360 struct tls_offload_context_tx *offload_ctx, 361 struct page_frag *pfrag, 362 size_t prepend_size) 363 { 364 int ret; 365 366 if (!offload_ctx->open_record) { 367 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, 368 sk->sk_allocation))) { 369 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); 370 sk_stream_moderate_sndbuf(sk); 371 return -ENOMEM; 372 } 373 374 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); 375 if (ret) 376 return ret; 377 378 if (pfrag->size > pfrag->offset) 379 return 0; 380 } 381 382 if (!sk_page_frag_refill(sk, pfrag)) 383 return -ENOMEM; 384 385 return 0; 386 } 387 388 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) 389 { 390 size_t pre_copy, nocache; 391 392 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); 393 if (pre_copy) { 394 pre_copy = min(pre_copy, bytes); 395 if (copy_from_iter(addr, pre_copy, i) != pre_copy) 396 return -EFAULT; 397 bytes -= pre_copy; 398 addr += pre_copy; 399 } 400 401 nocache = round_down(bytes, SMP_CACHE_BYTES); 402 if (copy_from_iter_nocache(addr, nocache, i) != nocache) 403 return -EFAULT; 404 bytes -= nocache; 405 addr += nocache; 406 407 if (bytes && copy_from_iter(addr, bytes, i) != bytes) 408 return -EFAULT; 409 410 return 0; 411 } 412 413 static int tls_push_data(struct sock *sk, 414 struct iov_iter *msg_iter, 415 size_t size, int flags, 416 unsigned char record_type) 417 { 418 struct tls_context *tls_ctx = tls_get_ctx(sk); 419 struct tls_prot_info *prot = &tls_ctx->prot_info; 420 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 421 int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE); 422 struct tls_record_info *record = ctx->open_record; 423 int tls_push_record_flags; 424 struct page_frag *pfrag; 425 size_t orig_size = size; 426 u32 max_open_record_len; 427 int copy, rc = 0; 428 bool done = false; 429 long timeo; 430 431 if (flags & 432 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) 433 return -EOPNOTSUPP; 434 435 if (unlikely(sk->sk_err)) 436 return -sk->sk_err; 437 438 flags |= MSG_SENDPAGE_DECRYPTED; 439 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST; 440 441 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 442 if (tls_is_partially_sent_record(tls_ctx)) { 443 rc = tls_push_partial_record(sk, tls_ctx, flags); 444 if (rc < 0) 445 return rc; 446 } 447 448 pfrag = sk_page_frag(sk); 449 450 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and 451 * we need to leave room for an authentication tag. 452 */ 453 max_open_record_len = TLS_MAX_PAYLOAD_SIZE + 454 prot->prepend_size; 455 do { 456 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); 457 if (unlikely(rc)) { 458 rc = sk_stream_wait_memory(sk, &timeo); 459 if (!rc) 460 continue; 461 462 record = ctx->open_record; 463 if (!record) 464 break; 465 handle_error: 466 if (record_type != TLS_RECORD_TYPE_DATA) { 467 /* avoid sending partial 468 * record with type != 469 * application_data 470 */ 471 size = orig_size; 472 destroy_record(record); 473 ctx->open_record = NULL; 474 } else if (record->len > prot->prepend_size) { 475 goto last_record; 476 } 477 478 break; 479 } 480 481 record = ctx->open_record; 482 copy = min_t(size_t, size, (pfrag->size - pfrag->offset)); 483 copy = min_t(size_t, copy, (max_open_record_len - record->len)); 484 485 rc = tls_device_copy_data(page_address(pfrag->page) + 486 pfrag->offset, copy, msg_iter); 487 if (rc) 488 goto handle_error; 489 tls_append_frag(record, pfrag, copy); 490 491 size -= copy; 492 if (!size) { 493 last_record: 494 tls_push_record_flags = flags; 495 if (more) { 496 tls_ctx->pending_open_record_frags = 497 !!record->num_frags; 498 break; 499 } 500 501 done = true; 502 } 503 504 if (done || record->len >= max_open_record_len || 505 (record->num_frags >= MAX_SKB_FRAGS - 1)) { 506 rc = tls_device_record_close(sk, tls_ctx, record, 507 pfrag, record_type); 508 if (rc) { 509 if (rc > 0) { 510 size += rc; 511 } else { 512 size = orig_size; 513 destroy_record(record); 514 ctx->open_record = NULL; 515 break; 516 } 517 } 518 519 rc = tls_push_record(sk, 520 tls_ctx, 521 ctx, 522 record, 523 tls_push_record_flags); 524 if (rc < 0) 525 break; 526 } 527 } while (!done); 528 529 if (orig_size - size > 0) 530 rc = orig_size - size; 531 532 return rc; 533 } 534 535 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 536 { 537 unsigned char record_type = TLS_RECORD_TYPE_DATA; 538 struct tls_context *tls_ctx = tls_get_ctx(sk); 539 int rc; 540 541 mutex_lock(&tls_ctx->tx_lock); 542 lock_sock(sk); 543 544 if (unlikely(msg->msg_controllen)) { 545 rc = tls_proccess_cmsg(sk, msg, &record_type); 546 if (rc) 547 goto out; 548 } 549 550 rc = tls_push_data(sk, &msg->msg_iter, size, 551 msg->msg_flags, record_type); 552 553 out: 554 release_sock(sk); 555 mutex_unlock(&tls_ctx->tx_lock); 556 return rc; 557 } 558 559 int tls_device_sendpage(struct sock *sk, struct page *page, 560 int offset, size_t size, int flags) 561 { 562 struct tls_context *tls_ctx = tls_get_ctx(sk); 563 struct iov_iter msg_iter; 564 char *kaddr = kmap(page); 565 struct kvec iov; 566 int rc; 567 568 if (flags & MSG_SENDPAGE_NOTLAST) 569 flags |= MSG_MORE; 570 571 mutex_lock(&tls_ctx->tx_lock); 572 lock_sock(sk); 573 574 if (flags & MSG_OOB) { 575 rc = -EOPNOTSUPP; 576 goto out; 577 } 578 579 iov.iov_base = kaddr + offset; 580 iov.iov_len = size; 581 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size); 582 rc = tls_push_data(sk, &msg_iter, size, 583 flags, TLS_RECORD_TYPE_DATA); 584 kunmap(page); 585 586 out: 587 release_sock(sk); 588 mutex_unlock(&tls_ctx->tx_lock); 589 return rc; 590 } 591 592 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 593 u32 seq, u64 *p_record_sn) 594 { 595 u64 record_sn = context->hint_record_sn; 596 struct tls_record_info *info, *last; 597 598 info = context->retransmit_hint; 599 if (!info || 600 before(seq, info->end_seq - info->len)) { 601 /* if retransmit_hint is irrelevant start 602 * from the beggining of the list 603 */ 604 info = list_first_entry_or_null(&context->records_list, 605 struct tls_record_info, list); 606 if (!info) 607 return NULL; 608 /* send the start_marker record if seq number is before the 609 * tls offload start marker sequence number. This record is 610 * required to handle TCP packets which are before TLS offload 611 * started. 612 * And if it's not start marker, look if this seq number 613 * belongs to the list. 614 */ 615 if (likely(!tls_record_is_start_marker(info))) { 616 /* we have the first record, get the last record to see 617 * if this seq number belongs to the list. 618 */ 619 last = list_last_entry(&context->records_list, 620 struct tls_record_info, list); 621 622 if (!between(seq, tls_record_start_seq(info), 623 last->end_seq)) 624 return NULL; 625 } 626 record_sn = context->unacked_record_sn; 627 } 628 629 /* We just need the _rcu for the READ_ONCE() */ 630 rcu_read_lock(); 631 list_for_each_entry_from_rcu(info, &context->records_list, list) { 632 if (before(seq, info->end_seq)) { 633 if (!context->retransmit_hint || 634 after(info->end_seq, 635 context->retransmit_hint->end_seq)) { 636 context->hint_record_sn = record_sn; 637 context->retransmit_hint = info; 638 } 639 *p_record_sn = record_sn; 640 goto exit_rcu_unlock; 641 } 642 record_sn++; 643 } 644 info = NULL; 645 646 exit_rcu_unlock: 647 rcu_read_unlock(); 648 return info; 649 } 650 EXPORT_SYMBOL(tls_get_record); 651 652 static int