xref: /openbmc/linux/net/tls/tls_device.c (revision 95777591)
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40 
41 /* device_offload_lock is used to synchronize tls_dev_add
42  * against NETDEV_DOWN notifications.
43  */
44 static DECLARE_RWSEM(device_offload_lock);
45 
46 static void tls_device_gc_task(struct work_struct *work);
47 
48 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
49 static LIST_HEAD(tls_device_gc_list);
50 static LIST_HEAD(tls_device_list);
51 static DEFINE_SPINLOCK(tls_device_lock);
52 
53 static void tls_device_free_ctx(struct tls_context *ctx)
54 {
55 	if (ctx->tx_conf == TLS_HW)
56 		kfree(tls_offload_ctx_tx(ctx));
57 
58 	if (ctx->rx_conf == TLS_HW)
59 		kfree(tls_offload_ctx_rx(ctx));
60 
61 	kfree(ctx);
62 }
63 
64 static void tls_device_gc_task(struct work_struct *work)
65 {
66 	struct tls_context *ctx, *tmp;
67 	unsigned long flags;
68 	LIST_HEAD(gc_list);
69 
70 	spin_lock_irqsave(&tls_device_lock, flags);
71 	list_splice_init(&tls_device_gc_list, &gc_list);
72 	spin_unlock_irqrestore(&tls_device_lock, flags);
73 
74 	list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
75 		struct net_device *netdev = ctx->netdev;
76 
77 		if (netdev && ctx->tx_conf == TLS_HW) {
78 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
79 							TLS_OFFLOAD_CTX_DIR_TX);
80 			dev_put(netdev);
81 			ctx->netdev = NULL;
82 		}
83 
84 		list_del(&ctx->list);
85 		tls_device_free_ctx(ctx);
86 	}
87 }
88 
89 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
90 			      struct net_device *netdev)
91 {
92 	if (sk->sk_destruct != tls_device_sk_destruct) {
93 		refcount_set(&ctx->refcount, 1);
94 		dev_hold(netdev);
95 		ctx->netdev = netdev;
96 		spin_lock_irq(&tls_device_lock);
97 		list_add_tail(&ctx->list, &tls_device_list);
98 		spin_unlock_irq(&tls_device_lock);
99 
100 		ctx->sk_destruct = sk->sk_destruct;
101 		sk->sk_destruct = tls_device_sk_destruct;
102 	}
103 }
104 
105 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
106 {
107 	unsigned long flags;
108 
109 	spin_lock_irqsave(&tls_device_lock, flags);
110 	list_move_tail(&ctx->list, &tls_device_gc_list);
111 
112 	/* schedule_work inside the spinlock
113 	 * to make sure tls_device_down waits for that work.
114 	 */
115 	schedule_work(&tls_device_gc_work);
116 
117 	spin_unlock_irqrestore(&tls_device_lock, flags);
118 }
119 
120 /* We assume that the socket is already connected */
121 static struct net_device *get_netdev_for_sock(struct sock *sk)
122 {
123 	struct dst_entry *dst = sk_dst_get(sk);
124 	struct net_device *netdev = NULL;
125 
126 	if (likely(dst)) {
127 		netdev = dst->dev;
128 		dev_hold(netdev);
129 	}
130 
131 	dst_release(dst);
132 
133 	return netdev;
134 }
135 
136 static void destroy_record(struct tls_record_info *record)
137 {
138 	int nr_frags = record->num_frags;
139 	skb_frag_t *frag;
140 
141 	while (nr_frags-- > 0) {
142 		frag = &record->frags[nr_frags];
143 		__skb_frag_unref(frag);
144 	}
145 	kfree(record);
146 }
147 
148 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
149 {
150 	struct tls_record_info *info, *temp;
151 
152 	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
153 		list_del(&info->list);
154 		destroy_record(info);
155 	}
156 
157 	offload_ctx->retransmit_hint = NULL;
158 }
159 
160 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
161 {
162 	struct tls_context *tls_ctx = tls_get_ctx(sk);
163 	struct tls_record_info *info, *temp;
164 	struct tls_offload_context_tx *ctx;
165 	u64 deleted_records = 0;
166 	unsigned long flags;
167 
168 	if (!tls_ctx)
169 		return;
170 
171 	ctx = tls_offload_ctx_tx(tls_ctx);
172 
173 	spin_lock_irqsave(&ctx->lock, flags);
174 	info = ctx->retransmit_hint;
175 	if (info && !before(acked_seq, info->end_seq)) {
176 		ctx->retransmit_hint = NULL;
177 		list_del(&info->list);
178 		destroy_record(info);
179 		deleted_records++;
180 	}
181 
182 	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
183 		if (before(acked_seq, info->end_seq))
184 			break;
185 		list_del(&info->list);
186 
187 		destroy_record(info);
188 		deleted_records++;
189 	}
190 
191 	ctx->unacked_record_sn += deleted_records;
192 	spin_unlock_irqrestore(&ctx->lock, flags);
193 }
194 
195 /* At this point, there should be no references on this
196  * socket and no in-flight SKBs associated with this
197  * socket, so it is safe to free all the resources.
