1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved. 2 * 3 * This software is available to you under a choice of one of two 4 * licenses. You may choose to be licensed under the terms of the GNU 5 * General Public License (GPL) Version 2, available from the file 6 * COPYING in the main directory of this source tree, or the 7 * OpenIB.org BSD license below: 8 * 9 * Redistribution and use in source and binary forms, with or 10 * without modification, are permitted provided that the following 11 * conditions are met: 12 * 13 * - Redistributions of source code must retain the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer. 16 * 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 */ 31 32 #include <crypto/aead.h> 33 #include <linux/highmem.h> 34 #include <linux/module.h> 35 #include <linux/netdevice.h> 36 #include <net/dst.h> 37 #include <net/inet_connection_sock.h> 38 #include <net/tcp.h> 39 #include <net/tls.h> 40 41 #include "tls.h" 42 #include "trace.h" 43 44 /* device_offload_lock is used to synchronize tls_dev_add 45 * against NETDEV_DOWN notifications. 46 */ 47 static DECLARE_RWSEM(device_offload_lock); 48 49 static struct workqueue_struct *destruct_wq __read_mostly; 50 51 static LIST_HEAD(tls_device_list); 52 static LIST_HEAD(tls_device_down_list); 53 static DEFINE_SPINLOCK(tls_device_lock); 54 55 static struct page *dummy_page; 56 57 static void tls_device_free_ctx(struct tls_context *ctx) 58 { 59 if (ctx->tx_conf == TLS_HW) { 60 kfree(tls_offload_ctx_tx(ctx)); 61 kfree(ctx->tx.rec_seq); 62 kfree(ctx->tx.iv); 63 } 64 65 if (ctx->rx_conf == TLS_HW) 66 kfree(tls_offload_ctx_rx(ctx)); 67 68 tls_ctx_free(NULL, ctx); 69 } 70 71 static void tls_device_tx_del_task(struct work_struct *work) 72 { 73 struct tls_offload_context_tx *offload_ctx = 74 container_of(work, struct tls_offload_context_tx, destruct_work); 75 struct tls_context *ctx = offload_ctx->ctx; 76 struct net_device *netdev; 77 78 /* Safe, because this is the destroy flow, refcount is 0, so 79 * tls_device_down can't store this field in parallel. 80 */ 81 netdev = rcu_dereference_protected(ctx->netdev, 82 !refcount_read(&ctx->refcount)); 83 84 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX); 85 dev_put(netdev); 86 ctx->netdev = NULL; 87 tls_device_free_ctx(ctx); 88 } 89 90 static void tls_device_queue_ctx_destruction(struct tls_context *ctx) 91 { 92 struct net_device *netdev; 93 unsigned long flags; 94 bool async_cleanup; 95 96 spin_lock_irqsave(&tls_device_lock, flags); 97 if (unlikely(!refcount_dec_and_test(&ctx->refcount))) { 98 spin_unlock_irqrestore(&tls_device_lock, flags); 99 return; 100 } 101 102 list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */ 103 104 /* Safe, because this is the destroy flow, refcount is 0, so 105 * tls_device_down can't store this field in parallel. 106 */ 107 netdev = rcu_dereference_protected(ctx->netdev, 108 !refcount_read(&ctx->refcount)); 109 110 async_cleanup = netdev && ctx->tx_conf == TLS_HW; 111 if (async_cleanup) { 112 struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx); 113 114 /* queue_work inside the spinlock 115 * to make sure tls_device_down waits for that work. 116 */ 117 queue_work(destruct_wq, &offload_ctx->destruct_work); 118 } 119 spin_unlock_irqrestore(&tls_device_lock, flags); 120 121 if (!async_cleanup) 122 tls_device_free_ctx(ctx); 123 } 124 125 /* We assume that the socket is already connected */ 126 static struct net_device *get_netdev_for_sock(struct sock *sk) 127 { 128 struct dst_entry *dst = sk_dst_get(sk); 129 struct net_device *netdev = NULL; 130 131 if (likely(dst)) { 132 netdev = netdev_sk_get_lowest_dev(dst->dev, sk); 133 dev_hold(netdev); 134 } 135 136 dst_release(dst); 137 138 return netdev; 139 } 140 141 static void destroy_record(struct tls_record_info *record) 142 { 143 int i; 144 145 for (i = 0; i < record->num_frags; i++) 146 __skb_frag_unref(&record->frags[i], false); 147 kfree(record); 148 } 149 150 static void delete_all_records(struct tls_offload_context_tx *offload_ctx) 151 { 152 struct tls_record_info *info, *temp; 153 154 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { 155 list_del(&info->list); 156 destroy_record(info); 157 } 158 159 offload_ctx->retransmit_hint = NULL; 160 } 161 162 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) 163 { 164 struct tls_context *tls_ctx = tls_get_ctx(sk); 165 struct tls_record_info *info, *temp; 166 struct tls_offload_context_tx *ctx; 167 u64 