tls_device_push_pending_record(struct sock *sk, int flags) 653 { 654 struct iov_iter msg_iter; 655 656 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0); 657 return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA); 658 } 659 660 void tls_device_write_space(struct sock *sk, struct tls_context *ctx) 661 { 662 if (tls_is_partially_sent_record(ctx)) { 663 gfp_t sk_allocation = sk->sk_allocation; 664 665 WARN_ON_ONCE(sk->sk_write_pending); 666 667 sk->sk_allocation = GFP_ATOMIC; 668 tls_push_partial_record(sk, ctx, 669 MSG_DONTWAIT | MSG_NOSIGNAL | 670 MSG_SENDPAGE_DECRYPTED); 671 sk->sk_allocation = sk_allocation; 672 } 673 } 674 675 static void tls_device_resync_rx(struct tls_context *tls_ctx, 676 struct sock *sk, u32 seq, u8 *rcd_sn) 677 { 678 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 679 struct net_device *netdev; 680 681 if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags))) 682 return; 683 684 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); 685 netdev = READ_ONCE(tls_ctx->netdev); 686 if (netdev) 687 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, 688 TLS_OFFLOAD_CTX_DIR_RX); 689 clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags); 690 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); 691 } 692 693 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) 694 { 695 struct tls_context *tls_ctx = tls_get_ctx(sk); 696 struct tls_offload_context_rx *rx_ctx; 697 bool is_req_pending, is_force_resync; 698 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 699 struct tls_prot_info *prot; 700 s64 resync_req; 701 u32 sock_data; 702 u32 req_seq; 703 704 if (tls_ctx->rx_conf != TLS_HW) 705 return; 706 707 prot = &tls_ctx->prot_info; 708 rx_ctx = tls_offload_ctx_rx(tls_ctx); 709 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 710 711 switch (rx_ctx->resync_type) { 712 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: 713 resync_req = atomic64_read(&rx_ctx->resync_req); 714 req_seq = resync_req >> 32; 715 seq += TLS_HEADER_SIZE - 1; 716 is_req_pending = resync_req & RESYNC_REQ; 717 is_force_resync = resync_req & RESYNC_REQ_FORCE; 718 719 if (likely(!is_req_pending) || 720 (!is_force_resync && req_seq != seq) || 721 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) 722 return; 723 break; 724 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: 725 if (likely(!rx_ctx->resync_nh_do_now)) 726 return; 727 728 /* head of next rec is already in, note that the sock_inq will 729 * include the currently parsed message when called from parser 730 */ 731 sock_data = tcp_inq(sk); 732 if (sock_data > rcd_len) { 733 trace_tls_device_rx_resync_nh_delay(sk, sock_data, 734 rcd_len); 735 return; 736 } 737 738 rx_ctx->resync_nh_do_now = 0; 739 seq += rcd_len; 740 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 741 break; 742 } 743 744 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); 745 } 746 747 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, 748 struct tls_offload_context_rx *ctx, 749 struct sock *sk, struct sk_buff *skb) 750 { 751 struct strp_msg *rxm; 752 753 /* device will request resyncs by itself based on stream scan */ 754 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) 755 return; 756 /* already scheduled */ 757 if (ctx->resync_nh_do_now) 758 return; 759 /* seen decrypted fragments since last fully-failed record */ 760 if (ctx->resync_nh_reset) { 761 ctx->resync_nh_reset = 0; 762 ctx->resync_nh.decrypted_failed = 1; 763 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; 764 return; 765 } 766 767 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) 768 return; 769 770 /* doing resync, bump the next target in case it fails */ 771 