198  */
199 void tls_device_sk_destruct(struct sock *sk)
200 {
201 	struct tls_context *tls_ctx = tls_get_ctx(sk);
202 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
203 
204 	tls_ctx->sk_destruct(sk);
205 
206 	if (tls_ctx->tx_conf == TLS_HW) {
207 		if (ctx->open_record)
208 			destroy_record(ctx->open_record);
209 		delete_all_records(ctx);
210 		crypto_free_aead(ctx->aead_send);
211 		clean_acked_data_disable(inet_csk(sk));
212 	}
213 
214 	if (refcount_dec_and_test(&tls_ctx->refcount))
215 		tls_device_queue_ctx_destruction(tls_ctx);
216 }
217 EXPORT_SYMBOL(tls_device_sk_destruct);
218 
219 static void tls_append_frag(struct tls_record_info *record,
220 			    struct page_frag *pfrag,
221 			    int size)
222 {
223 	skb_frag_t *frag;
224 
225 	frag = &record->frags[record->num_frags - 1];
226 	if (frag->page.p == pfrag->page &&
227 	    frag->page_offset + frag->size == pfrag->offset) {
228 		frag->size += size;
229 	} else {
230 		++frag;
231 		frag->page.p = pfrag->page;
232 		frag->page_offset = pfrag->offset;
233 		frag->size = size;
234 		++record->num_frags;
235 		get_page(pfrag->page);
236 	}
237 
238 	pfrag->offset += size;
239 	record->len += size;
240 }
241 
242 static int tls_push_record(struct sock *sk,
243 			   struct tls_context *ctx,
244 			   struct tls_offload_context_tx *offload_ctx,
245 			   struct tls_record_info *record,
246 			   struct page_frag *pfrag,
247 			   int flags,
248 			   unsigned char record_type)
249 {
250 	struct tls_prot_info *prot = &ctx->prot_info;
251 	struct tcp_sock *tp = tcp_sk(sk);
252 	struct page_frag dummy_tag_frag;
253 	skb_frag_t *frag;
254 	int i;
255 
256 	/* fill prepend */
257 	frag = &record->frags[0];
258 	tls_fill_prepend(ctx,
259 			 skb_frag_address(frag),
260 			 record->len - prot->prepend_size,
261 			 record_type,
262 			 ctx->crypto_send.info.version);
263 
264 	/* HW doesn't care about the data in the tag, because it fills it. */
265 	dummy_tag_frag.page = skb_frag_page(frag);
266 	dummy_tag_frag.offset = 0;
267 
268 	tls_append_frag(record, &dummy_tag_frag, prot->tag_size);
269 	record->end_seq = tp->write_seq + record->len;
270 	spin_lock_irq(&offload_ctx->lock);
271 	list_add_tail(&record->list, &offload_ctx->records_list);
272 	spin_unlock_irq(&offload_ctx->lock);
273 	offload_ctx->open_record = NULL;
274 	tls_advance_record_sn(sk, &ctx->tx, ctx->crypto_send.info.version);
275 
276 	for (i = 0; i < record->num_frags; i++) {
277 		frag = &record->frags[i];
278 		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
279 		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
280 			    frag->size, frag->page_offset);
281 		sk_mem_charge(sk, frag->size);
282 		get_page(skb_frag_page(frag));