deleted_records = 0; 168 unsigned long flags; 169 170 if (!tls_ctx) 171 return; 172 173 ctx = tls_offload_ctx_tx(tls_ctx); 174 175 spin_lock_irqsave(&ctx->lock, flags); 176 info = ctx->retransmit_hint; 177 if (info && !before(acked_seq, info->end_seq)) 178 ctx->retransmit_hint = NULL; 179 180 list_for_each_entry_safe(info, temp, &ctx->records_list, list) { 181 if (before(acked_seq, info->end_seq)) 182 break; 183 list_del(&info->list); 184 185 destroy_record(info); 186 deleted_records++; 187 } 188 189 ctx->unacked_record_sn += deleted_records; 190 spin_unlock_irqrestore(&ctx->lock, flags); 191 } 192 193 /* At this point, there should be no references on this 194 * socket and no in-flight SKBs associated with this 195 * socket, so it is safe to free all the resources. 196 */ 197 void tls_device_sk_destruct(struct sock *sk) 198 { 199 struct tls_context *tls_ctx = tls_get_ctx(sk); 200 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 201 202 tls_ctx->sk_destruct(sk); 203 204 if (tls_ctx->tx_conf == TLS_HW) { 205 if (ctx->open_record) 206 destroy_record(ctx->open_record); 207 delete_all_records(ctx); 208 crypto_free_aead(ctx->aead_send); 209 clean_acked_data_disable(inet_csk(sk)); 210 } 211 212 tls_device_queue_ctx_destruction(tls_ctx); 213 } 214 EXPORT_SYMBOL_GPL(tls_device_sk_destruct); 215 216 void tls_device_free_resources_tx(struct sock *sk) 217 { 218 struct tls_context *tls_ctx = tls_get_ctx(sk); 219 220 tls_free_partial_record(sk, tls_ctx); 221 } 222 223 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) 224 { 225 struct tls_context *tls_ctx = tls_get_ctx(sk); 226 227 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); 228 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 229 } 230 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); 231 232 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, 233 u32 seq) 234 { 235 struct net_device *netdev; 236 struct sk_buff *skb; 237 int err = 0; 238 u8 *rcd_sn; 239 240 skb = tcp_write_queue_tail(sk); 241 if (skb) 242 TCP_SKB_CB(skb)->eor = 1; 243 244 rcd_sn = tls_ctx->tx.rec_seq; 245 246 trace_tls_device_tx_resync_send(sk, seq, rcd_sn); 247 down_read(&device_offload_lock); 248 netdev = rcu_dereference_protected(tls_ctx->netdev, 249 lockdep_is_held(&device_offload_lock)); 250 if (netdev) 251 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, 252 rcd_sn, 253 TLS_OFFLOAD_CTX_DIR_TX); 254 up_read(&device_offload_lock); 255 if (err) 256 return; 257 258 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 259 } 260 261 static void tls_append_frag(struct tls_record_info *record, 262 struct page_frag *pfrag, 263 int size) 264 { 265 skb_frag_t *frag; 266 267 frag = &record->frags[record->num_frags - 1]; 268 if (skb_frag_page(frag) == pfrag->page && 269 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { 270 skb_frag_size_add(frag, size); 271 } else { 272 ++frag; 273 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset, 274 size); 275 ++record->num_frags; 276 get_page(pfrag->page); 277 } 278 279 pfrag->offset += size; 280 record->len += size; 281 } 282 283 static int tls_push_record(struct sock *sk, 284 struct tls_context *ctx, 285 struct tls_offload_context_tx *offload_ctx, 286 struct tls_record_info *record, 287 int flags) 288 { 289 struct tls_prot_info *prot = &ctx->prot_info; 290 struct tcp_sock *tp = tcp_sk(sk); 291 skb_frag_t *frag; 292 int i; 293 294 record->end_seq = tp->write_seq + record->len; 295 list_add_tail_rcu(&record->list, &offload_ctx->records_list); 296 offload_ctx->open_record = NULL; 297 298 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) 299 tls_device_resync_tx(sk, ctx, tp->write_seq); 300 301 tls_advance_record_sn(sk, prot, &ctx->tx); 302 303 for (i = 0; i < record->num_frags; i++) { 304 frag = &record->frags[i]; 305 sg_unmark_end(&offload_ctx->sg_tx_data[i]); 306 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), 307 skb_frag_size(frag), skb_frag_off(frag)); 308 sk_mem_charge(sk, skb_frag_size(frag)); 309 get_page(skb_frag_page(frag)); 310 } 311 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); 312 313 /* all ready, send */ 314 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); 315 } 316 317 static void tls_device_record_close(struct sock *sk, 318 struct tls_context *ctx, 319 struct tls_record_info *record, 320 struct page_frag *pfrag, 321 unsigned char record_type) 322 { 323 struct tls_prot_info *prot = &ctx->prot_info; 324 struct page_frag dummy_tag_frag; 325 326 /* append tag 327 * device will fill in the tag, we just need to append a placeholder 328 * use socket memory to improve coalescing (re-using a single buffer 329 * increases frag count) 330 * if we can't allocate memory now use the dummy page 331 */ 332 if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) && 333 !