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) 772 ctx->resync_nh.decrypted_tgt *= 2; 773 else 774 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; 775 776 rxm = strp_msg(skb); 777 778 /* head of next rec is already in, parser will sync for us */ 779 if (tcp_inq(sk) > rxm->full_len) { 780 trace_tls_device_rx_resync_nh_schedule(sk); 781 ctx->resync_nh_do_now = 1; 782 } else { 783 struct tls_prot_info *prot = &tls_ctx->prot_info; 784 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 785 786 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 787 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 788 789 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, 790 rcd_sn); 791 } 792 } 793 794 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb) 795 { 796 struct strp_msg *rxm = strp_msg(skb); 797 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos; 798 struct sk_buff *skb_iter, *unused; 799 struct scatterlist sg[1]; 800 char *orig_buf, *buf; 801 802 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + 803 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation); 804 if (!orig_buf) 805 return -ENOMEM; 806 buf = orig_buf; 807 808 nsg = skb_cow_data(skb, 0, &unused); 809 if (unlikely(nsg < 0)) { 810 err = nsg; 811 goto free_buf; 812 } 813 814 sg_init_table(sg, 1); 815 sg_set_buf(&sg[0], buf, 816 rxm->full_len + TLS_HEADER_SIZE + 817 TLS_CIPHER_AES_GCM_128_IV_SIZE); 818 err = skb_copy_bits(skb, offset, buf, 819 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE); 820 if (err) 821 goto free_buf; 822 823 /* We are interested only in the decrypted data not the auth */ 824 err = decrypt_skb(sk, skb, sg); 825 if (err != -EBADMSG) 826 goto free_buf; 827 else 828 err = 0; 829 830 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE; 831 832 if (skb_pagelen(skb) > offset) { 833 copy = min_t(int, skb_pagelen(skb) - offset, data_len); 834 835 if (skb->decrypted) { 836 err = skb_store_bits(skb, offset, buf, copy); 837 if (err) 838 goto free_buf; 839 } 840 841 offset += copy; 842 buf += copy; 843 } 844 845 pos = skb_pagelen(skb); 846 skb_walk_frags(skb, skb_iter) { 847 int frag_pos; 848 849 /* Practically all frags must belong to msg if reencrypt 850 * is needed with current strparser and coalescing logic, 851 * but strparser may "get optimized", so let's be safe. 852 */ 853 if (pos + skb_iter->len <= offset) 854 goto done_with_frag; 855 if (pos >= data_len + rxm->offset) 856 break; 857 858 frag_pos = offset - pos; 859 copy = min_t(int, skb_iter->len - frag_pos, 860 data_len + rxm->offset - offset); 861 862 if (skb_iter->decrypted) { 863 err = skb_store_bits(skb_iter, frag_pos, buf, copy); 864 if (err) 865 goto free_buf; 866 } 867 868 offset += copy; 869 buf += copy; 870 done_with_frag: 871 pos += skb_iter->len; 872 } 873 874 free_buf: 875 kfree(orig_buf); 876 return err; 877 } 878 879 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 880 struct sk_buff *skb, struct strp_msg *rxm) 881 { 882 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); 883 int is_decrypted = skb->decrypted; 884 int is_encrypted = !is_decrypted; 885 struct sk_buff *skb_iter; 886 887 /* Check if all the data is decrypted already */ 888 skb_walk_frags(skb, skb_iter) { 889 is_decrypted &= skb_iter->decrypted; 890 is_encrypted &= !skb_iter->decrypted; 891 } 892 893 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, 894 tls_ctx->rx.rec_seq, rxm->full_len, 895 is_encrypted, is_decrypted); 896 897 ctx->sw.decrypted |= is_decrypted; 898 899 /* Return immediately if the record is either entirely plaintext or 900 * entirely ciphertext. Otherwise handle reencrypt partially decrypted 901 * record. 