283 	}
284 	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
285 
286 	/* all ready, send */
287 	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
288 }
289 
290 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
291 				 struct page_frag *pfrag,
292 				 size_t prepend_size)
293 {
294 	struct tls_record_info *record;
295 	skb_frag_t *frag;
296 
297 	record = kmalloc(sizeof(*record), GFP_KERNEL);
298 	if (!record)
299 		return -ENOMEM;
300 
301 	frag = &record->frags[0];
302 	__skb_frag_set_page(frag, pfrag->page);
303 	frag->page_offset = pfrag->offset;
304 	skb_frag_size_set(frag, prepend_size);
305 
306 	get_page(pfrag->page);
307 	pfrag->offset += prepend_size;
308 
309 	record->num_frags = 1;
310 	record->len = prepend_size;
311 	offload_ctx->open_record = record;
312 	return 0;
313 }
314 
315 static int tls_do_allocation(struct sock *sk,
316 			     struct tls_offload_context_tx *offload_ctx,
317 			     struct page_frag *pfrag,
318 			     size_t prepend_size)
319 {
320 	int ret;
321 
322 	if (!offload_ctx->open_record) {
323 		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
324 						   sk->sk_allocation))) {
325 			sk->sk_prot->enter_memory_pressure(sk);
326 			sk_stream_moderate_sndbuf(sk);
327 			return -ENOMEM;
328 		}
329 
330 		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
331 		if (ret)
332 			return ret;
333 
334 		if (pfrag->size > pfrag->offset)
335 			return 0;
336 	}
337 
338 	if (!sk_page_frag_refill(sk, pfrag))
339 		return -ENOMEM;
340 
341 	return 0;
342 }
343 
344 static int tls_push_data(struct sock *sk,
345 			 struct iov_iter *msg_iter,
346 			 size_t size, int flags,
347 			 unsigned char record_type)
348 {
349 	struct tls_context *tls_ctx = tls_get_ctx(sk);
350 	struct tls_prot_info *prot = &tls_ctx->prot_info;
351 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
352 	int tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
353 	int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
354 	struct tls_record_info *record = ctx->open_record;
355 	struct page_frag *pfrag;
356 	size_t orig_size = size;
357 	u32 max_open_record_len;
358 	int copy, rc = 0;
359 	bool done = false;
360 	long timeo;
361 
362 	if (flags &
363 	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
364 		return -ENOTSUPP;
365 
366 	if (sk->sk_err)
367 		return -sk->sk_err;
368 
369 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
370 	if (tls_is_partially_sent_record(tls_ctx)) {
371 		rc = tls_push_partial_record(sk, tls_ctx, flags);
372 		if (rc < 0)
373 			return rc;
374 	}
375 
376 	pfrag = sk_page_frag(sk);
377 
378 	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
379 	 * we need to leave room for an authentication tag.