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) { 334 dummy_tag_frag.page = dummy_page; 335 dummy_tag_frag.offset = 0; 336 pfrag = &dummy_tag_frag; 337 } 338 tls_append_frag(record, pfrag, prot->tag_size); 339 340 /* fill prepend */ 341 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), 342 record->len - prot->overhead_size, 343 record_type); 344 } 345 346 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, 347 struct page_frag *pfrag, 348 size_t prepend_size) 349 { 350 struct tls_record_info *record; 351 skb_frag_t *frag; 352 353 record = kmalloc(sizeof(*record), GFP_KERNEL); 354 if (!record) 355 return -ENOMEM; 356 357 frag = &record->frags[0]; 358 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset, 359 prepend_size); 360 361 get_page(pfrag->page); 362 pfrag->offset += prepend_size; 363 364 record->num_frags = 1; 365 record->len = prepend_size; 366 offload_ctx->open_record = record; 367 return 0; 368 } 369 370 static int tls_do_allocation(struct sock *sk, 371 struct tls_offload_context_tx *offload_ctx, 372 struct page_frag *pfrag, 373 size_t prepend_size) 374 { 375 int ret; 376 377 if (!offload_ctx->open_record) { 378 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, 379 sk->sk_allocation))) { 380 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); 381 sk_stream_moderate_sndbuf(sk); 382 return -ENOMEM; 383 } 384 385 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); 386 if (ret) 387 return ret; 388 389 if (pfrag->size > pfrag->offset) 390 return 0; 391 } 392 393 if (!sk_page_frag_refill(sk, pfrag)) 394 return -ENOMEM; 395 396 return 0; 397 } 398 399 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) 400 { 401 size_t pre_copy, nocache; 402 403 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); 404 if (pre_copy) { 405 pre_copy = min(pre_copy, bytes); 406 if (copy_from_iter(addr, pre_copy, i) != pre_copy) 407 return -EFAULT; 408 bytes -= pre_copy; 409 addr += pre_copy; 410 } 411 412 nocache = round_down(bytes, SMP_CACHE_BYTES); 413 if (copy_from_iter_nocache(addr, nocache, i) != nocache) 414 return -EFAULT; 415 bytes -= nocache; 416 addr += nocache; 417 418 if (bytes && copy_from_iter(addr, bytes, i) != bytes) 419 return -EFAULT; 420 421 return 0; 422 } 423 424 static int tls_push_data(struct sock *sk, 425 struct iov_iter *iter, 426 size_t size, int flags, 427 unsigned char record_type) 428 { 429 struct tls_context *tls_ctx = tls_get_ctx(sk); 430 struct tls_prot_info *prot = &tls_ctx->prot_info; 431 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 432 struct tls_record_info *record; 433 int tls_push_record_flags; 434 struct page_frag *pfrag; 435 size_t orig_size = size; 436 u32 max_open_record_len; 437 bool more = false; 438 bool done = false; 439 int copy, rc = 0; 440 long timeo; 441 442 if (flags & 443 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SPLICE_PAGES)) 444 return -EOPNOTSUPP; 445 446 if (unlikely(sk->sk_err)) 447 return -sk->sk_err; 448 449 flags |= MSG_SENDPAGE_DECRYPTED; 450 tls_push_record_flags = flags | MSG_MORE; 451 452 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 453 if (tls_is_partially_sent_record(tls_ctx)) { 454 rc = tls_push_partial_record(sk, tls_ctx, flags); 455 if (rc < 0) 456 return rc; 457 } 458 459 pfrag = sk_page_frag(sk); 460 461 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and 462 * we need to leave room for an authentication tag. 463 */ 464 max_open_record_len = TLS_MAX_PAYLOAD_SIZE + 465 prot->prepend_size; 466 do { 467 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); 468 if (unlikely(rc)) { 469 rc = sk_stream_wait_memory(sk, &timeo); 470 if (!rc) 471 continue; 472 473 record = ctx->open_record; 474 if (!record) 475 break; 476 handle_error: 477 if (record_type != TLS_RECORD_TYPE_DATA) { 478 /* avoid sending partial 479 * record with type != 480 * application_data 481 */ 482 size = orig_size; 483 destroy_record(record); 484 ctx->open_record = NULL; 485 } else if (record->len > prot->prepend_size) { 486 goto last_record; 487 } 488 489 break; 490 } 491 492 record = ctx->open_record; 493 494 copy = min_t(size_t, size, max_open_record_len - record->len); 495 if (copy && (flags & MSG_SPLICE_PAGES)) { 496 struct page_frag zc_pfrag; 497 struct page **pages = &zc_pfrag.page; 498 size_t off; 499 500 rc = iov_iter_extract_pages(iter, &pages, 501 copy, 1, 0, &off); 502 if (rc <= 0) { 503 if (rc == 0) 504 rc = -EIO; 505 goto handle_error; 506 } 507 copy = rc; 508 509 if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) { 510 iov_iter_revert(iter, copy); 511 rc = -EIO; 512 goto handle_error; 513 } 514 515 zc_pfrag.offset = off; 516 zc_pfrag.size = copy; 517 tls_append_frag(record, &zc_pfrag, copy); 518 } else if (copy) { 519 copy = min_t(size_t, copy, pfrag->size - pfrag->offset); 520 521 rc = tls_device_copy_data(page_address(pfrag->page) + 522 pfrag->offset, copy, 523 iter); 524 if (rc) 525 goto handle_error; 526 tls_append_frag(record, pfrag, copy); 527 } 528 529 size -= copy; 530 if (!size) { 531 last_record: 532 tls_push_record_flags = flags; 533 if (flags & MSG_MORE) { 534 more = true; 535 break; 536 } 537 538 done = true; 539 } 540 541 if (done || record->len >= max_open_record_len || 542 (record->num_frags >= MAX_SKB_FRAGS - 1)) { 543 tls_device_record_close(sk, tls_ctx, record, 544 pfrag, record_type); 545 546 rc = tls_push_record(sk, 547 tls_ctx, 548 ctx, 549 record, 550 tls_push_record_flags); 551 if (rc < 0) 552 break; 553 } 554 } while (!done); 555 556 tls_ctx->pending_open_record_frags = more; 557 558 if (orig_size - size > 0) 559 rc = orig_size - size; 560 561 return rc; 562 } 563 564 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 565 { 566 unsigned char record_type = TLS_RECORD_TYPE_DATA; 567 struct tls_context *tls_ctx = tls_get_ctx(sk); 568 int rc; 569 570 if (!tls_ctx->zerocopy_sendfile) 571 msg->msg_flags &= ~MSG_SPLICE_PAGES; 572 573 mutex_lock(&tls_ctx->tx_lock); 574 lock_sock(sk); 575 576 if (unlikely(msg->msg_controllen)) { 577 rc = tls_process_cmsg(sk, msg, &record_type); 578 if (rc) 579 goto out; 580 } 581 582 rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags, 583 record_type); 584 585 out: 586 release_sock(sk); 587 mutex_unlock(&tls_ctx->tx_lock); 588 return rc; 589 } 590 591 void tls_device_splice_eof(struct socket *sock) 592 { 593 struct sock *sk = sock->sk; 594 struct tls_context *tls_ctx = tls_get_ctx(sk); 595 struct iov_iter iter = {}; 596 597 if (!tls_is_partially_sent_record(tls_ctx)) 598 return; 599 600 mutex_lock(&tls_ctx->tx_lock); 601 lock_sock(sk); 602 603 if (tls_is_partially_sent_record(tls_ctx)) { 604 iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0); 605 tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA); 606 } 607 608 release_sock(sk); 609 mutex_unlock(&tls_ctx->tx_lock); 610 } 611 612 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 613 u32 seq, u64 *p_record_sn) 614 { 615 u64 record_sn = context->hint_record_sn; 616 struct tls_record_info *info, *last; 617 618 info = context->retransmit_hint; 619 if (!info || 620 before(seq, info->end_seq - info->len)) { 621 /* if retransmit_hint is irrelevant start 622 * from the beginning of the list 623 */ 624 info = list_first_entry_or_null(&context->records_list, 625 struct tls_record_info, list); 626 if (!info) 627 return NULL; 628 /* send the start_marker record if seq number is before the 629 * tls offload start marker sequence number. This record is 630 * required to handle TCP packets which are before TLS offload 631 * started. 632 * And if it's not start marker, look if this seq number 633 * belongs to the list. 634 */ 635 if (likely(!tls_record_is_start_marker(info))) { 636 /* we have the first record, get the last record to see 637 * if this seq number belongs to the list. 638 */ 639 last = list_last_entry(&context->records_list, 640 struct tls_record_info, list); 641 642 if (!between(seq, tls_record_start_seq(info), 643 last->end_seq)) 644 return NULL; 645 } 646 record_sn = context->unacked_record_sn; 647 } 648 649 /* We just need the _rcu for the READ_ONCE() */ 650 rcu_read_lock(); 651 list_for_each_entry_from_rcu(info, &context->records_list, list) { 652 if (before(seq, info->end_seq)) { 653 if (!context->retransmit_hint || 654 after(info->end_seq, 655 context->retransmit_hint->end_seq)) { 656 context->hint_record_sn = record_sn; 657 context->retransmit_hint = info; 658 } 659 *p_record_sn = record_sn; 660 goto exit_rcu_unlock; 661 } 662 record_sn++; 663 } 664 info = NULL; 665 666 exit_rcu_unlock: 667 rcu_read_unlock(); 668 return info; 669 } 670 EXPORT_SYMBOL(tls_get_record); 671 