902 */ 903 if (is_decrypted) { 904 ctx->resync_nh_reset = 1; 905 return 0; 906 } 907 if (is_encrypted) { 908 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); 909 return 0; 910 } 911 912 ctx->resync_nh_reset = 1; 913 return tls_device_reencrypt(sk, skb); 914 } 915 916 static void tls_device_attach(struct tls_context *ctx, struct sock *sk, 917 struct net_device *netdev) 918 { 919 if (sk->sk_destruct != tls_device_sk_destruct) { 920 refcount_set(&ctx->refcount, 1); 921 dev_hold(netdev); 922 ctx->netdev = netdev; 923 spin_lock_irq(&tls_device_lock); 924 list_add_tail(&ctx->list, &tls_device_list); 925 spin_unlock_irq(&tls_device_lock); 926 927 ctx->sk_destruct = sk->sk_destruct; 928 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); 929 } 930 } 931 932 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 933 { 934 u16 nonce_size, tag_size, iv_size, rec_seq_size; 935 struct tls_context *tls_ctx = tls_get_ctx(sk); 936 struct tls_prot_info *prot = &tls_ctx->prot_info; 937 struct tls_record_info *start_marker_record; 938 struct tls_offload_context_tx *offload_ctx; 939 struct tls_crypto_info *crypto_info; 940 struct net_device *netdev; 941 char *iv, *rec_seq; 942 struct sk_buff *skb; 943 __be64 rcd_sn; 944 int rc; 945 946 if (!ctx) 947 return -EINVAL; 948 949 if (ctx->priv_ctx_tx) 950 return -EEXIST; 951 952 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); 953 if (!start_marker_record) 954 return -ENOMEM; 955 956 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); 957 if (!offload_ctx) { 958 rc = -ENOMEM; 959 goto free_marker_record; 960 } 961 962 crypto_info = &ctx->crypto_send.info; 963 if (crypto_info->version != TLS_1_2_VERSION) { 964 rc = -EOPNOTSUPP; 965 goto free_offload_ctx; 966 } 967 968 switch (crypto_info->cipher_type) { 969 case TLS_CIPHER_AES_GCM_128: 970 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 971 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 972 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 973 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 974 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 975 rec_seq = 976 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 977 break; 978 default: 979 rc = -EINVAL; 980 goto free_offload_ctx; 981 } 982 983 /* Sanity-check the rec_seq_size for stack allocations */ 984 if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 985 rc = -EINVAL; 986 goto free_offload_ctx; 987 } 988 989 prot->version = crypto_info->version; 990 prot->cipher_type = crypto_info->cipher_type; 991 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 992 prot->tag_size = tag_size; 993 prot->overhead_size = prot->prepend_size + prot->tag_size; 994 prot->iv_size = iv_size; 995 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 996 GFP_KERNEL); 997 if (!ctx->tx.iv) { 998 rc = -ENOMEM; 999 goto free_offload_ctx; 1000 } 1001 1002 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 1003 1004 prot->rec_seq_size = rec_seq_size; 1005 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 1006 if (!ctx->tx.rec_seq) { 1007 rc = -ENOMEM; 1008 goto free_iv; 1009 } 1010 1011 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); 1012 if (rc) 1013 goto free_rec_seq; 1014 1015 /* start at rec_seq - 1 to account for the start marker record */ 1016 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); 1017 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; 1018 1019 start_marker_record->end_seq = tcp_sk(sk)->write_seq; 1020 start_marker_record->len = 0; 1021 start_marker_record->num_frags = 0; 1022 1023 INIT_LIST_HEAD(&offload_ctx->records_list); 1024 list_add_tail(&start_marker_record->list, &offload_ctx->records_list); 1025 spin_lock_init(&offload_ctx->lock); 1026 sg_init_table(offload_ctx->sg_tx_data, 1027 ARRAY_SIZE(offload_ctx->sg_tx_data)); 1028 1029 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); 1030 ctx->push_pending_record = tls_device_push_pending_record; 1031 1032 /* TLS offload is greatly simplified if we don't send 1033 * SKBs where only part of the payload needs to be encrypted. 