380 	 */
381 	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
382 			      prot->prepend_size;
383 	do {
384 		rc = tls_do_allocation(sk, ctx, pfrag,
385 				       prot->prepend_size);
386 		if (rc) {
387 			rc = sk_stream_wait_memory(sk, &timeo);
388 			if (!rc)
389 				continue;
390 
391 			record = ctx->open_record;
392 			if (!record)
393 				break;
394 handle_error:
395 			if (record_type != TLS_RECORD_TYPE_DATA) {
396 				/* avoid sending partial
397 				 * record with type !=
398 				 * application_data
399 				 */
400 				size = orig_size;
401 				destroy_record(record);
402 				ctx->open_record = NULL;
403 			} else if (record->len > prot->prepend_size) {
404 				goto last_record;
405 			}
406 
407 			break;
408 		}
409 
410 		record = ctx->open_record;
411 		copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
412 		copy = min_t(size_t, copy, (max_open_record_len - record->len));
413 
414 		if (copy_from_iter_nocache(page_address(pfrag->page) +
415 					       pfrag->offset,
416 					   copy, msg_iter) != copy) {
417 			rc = -EFAULT;
418 			goto handle_error;
419 		}
420 		tls_append_frag(record, pfrag, copy);
421 
422 		size -= copy;
423 		if (!size) {
424 last_record:
425 			tls_push_record_flags = flags;
426 			if (more) {
427 				tls_ctx->pending_open_record_frags =
428 						!!record->num_frags;
429 				break;
430 			}
431 
432 			done = true;
433 		}
434 
435 		if (done || record->len >= max_open_record_len ||
436 		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
437 			rc = tls_push_record(sk,
438 					     tls_ctx,
439 					     ctx,
440 					     record,
441 					     pfrag,
442 					     tls_push_record_flags,
443 					     record_type);
444 			if (rc < 0)
445 				break;
446 		}
447 	} while (!done);
448 
449 	if (orig_size - size > 0)
450 		rc = orig_size - size;
451 
452 	return rc;
453 }
454 
455 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
456 {
457 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
458 	int rc;
459 
460 	lock_sock(sk);
461 
462 	if (unlikely(msg->msg_controllen)) {
463 		rc = tls_proccess_cmsg(sk, msg, &record_type);
464 		if (rc)
465 			goto out;
466 	}
467 
468 	rc = tls_push_data(sk, &msg->msg_iter, size,
469 			   msg->msg_flags, record_type);
470 
471 out:
472 	release_sock(sk);
473 	return rc;
474 }
475 
476 int tls_device_sendpage(struct sock *sk, struct page *page,
477 			int offset, size_t size, int flags)
478 {
479 	struct iov_iter	msg_iter;
480 	char *kaddr = kmap(page);
481 	struct kvec iov;
482 	int rc;
483 
484 	if (flags & MSG_SENDPAGE_NOTLAST)
485 		flags |= MSG_MORE;
486 
487 	lock_sock(sk);
488 
489 	if (flags & MSG_OOB) {
490 		rc = -ENOTSUPP;
491 		goto out;
492 	}
493 
494 	iov.iov_base = kaddr + offset;
495 	iov.iov_len = size;
496 	iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
497 	rc = tls_push_data(sk, &msg_iter, size,
498 			   flags, TLS_RECORD_TYPE_DATA);
499 	kunmap(page);
500 
501 out:
502 	release_sock(sk);
503 	return rc;
504 }
505 
506 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
507 				       u32 seq, u64 *p_record_sn)
508 {
509 	u64 record_sn = context->hint_record_sn;
510 	struct tls_record_info *info;
511 
512 	info = context->retransmit_hint;
513 	if (!info ||
514 	    before(seq, info->end_seq - info->len)) {
515 		/* if retransmit_hint is irrelevant start
516 		 * from the beggining of the list
517 		 */
518 		info = list_first_entry(&context->records_list,
519 					struct tls_record_info, list);
520 		record_sn = context->unacked_record_sn;
521 	}
522 
523 	list_for_each_entry_from(info, &context->records_list, list) {
524 		if (before(seq, info->end_seq)) {
525 			if (!context->retransmit_hint ||
526 			    after(info->end_seq,
527 				  context->retransmit_hint->end_seq)) {
528 				context->hint_record_sn = record_sn;
529 				context->retransmit_hint = info;
530 			}
531 			*p_record_sn = record_sn;
532 			return info;
533 		}
534 		record_sn++;
535 	}