672 static int tls_device_push_pending_record(struct sock *sk, int flags) 673 { 674 struct iov_iter iter; 675 676 iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0); 677 return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA); 678 } 679 680 void tls_device_write_space(struct sock *sk, struct tls_context *ctx) 681 { 682 if (tls_is_partially_sent_record(ctx)) { 683 gfp_t sk_allocation = sk->sk_allocation; 684 685 WARN_ON_ONCE(sk->sk_write_pending); 686 687 sk->sk_allocation = GFP_ATOMIC; 688 tls_push_partial_record(sk, ctx, 689 MSG_DONTWAIT | MSG_NOSIGNAL | 690 MSG_SENDPAGE_DECRYPTED); 691 sk->sk_allocation = sk_allocation; 692 } 693 } 694 695 static void tls_device_resync_rx(struct tls_context *tls_ctx, 696 struct sock *sk, u32 seq, u8 *rcd_sn) 697 { 698 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 699 struct net_device *netdev; 700 701 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); 702 rcu_read_lock(); 703 netdev = rcu_dereference(tls_ctx->netdev); 704 if (netdev) 705 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, 706 TLS_OFFLOAD_CTX_DIR_RX); 707 rcu_read_unlock(); 708 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); 709 } 710 711 static bool 712 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, 713 s64 resync_req, u32 *seq, u16 *rcd_delta) 714 { 715 u32 is_async = resync_req & RESYNC_REQ_ASYNC; 716 u32 req_seq = resync_req >> 32; 717 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); 718 u16 i; 719 720 *rcd_delta = 0; 721 722 if (is_async) { 723 /* shouldn't get to wraparound: 724 * too long in async stage, something bad happened 725 */ 726 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) 727 return false; 728 729 /* asynchronous stage: log all headers seq such that 730 * req_seq <= seq <= end_seq, and wait for real resync request 731 */ 732 if (before(*seq, req_seq)) 733 return false; 734 if (!after(*seq, req_end) && 735 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) 736 resync_async->log[resync_async->loglen++] = *seq; 737 738 resync_async->rcd_delta++; 739 740 return false; 741 } 742 743 /* synchronous stage: check against the logged entries and 744 * proceed to check the next entries if no match was found 745 */ 746 for (i = 0; i < resync_async->loglen; i++) 747 if (req_seq == resync_async->log[i] && 748 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) { 749 *rcd_delta = resync_async->rcd_delta - i; 750 *seq = req_seq; 751 resync_async->loglen = 0; 752 resync_async->rcd_delta = 0; 753 return true; 754 } 755 756 resync_async->loglen = 0; 757 resync_async->rcd_delta = 0; 758 759 if (req_seq == *seq && 760 atomic64_try_cmpxchg(&resync_async->req, 761 &resync_req, 0)) 762 return true; 763 764 return false; 765 } 766 767 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) 768 { 769 struct tls_context *tls_ctx = tls_get_ctx(sk); 770 struct tls_offload_context_rx *rx_ctx; 771 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 772 u32 sock_data, is_req_pending; 773 struct tls_prot_info *prot; 774 s64 resync_req; 775 u16 rcd_delta; 776 u32 req_seq; 777 778 if (tls_ctx->rx_conf != TLS_HW) 779 return; 780 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) 781 return; 782 783 prot = &tls_ctx->prot_info; 784 rx_ctx = tls_offload_ctx_rx(tls_ctx); 785 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 786 787 switch (rx_ctx->resync_type) { 788 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: 789 resync_req = atomic64_read(&rx_ctx->resync_req); 790 req_seq = resync_req >> 32; 791 seq += TLS_HEADER_SIZE - 1; 792 is_req_pending = resync_req; 793 794 if (likely(!is_req_pending) || req_seq != seq || 795 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) 796 return; 797 break; 798 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: 799 if (likely(!rx_ctx->resync_nh_do_now)) 800 return; 801 802 /* head of next rec is already in, note that the sock_inq will 803 * include the currently parsed message when called from parser 804 */ 805 sock_data = tcp_inq(sk); 806 if (sock_data > rcd_len) { 807 trace_tls_device_rx_resync_nh_delay(sk, sock_data, 808 rcd_len); 809 return; 810 } 811 812 rx_ctx->resync_nh_do_now = 0; 813 seq += rcd_len; 814 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 815 break; 816 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: 817 resync_req = atomic64_read(&rx_ctx->resync_async->req); 818 is_req_pending = resync_req; 819 if (likely(!is_req_pending)) 820 