1034 * So mark the last skb in the write queue as end of record. 1035 */ 1036 skb = tcp_write_queue_tail(sk); 1037 if (skb) 1038 TCP_SKB_CB(skb)->eor = 1; 1039 1040 netdev = get_netdev_for_sock(sk); 1041 if (!netdev) { 1042 pr_err_ratelimited("%s: netdev not found\n", __func__); 1043 rc = -EINVAL; 1044 goto disable_cad; 1045 } 1046 1047 if (!(netdev->features & NETIF_F_HW_TLS_TX)) { 1048 rc = -EOPNOTSUPP; 1049 goto release_netdev; 1050 } 1051 1052 /* Avoid offloading if the device is down 1053 * We don't want to offload new flows after 1054 * the NETDEV_DOWN event 1055 * 1056 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1057 * handler thus protecting from the device going down before 1058 * ctx was added to tls_device_list. 1059 */ 1060 down_read(&device_offload_lock); 1061 if (!(netdev->flags & IFF_UP)) { 1062 rc = -EINVAL; 1063 goto release_lock; 1064 } 1065 1066 ctx->priv_ctx_tx = offload_ctx; 1067 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, 1068 &ctx->crypto_send.info, 1069 tcp_sk(sk)->write_seq); 1070 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, 1071 tcp_sk(sk)->write_seq, rec_seq, rc); 1072 if (rc) 1073 goto release_lock; 1074 1075 tls_device_attach(ctx, sk, netdev); 1076 up_read(&device_offload_lock); 1077 1078 /* following this assignment tls_is_sk_tx_device_offloaded 1079 * will return true and the context might be accessed 1080 * by the netdev's xmit function. 1081 */ 1082 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); 1083 dev_put(netdev); 1084 1085 return 0; 1086 1087 release_lock: 1088 up_read(&device_offload_lock); 1089 release_netdev: 1090 dev_put(netdev); 1091 disable_cad: 1092 clean_acked_data_disable(inet_csk(sk)); 1093 crypto_free_aead(offload_ctx->aead_send); 1094 free_rec_seq: 1095 kfree(ctx->tx.rec_seq); 1096 free_iv: 1097 kfree(ctx->tx.iv); 1098 free_offload_ctx: 1099 kfree(offload_ctx); 1100 ctx->priv_ctx_tx = NULL; 1101 free_marker_record: 1102 kfree(start_marker_record); 1103 return rc; 1104 } 1105 1106 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 1107 { 1108 struct tls12_crypto_info_aes_gcm_128 *info; 1109 struct tls_offload_context_rx *context; 1110 struct net_device *netdev; 1111 int rc = 0; 1112 1113 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) 1114 return -EOPNOTSUPP; 1115 1116 netdev = get_netdev_for_sock(sk); 1117 if (!netdev) { 1118 pr_err_ratelimited("%s: netdev not found\n", __func__); 1119 return -EINVAL; 1120 } 1121 1122 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 1123 rc = -EOPNOTSUPP; 1124 goto release_netdev; 1125 } 1126 1127 /* Avoid offloading if the device is down 1128 * We don't want to offload new flows after 1129 * the NETDEV_DOWN event 1130 * 1131 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1132 * handler thus protecting from the device going down before 1133 * ctx was added to tls_device_list. 1134 */ 1135 down_read(&device_offload_lock); 1136 if (!