536 
537 	return NULL;
538 }
539 EXPORT_SYMBOL(tls_get_record);
540 
541 static int tls_device_push_pending_record(struct sock *sk, int flags)
542 {
543 	struct iov_iter	msg_iter;
544 
545 	iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
546 	return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
547 }
548 
549 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
550 {
551 	int rc = 0;
552 
553 	if (!sk->sk_write_pending && tls_is_partially_sent_record(ctx)) {
554 		gfp_t sk_allocation = sk->sk_allocation;
555 
556 		sk->sk_allocation = GFP_ATOMIC;
557 		rc = tls_push_partial_record(sk, ctx,
558 					     MSG_DONTWAIT | MSG_NOSIGNAL);
559 		sk->sk_allocation = sk_allocation;
560 	}
561 
562 	if (!rc)
563 		ctx->sk_write_space(sk);
564 }
565 
566 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn)
567 {
568 	struct tls_context *tls_ctx = tls_get_ctx(sk);
569 	struct net_device *netdev = tls_ctx->netdev;
570 	struct tls_offload_context_rx *rx_ctx;
571 	u32 is_req_pending;
572 	s64 resync_req;
573 	u32 req_seq;
574 
575 	if (tls_ctx->rx_conf != TLS_HW)
576 		return;
577 
578 	rx_ctx = tls_offload_ctx_rx(tls_ctx);
579 	resync_req = atomic64_read(&rx_ctx->resync_req);
580 	req_seq = ntohl(resync_req >> 32) - ((u32)TLS_HEADER_SIZE - 1);
581 	is_req_pending = resync_req;
582 
583 	if (unlikely(is_req_pending) && req_seq == seq &&
584 	    atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
585 		netdev->tlsdev_ops->tls_dev_resync_rx(netdev, sk,
586 						      seq + TLS_HEADER_SIZE - 1,
587 						      rcd_sn);
588 }
589 
590 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
591 {
592 	struct strp_msg *rxm = strp_msg(skb);
593 	int err = 0, offset = rxm->offset, copy, nsg;
594 	struct sk_buff *skb_iter, *unused;
595 	struct scatterlist sg[1];
596 	char *orig_buf, *buf;
597 
598 	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
599 			   TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
600 	if (!orig_buf)
601 		return -ENOMEM;
602 	buf = orig_buf;
603 
604 	nsg = skb_cow_data(skb, 0, &unused);
605 	if (unlikely(nsg < 0)) {
606 		err = nsg;
607 		goto free_buf;
608 	}
609 
610 	sg_init_table(sg, 1);
611 	sg_set_buf(&sg[0], buf,
612 		   rxm->full_len + TLS_HEADER_SIZE +
613 		   TLS_CIPHER_AES_GCM_128_IV_SIZE);
614 	skb_copy_bits(skb, offset, buf,
615 		      TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
616 
617 	/* We are interested only in the decrypted data not the auth */
618 	err = decrypt_skb(sk, skb, sg);
619 	if (err != -EBADMSG)
620 		goto free_buf;
621 	else
622 		err = 0;
623 
624 	copy = min_t(int, skb_pagelen(skb) - offset,
625 		     rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE);
626 
627 	if (skb->decrypted)
628 		skb_store_bits(skb, offset, buf, copy);
629 
630 	offset += copy;
631 	buf += copy;
632 
633 	skb_walk_frags(skb, skb_iter) {
634 		copy = min_t(int, skb_iter->len,
635 			     rxm->full_len - offset + rxm->offset -
636 			     TLS_CIPHER_AES_GCM_128_TAG_SIZE);
637 
638 		if (skb_iter->decrypted)
639 			skb_store_bits(skb_iter, offset, buf, copy);
640 
641 		offset += copy;
642 		buf += copy;
643 	}
644 
645 free_buf:
646 	kfree(orig_buf);
647 	return err;
648 }
649 
650 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
651 {
652 	struct tls_context *tls_ctx = tls_get_ctx(sk);
653 	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
654 	int is_decrypted = skb->decrypted;
655 	int is_encrypted = !is_decrypted;
656 	struct sk_buff *skb_iter;
657 
658 	/* Skip if it is already decrypted */
659 	if (ctx->sw.decrypted)
660 		return 0;
661 
662 	/* Check if all the data is decrypted already */
663 	skb_walk_frags(skb, skb_iter) {
664 		is_decrypted &= skb_iter->decrypted;
665 		is_encrypted &= !skb_iter->decrypted;
666 	}
667 
668 	ctx->sw.decrypted |= is_decrypted;
669 
670 	/* Return immedeatly if the record is either entirely plaintext or
671 	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
672 	 * record.