return; 821 822 if (!tls_device_rx_resync_async(rx_ctx->resync_async, 823 resync_req, &seq, &rcd_delta)) 824 return; 825 tls_bigint_subtract(rcd_sn, rcd_delta); 826 break; 827 } 828 829 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); 830 } 831 832 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, 833 struct tls_offload_context_rx *ctx, 834 struct sock *sk, struct sk_buff *skb) 835 { 836 struct strp_msg *rxm; 837 838 /* device will request resyncs by itself based on stream scan */ 839 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) 840 return; 841 /* already scheduled */ 842 if (ctx->resync_nh_do_now) 843 return; 844 /* seen decrypted fragments since last fully-failed record */ 845 if (ctx->resync_nh_reset) { 846 ctx->resync_nh_reset = 0; 847 ctx->resync_nh.decrypted_failed = 1; 848 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; 849 return; 850 } 851 852 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) 853 return; 854 855 /* doing resync, bump the next target in case it fails */ 856 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) 857 ctx->resync_nh.decrypted_tgt *= 2; 858 else 859 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; 860 861 rxm = strp_msg(skb); 862 863 /* head of next rec is already in, parser will sync for us */ 864 if (tcp_inq(sk) > rxm->full_len) { 865 trace_tls_device_rx_resync_nh_schedule(sk); 866 ctx->resync_nh_do_now = 1; 867 } else { 868 struct tls_prot_info *prot = &tls_ctx->prot_info; 869 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 870 871 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 872 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 873 874 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, 875 rcd_sn); 876 } 877 } 878 879 static int 880 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx) 881 { 882 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx); 883 const struct tls_cipher_size_desc *cipher_sz; 884 int err, offset, copy, data_len, pos; 885 struct sk_buff *skb, *skb_iter; 886 struct scatterlist sg[1]; 887 struct strp_msg *rxm; 888 char *orig_buf, *buf; 889 890 switch (tls_ctx->crypto_recv.info.cipher_type) { 891 case TLS_CIPHER_AES_GCM_128: 892 case TLS_CIPHER_AES_GCM_256: 893 break; 894 default: 895 return -EINVAL; 896 } 897 cipher_sz = &tls_cipher_size_desc[tls_ctx->crypto_recv.info.cipher_type]; 898 899 rxm = strp_msg(tls_strp_msg(sw_ctx)); 900 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv, 901 sk->sk_allocation); 902 if (!orig_buf) 903 return -ENOMEM; 904 buf = orig_buf; 905 906 err = tls_strp_msg_cow(sw_ctx); 907 if (unlikely(err)) 908 goto free_buf; 909 910 skb = tls_strp_msg(sw_ctx); 911 rxm = strp_msg(skb); 912 offset = rxm->offset; 913 914 sg_init_table(sg, 1); 915 sg_set_buf(&sg[0], buf, 916 rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv); 917 err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_sz->iv); 918 if (err) 919 goto free_buf; 920 921 /* We are interested only in the decrypted data not the auth */ 922 err = decrypt_skb(sk, sg); 923 if (err != -EBADMSG) 924 goto free_buf; 925 else 926 err = 0; 927 928 data_len = rxm->full_len - cipher_sz->tag; 929 930 if (skb_pagelen(skb) > offset) { 931 copy = min_t(int, skb_pagelen(skb) - offset, data_len); 932 933 if (skb->decrypted) { 934 err = skb_store_bits(skb, offset, buf, copy); 935 if (err) 936 goto free_buf; 937 } 938 939 offset += copy; 940 buf += copy; 941 } 942 943 pos = skb_pagelen(skb); 944 skb_walk_frags(skb, skb_iter) { 945 int frag_pos; 946 947 /* Practically all frags must belong to msg if reencrypt 948 * is needed with current strparser and coalescing logic, 949 * but strparser may "get optimized", so let's be safe. 950 */ 951 if (pos + skb_iter->len <= offset) 952 goto done_with_frag; 953 if (pos >= data_len + rxm->offset) 954 break; 955 956 frag_pos = offset - pos; 957 copy = min_t(int, skb_iter->len - frag_pos, 958 data_len + rxm->offset - offset); 959 960 if (skb_iter->decrypted) { 961 err = skb_store_bits(skb_iter, frag_pos, buf, copy); 962 if (err) 963 goto free_buf; 964 } 965 966 offset += copy; 967 buf += copy; 968 done_with_frag: 969 pos += skb_iter->len; 970 } 971 972 free_buf: 973 kfree(orig_buf); 974 return err; 975 } 976 977 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) 978 { 979 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); 980 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx); 981 struct sk_buff *skb = tls_strp_msg(sw_ctx); 