(netdev->flags & IFF_UP)) { 1137 rc = -EINVAL; 1138 goto release_lock; 1139 } 1140 1141 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); 1142 if (!context) { 1143 rc = -ENOMEM; 1144 goto release_lock; 1145 } 1146 context->resync_nh_reset = 1; 1147 1148 ctx->priv_ctx_rx = context; 1149 rc = tls_set_sw_offload(sk, ctx, 0); 1150 if (rc) 1151 goto release_ctx; 1152 1153 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, 1154 &ctx->crypto_recv.info, 1155 tcp_sk(sk)->copied_seq); 1156 info = (void *)&ctx->crypto_recv.info; 1157 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, 1158 tcp_sk(sk)->copied_seq, info->rec_seq, rc); 1159 if (rc) 1160 goto free_sw_resources; 1161 1162 tls_device_attach(ctx, sk, netdev); 1163 up_read(&device_offload_lock); 1164 1165 dev_put(netdev); 1166 1167 return 0; 1168 1169 free_sw_resources: 1170 up_read(&device_offload_lock); 1171 tls_sw_free_resources_rx(sk); 1172 down_read(&device_offload_lock); 1173 release_ctx: 1174 ctx->priv_ctx_rx = NULL; 1175 release_lock: 1176 up_read(&device_offload_lock); 1177 release_netdev: 1178 dev_put(netdev); 1179 return rc; 1180 } 1181 1182 void tls_device_offload_cleanup_rx(struct sock *sk) 1183 { 1184 struct tls_context *tls_ctx = tls_get_ctx(sk); 1185 struct net_device *netdev; 1186 1187 down_read(&device_offload_lock); 1188 netdev = tls_ctx->netdev; 1189 if (!netdev) 1190 goto out; 1191 1192 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, 1193 TLS_OFFLOAD_CTX_DIR_RX); 1194 1195 if (tls_ctx->tx_conf != TLS_HW) { 1196 dev_put(netdev); 1197 tls_ctx->netdev = NULL; 1198 } 1199 out: 1200 up_read(&device_offload_lock); 1201 tls_sw_release_resources_rx(sk); 1202 } 1203 1204 static int tls_device_down(struct net_device *netdev) 1205 { 1206 struct tls_context *ctx, *tmp; 1207 unsigned long flags; 1208 LIST_HEAD(list); 1209 1210 /* Request a write lock to block new offload attempts */ 1211 down_write(&device_offload_lock); 1212 1213 spin_lock_irqsave(&tls_device_lock, flags); 1214 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { 1215 if (ctx->netdev != netdev || 1216 !refcount_inc_not_zero(&ctx->refcount)) 1217 continue; 1218 1219 list_move(&ctx->list, &list); 1220 } 1221 spin_unlock_irqrestore(&tls_device_lock, flags); 1222 1223 list_for_each_entry_safe(ctx, tmp, &list, list) { 1224 if (ctx->tx_conf == TLS_HW) 1225 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1226 TLS_OFFLOAD_CTX_DIR_TX); 1227 if (ctx->rx_conf == TLS_HW) 1228 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1229 TLS_OFFLOAD_CTX_DIR_RX); 1230 WRITE_ONCE(ctx->netdev, NULL); 1231 smp_mb__before_atomic(); /* pairs with test_and_set_bit() */ 1232 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags)) 1233 usleep_range(10, 200); 1234 dev_put(netdev); 1235 list_del_init(&ctx->list); 1236 1237 if (refcount_dec_and_test(&ctx->refcount)) 1238 tls_device_free_ctx(ctx); 1239 } 1240 1241 up_write(&device_offload_lock); 1242 1243 flush_work(&tls_device_gc_work); 1244 1245 return NOTIFY_DONE; 1246 } 1247 1248 static int tls_dev_event(struct notifier_block *this, unsigned long event, 1249 void *ptr) 1250 { 1251 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1252 1253 if (!dev->tlsdev_ops && 1254 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) 1255 return NOTIFY_DONE; 1256 1257 switch (event) { 1258 case NETDEV_REGISTER: 1259 case NETDEV_FEAT_CHANGE: 1260 if ((dev->features & NETIF_F_HW_TLS_RX) && 1261 !dev->tlsdev_ops->tls_dev_resync) 1262 return NOTIFY_BAD; 1263 1264 if (dev->tlsdev_ops && 1265 dev->tlsdev_ops->tls_dev_add && 1266 dev->tlsdev_ops->tls_dev_del) 1267 return NOTIFY_DONE; 1268 else 1269 return NOTIFY_BAD; 1270 case NETDEV_DOWN: 1271 return tls_device_down(dev); 1272 } 1273 return NOTIFY_DONE; 1274 } 1275 1276 static struct notifier_block tls_dev_notifier = { 1277 .notifier_call = tls_dev_event, 1278 }; 1279 1280 void __init tls_device_init(void) 1281 { 1282 register_netdevice_notifier(&tls_dev_notifier); 1283 } 1284 1285 void __exit tls_device_cleanup(void) 1286 { 1287 unregister_netdevice_notifier(&tls_dev_notifier); 1288 flush_work(&tls_device_gc_work); 1289 clean_acked_data_flush(); 1290 } 1291