673 	 */
674 	return (is_encrypted || is_decrypted) ? 0 :
675 		tls_device_reencrypt(sk, skb);
676 }
677 
678 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
679 {
680 	u16 nonce_size, tag_size, iv_size, rec_seq_size;
681 	struct tls_context *tls_ctx = tls_get_ctx(sk);
682 	struct tls_prot_info *prot = &tls_ctx->prot_info;
683 	struct tls_record_info *start_marker_record;
684 	struct tls_offload_context_tx *offload_ctx;
685 	struct tls_crypto_info *crypto_info;
686 	struct net_device *netdev;
687 	char *iv, *rec_seq;
688 	struct sk_buff *skb;
689 	int rc = -EINVAL;
690 	__be64 rcd_sn;
691 
692 	if (!ctx)
693 		goto out;
694 
695 	if (ctx->priv_ctx_tx) {
696 		rc = -EEXIST;
697 		goto out;
698 	}
699 
700 	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
701 	if (!start_marker_record) {
702 		rc = -ENOMEM;
703 		goto out;
704 	}
705 
706 	offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
707 	if (!offload_ctx) {
708 		rc = -ENOMEM;
709 		goto free_marker_record;
710 	}
711 
712 	crypto_info = &ctx->crypto_send.info;
713 	switch (crypto_info->cipher_type) {
714 	case TLS_CIPHER_AES_GCM_128:
715 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
716 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
717 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
718 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
719 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
720 		rec_seq =
721 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
722 		break;
723 	default:
724 		rc = -EINVAL;
725 		goto free_offload_ctx;
726 	}
727 
728 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
729 	prot->tag_size = tag_size;
730 	prot->overhead_size = prot->prepend_size + prot->tag_size;
731 	prot->iv_size = iv_size;
732 	ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
733 			     GFP_KERNEL);
734 	if (!ctx->tx.iv) {
735 		rc = -ENOMEM;
736 		goto free_offload_ctx;
737 	}
738 
739 	memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
740 
741 	prot->rec_seq_size = rec_seq_size;
742 	ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
743 	if (!ctx->tx.rec_seq) {
744 		rc = -ENOMEM;
745 		goto free_iv;
746 	}
747 
748 	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
749 	if (rc)
750 		goto free_rec_seq;
751 
752 	/* start at rec_seq - 1 to account for the start marker record */
753 	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
754 	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
755 
756 	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
757 	start_marker_record->len = 0;
758 	start_marker_record->num_frags = 0;
759 
760 	INIT_LIST_HEAD(&offload_ctx->records_list);
761 	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
762 	spin_lock_init(&offload_ctx->lock);
763 	sg_init_table(offload_ctx->sg_tx_data,
764 		      ARRAY_SIZE(offload_ctx->sg_tx_data));
765 
766 	clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
767 	ctx->push_pending_record = tls_device_push_pending_record;
768 
769 	/* TLS offload is greatly simplified if we don't send
770 	 * SKBs where only part of the payload needs to be encrypted.
771 	 * So mark the last skb in the write queue as end of record.
772 	 */
773 	skb = tcp_write_queue_tail(sk);
774 	if (skb)
775 		TCP_SKB_CB(skb)->eor = 1;
776 
777 	/* We support starting offload on multiple sockets
778 	 * concurrently, so we only need a read lock here.
779 	 * This lock must precede get_netdev_for_sock to prevent races between
780 	 * NETDEV_DOWN and setsockopt.