982 struct strp_msg *rxm = strp_msg(skb); 983 int is_decrypted, is_encrypted; 984 985 if (!tls_strp_msg_mixed_decrypted(sw_ctx)) { 986 is_decrypted = skb->decrypted; 987 is_encrypted = !is_decrypted; 988 } else { 989 is_decrypted = 0; 990 is_encrypted = 0; 991 } 992 993 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, 994 tls_ctx->rx.rec_seq, rxm->full_len, 995 is_encrypted, is_decrypted); 996 997 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) { 998 if (likely(is_encrypted || is_decrypted)) 999 return is_decrypted; 1000 1001 /* After tls_device_down disables the offload, the next SKB will 1002 * likely have initial fragments decrypted, and final ones not 1003 * decrypted. We need to reencrypt that single SKB. 1004 */ 1005 return tls_device_reencrypt(sk, tls_ctx); 1006 } 1007 1008 /* Return immediately if the record is either entirely plaintext or 1009 * entirely ciphertext. Otherwise handle reencrypt partially decrypted 1010 * record. 1011 */ 1012 if (is_decrypted) { 1013 ctx->resync_nh_reset = 1; 1014 return is_decrypted; 1015 } 1016 if (is_encrypted) { 1017 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); 1018 return 0; 1019 } 1020 1021 ctx->resync_nh_reset = 1; 1022 return tls_device_reencrypt(sk, tls_ctx); 1023 } 1024 1025 static void tls_device_attach(struct tls_context *ctx, struct sock *sk, 1026 struct net_device *netdev) 1027 { 1028 if (sk->sk_destruct != tls_device_sk_destruct) { 1029 refcount_set(&ctx->refcount, 1); 1030 dev_hold(netdev); 1031 RCU_INIT_POINTER(ctx->netdev, netdev); 1032 spin_lock_irq(&tls_device_lock); 1033 list_add_tail(&ctx->list, &tls_device_list); 1034 spin_unlock_irq(&tls_device_lock); 1035 1036 ctx->sk_destruct = sk->sk_destruct; 1037 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); 1038 } 1039 } 1040 1041 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 1042 { 1043 struct tls_context *tls_ctx = tls_get_ctx(sk); 1044 struct tls_prot_info *prot = &tls_ctx->prot_info; 1045 const struct tls_cipher_size_desc *cipher_sz; 1046 struct tls_record_info *start_marker_record; 1047 struct tls_offload_context_tx *offload_ctx; 1048 struct tls_crypto_info *crypto_info; 1049 struct net_device *netdev; 1050 char *iv, *rec_seq; 1051 struct sk_buff *skb; 1052 __be64 rcd_sn; 1053 int rc; 1054 1055 if (!ctx) 1056 return -EINVAL; 1057 1058 if (ctx->priv_ctx_tx) 1059 return -EEXIST; 1060 1061 netdev = get_netdev_for_sock(sk); 1062 if (!netdev) { 1063 pr_err_ratelimited("%s: netdev not found\n", __func__); 1064 return -EINVAL; 1065 } 1066 1067 if (!(netdev->features & NETIF_F_HW_TLS_TX)) { 1068 rc = -EOPNOTSUPP; 1069 goto release_netdev; 1070 } 1071 1072 crypto_info = &ctx->crypto_send.info; 1073 if (crypto_info->version != TLS_1_2_VERSION) { 1074 rc = -EOPNOTSUPP; 1075 goto release_netdev; 1076 } 1077 1078 switch (crypto_info->cipher_type) { 1079 case TLS_CIPHER_AES_GCM_128: 1080 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 1081 rec_seq = 1082 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 1083 break; 1084 case TLS_CIPHER_AES_GCM_256: 1085 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 1086 rec_seq = 1087 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 1088 break; 1089 default: 1090 rc = -EINVAL; 1091 goto release_netdev; 1092 } 1093 cipher_sz = &tls_cipher_size_desc[crypto_info->cipher_type]; 1094 1095 /* Sanity-check the rec_seq_size for stack allocations */ 1096 if (cipher_sz->rec_seq > TLS_MAX_REC_SEQ_SIZE) { 1097 rc = -EINVAL; 1098 goto release_netdev; 1099 } 1100 1101 prot->version = crypto_info->version; 1102 prot->cipher_type = crypto_info->cipher_type; 1103 prot->prepend_size = TLS_HEADER_SIZE + cipher_sz->iv; 1104 prot->tag_size = cipher_sz->tag; 1105 prot->overhead_size = prot->prepend_size + prot->tag_size; 1106 prot->iv_size = cipher_sz->iv; 1107 prot->salt_size = cipher_sz->salt; 1108 ctx->tx.iv = kmalloc(cipher_sz->iv + cipher_sz->salt, GFP_KERNEL); 1109 if (!ctx->tx.iv) { 1110 rc = -ENOMEM; 1111 goto release_netdev; 1112 } 1113 1114 memcpy(ctx->tx.iv + cipher_sz->salt, iv, cipher_sz->iv); 1115 1116 prot->rec_seq_size = cipher_sz->rec_seq; 1117 ctx->tx.rec_seq = kmemdup(rec_seq, cipher_sz->rec_seq, GFP_KERNEL); 1118 if (!ctx->tx.rec_seq) { 1119 rc = -ENOMEM; 1120 goto free_iv; 1121 } 1122 1123 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); 1124 if (!start_marker_record) { 1125 rc = -ENOMEM; 1126 goto free_rec_seq; 1127 } 1128 1129 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); 