781 	 */
782 	down_read(&device_offload_lock);
783 	netdev = get_netdev_for_sock(sk);
784 	if (!netdev) {
785 		pr_err_ratelimited("%s: netdev not found\n", __func__);
786 		rc = -EINVAL;
787 		goto release_lock;
788 	}
789 
790 	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
791 		rc = -ENOTSUPP;
792 		goto release_netdev;
793 	}
794 
795 	/* Avoid offloading if the device is down
796 	 * We don't want to offload new flows after
797 	 * the NETDEV_DOWN event
798 	 */
799 	if (!(netdev->flags & IFF_UP)) {
800 		rc = -EINVAL;
801 		goto release_netdev;
802 	}
803 
804 	ctx->priv_ctx_tx = offload_ctx;
805 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
806 					     &ctx->crypto_send.info,
807 					     tcp_sk(sk)->write_seq);
808 	if (rc)
809 		goto release_netdev;
810 
811 	tls_device_attach(ctx, sk, netdev);
812 
813 	/* following this assignment tls_is_sk_tx_device_offloaded
814 	 * will return true and the context might be accessed
815 	 * by the netdev's xmit function.
816 	 */
817 	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
818 	dev_put(netdev);
819 	up_read(&device_offload_lock);
820 	goto out;
821 
822 release_netdev:
823 	dev_put(netdev);
824 release_lock:
825 	up_read(&device_offload_lock);
826 	clean_acked_data_disable(inet_csk(sk));
827 	crypto_free_aead(offload_ctx->aead_send);
828 free_rec_seq:
829 	kfree(ctx->tx.rec_seq);
830 free_iv:
831 	kfree(ctx->tx.iv);
832 free_offload_ctx:
833 	kfree(offload_ctx);
834 	ctx->priv_ctx_tx = NULL;
835 free_marker_record:
836 	kfree(start_marker_record);
837 out:
838 	return rc;
839 }
840 
841 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
842 {
843 	struct tls_offload_context_rx *context;
844 	struct net_device *netdev;
845 	int rc = 0;
846 
847 	/* We support starting offload on multiple sockets
848 	 * concurrently, so we only need a read lock here.
849 	 * This lock must precede get_netdev_for_sock to prevent races between
850 	 * NETDEV_DOWN and setsockopt.
851 	 */
852 	down_read(&device_offload_lock);
853 	netdev = get_netdev_for_sock(sk);
854 	if (!netdev) {
855 		pr_err_ratelimited("%s: netdev not found\n", __func__);
856 		rc = -EINVAL;
857 		goto release_lock;
858 	}
859 
860 	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
861 		pr_err_ratelimited("%s: netdev %s with no TLS offload\n",
862 				   __func__, netdev->name);
863 		rc = -ENOTSUPP;
864 		goto release_netdev;
865 	}
866 
867 	/* Avoid offloading if the device is down
868 	 * We don't want to offload new flows after
869 	 * the NETDEV_DOWN event
870 	 */
871 	if (!(netdev->flags & IFF_UP)) {
872 		rc = -EINVAL;
873 		goto release_netdev;
874 	}
875 
876 	context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
877 	if (!context) {
878 		rc = -ENOMEM;
879 		goto release_netdev;
880 	}
881 
882 	ctx->priv_ctx_rx = context;
883 	rc = tls_set_sw_offload(sk, ctx, 0);
884 	if (rc)
885 		goto release_ctx;
886 
887 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
888 					     &ctx->crypto_recv.info,
889 					     tcp_sk(sk)->copied_seq);
890 	if (rc) {
891 		pr_err_ratelimited("%s: The netdev has refused to offload this socket\n",
892 				   __func__);
893 		goto free_sw_resources;
894 	}
895 
896 	tls_device_attach(ctx, sk, netdev);
897 	goto release_netdev;
898 
899 free_sw_resources:
900 	tls_sw_free_resources_rx(sk);
901 release_ctx:
902 	ctx->priv_ctx_rx = NULL;
903 release_netdev:
904 	dev_put(netdev);
905 release_lock:
906 	up_read(&device_offload_lock);
907 	return rc;
908 }
909 
910 void tls_device_offload_cleanup_rx(struct sock *sk)
911 {
912 	struct tls_context *tls_ctx = tls_get_ctx(sk);
913 	struct net_device *netdev;
914 
915 	down_read(&device_offload_lock);
916 	netdev = tls_ctx->netdev;
917 	if (!netdev)
918 		goto out;
919 
920 	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
921 		pr_err_ratelimited("%s: device is missing NETIF_F_HW_TLS_RX cap\n",
922 				   __func__);
923 		goto out;
924 	}
925 
926 	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
927 					TLS_OFFLOAD_CTX_DIR_RX);
928 
929 	if (tls_ctx->tx_conf != TLS_HW) {
930 		dev_put(netdev);
931 		tls_ctx->netdev = NULL;
932 	}
933 out:
934 	up_read(&device_offload_lock);
935 	kfree(tls_ctx->rx.rec_seq);
936 	kfree(tls_ctx->rx.iv);
937 	tls_sw_release_resources_rx(sk);
938 }
939 
940 static int tls_device_down(struct net_device *netdev)
941 {
942 	struct tls_context *ctx, *tmp;
943 	unsigned long flags;
944 	LIST_HEAD(list);
945 
946 	/* Request a write lock to block new offload attempts */
947 	down_write(&device_offload_lock);
948 
949 	spin_lock_irqsave(&tls_device_lock, flags);
950 	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
951 		if (ctx->netdev != netdev ||
952 		    !refcount_inc_not_zero(&ctx->refcount))
953 			continue;
954 
955 		list_move(&ctx->list, &list);
956 	}
957 	spin_unlock_irqrestore(&tls_device_lock, flags);
958 
959 	list_for_each_entry_safe(ctx, tmp, &list, list)	{
960 		if (ctx->tx_conf == TLS_HW)
961 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
962 							TLS_OFFLOAD_CTX_DIR_TX);
963 		if (ctx->rx_conf == TLS_HW)
964 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
965 							TLS_OFFLOAD_CTX_DIR_RX);
966 		ctx->netdev = NULL;
967 		dev_put(netdev);
968 		list_del_init(&ctx->list);
969 
970 		if (refcount_dec_and_test(&ctx->refcount))
971 			tls_device_free_ctx(ctx);
972 	}
973 
974 	up_write(&device_offload_lock);
975 
976 	flush_work(&tls_device_gc_work);
977 
978 	return NOTIFY_DONE;
979 }
980 
981 static int tls_dev_event(struct notifier_block *this, unsigned long event,
982 			 void *ptr)
983 {
984 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
985 
986 	if (!(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
987 		return NOTIFY_DONE;
988 
989 	switch (event) {
990 	case NETDEV_REGISTER:
991 	case NETDEV_FEAT_CHANGE:
992 		if ((dev->features & NETIF_F_HW_TLS_RX) &&
993 		    !dev->tlsdev_ops->tls_dev_resync_rx)
994 			return NOTIFY_BAD;
995 
996 		if  (dev->tlsdev_ops &&
997 		     dev->tlsdev_ops->tls_dev_add &&
998 		     dev->tlsdev_ops->tls_dev_del)
999 			return NOTIFY_DONE;
1000 		else
1001 			return NOTIFY_BAD;
1002 	case NETDEV_DOWN:
1003 		return tls_device_down(dev);
1004 	}
1005 	return NOTIFY_DONE;
1006 }
1007 
1008 static struct notifier_block tls_dev_notifier = {
1009 	.notifier_call	= tls_dev_event,
1010 };
1011 
1012 void __init tls_device_init(void)
1013 {
1014 	register_netdevice_notifier(&tls_dev_notifier);
1015 }
1016 
1017 void __exit tls_device_cleanup(void)
1018 {
1019 	unregister_netdevice_notifier(&tls_dev_notifier);
1020 	flush_work(&tls_device_gc_work);
1021 }
1022