1130 if (!offload_ctx) { 1131 rc = -ENOMEM; 1132 goto free_marker_record; 1133 } 1134 1135 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); 1136 if (rc) 1137 goto free_offload_ctx; 1138 1139 /* start at rec_seq - 1 to account for the start marker record */ 1140 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); 1141 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; 1142 1143 start_marker_record->end_seq = tcp_sk(sk)->write_seq; 1144 start_marker_record->len = 0; 1145 start_marker_record->num_frags = 0; 1146 1147 INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task); 1148 offload_ctx->ctx = ctx; 1149 1150 INIT_LIST_HEAD(&offload_ctx->records_list); 1151 list_add_tail(&start_marker_record->list, &offload_ctx->records_list); 1152 spin_lock_init(&offload_ctx->lock); 1153 sg_init_table(offload_ctx->sg_tx_data, 1154 ARRAY_SIZE(offload_ctx->sg_tx_data)); 1155 1156 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); 1157 ctx->push_pending_record = tls_device_push_pending_record; 1158 1159 /* TLS offload is greatly simplified if we don't send 1160 * SKBs where only part of the payload needs to be encrypted. 1161 * So mark the last skb in the write queue as end of record. 1162 */ 1163 skb = tcp_write_queue_tail(sk); 1164 if (skb) 1165 TCP_SKB_CB(skb)->eor = 1; 1166 1167 /* Avoid offloading if the device is down 1168 * We don't want to offload new flows after 1169 * the NETDEV_DOWN event 1170 * 1171 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1172 * handler thus protecting from the device going down before 1173 * ctx was added to tls_device_list. 1174 */ 1175 down_read(&device_offload_lock); 1176 if (!(netdev->flags & IFF_UP)) { 1177 rc = -EINVAL; 1178 goto release_lock; 1179 } 1180 1181 ctx->priv_ctx_tx = offload_ctx; 1182 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, 1183 &ctx->crypto_send.info, 1184 tcp_sk(sk)->write_seq); 1185 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, 1186 tcp_sk(sk)->write_seq, rec_seq, rc); 1187 if (rc) 1188 goto release_lock; 1189 1190 tls_device_attach(ctx, sk, netdev); 1191 up_read(&device_offload_lock); 1192 1193 /* following this assignment tls_is_skb_tx_device_offloaded 1194 * will return true and the context might be accessed 1195 * by the netdev's xmit function. 1196 */ 1197 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); 1198 dev_put(netdev); 1199 1200 return 0; 1201 1202 release_lock: 1203 up_read(&device_offload_lock); 1204 clean_acked_data_disable(inet_csk(sk)); 1205 crypto_free_aead(offload_ctx->aead_send); 1206 free_offload_ctx: 1207 kfree(offload_ctx); 1208 ctx->priv_ctx_tx = NULL; 1209 free_marker_record: 1210 kfree(start_marker_record); 1211 free_rec_seq: 1212 kfree(ctx->tx.rec_seq); 1213 free_iv: 1214 kfree(ctx->tx.iv); 1215 release_netdev: 1216 dev_put(netdev); 1217 return rc; 1218 } 1219 1220 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 1221 { 1222 struct tls12_crypto_info_aes_gcm_128 *info; 1223 struct tls_offload_context_rx *context; 1224 struct net_device *netdev; 1225 int rc = 0; 1226 1227 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) 1228 return -EOPNOTSUPP; 1229 1230 netdev = get_netdev_for_sock(sk); 1231 if (!netdev) { 1232 pr_err_ratelimited("%s: netdev not found\n", __func__); 1233 return -EINVAL; 1234 } 1235 1236 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 1237 rc = -EOPNOTSUPP; 1238 goto release_netdev; 1239 } 1240 1241 /* Avoid offloading if the device is down 1242 * We don't want to offload new flows after 1243 * the NETDEV_DOWN event 1244 * 1245 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1246 * handler thus protecting from the device going down before 1247 * ctx was added to tls_device_list. 1248 */ 1249 down_read(&device_offload_lock); 1250 if (!(netdev->flags & IFF_UP)) { 1251 rc = -EINVAL; 1252 goto release_lock; 1253 } 1254 1255 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); 1256 if (!context) { 1257 rc = -ENOMEM; 1258 goto release_lock; 1259 } 1260 context->resync_nh_reset = 1; 1261 1262 ctx->priv_ctx_rx = context; 1263 rc = tls_set_sw_offload(sk, ctx, 0); 1264 if (rc) 1265 goto release_ctx; 1266 1267 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, 1268 &ctx->crypto_recv.info, 1269 tcp_sk(sk)->copied_seq); 1270 info = (void *)&ctx->crypto_recv.info; 1271 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, 1272 tcp_sk(sk)->copied_seq, info->rec_seq, rc); 1273 if (rc) 1274 goto free_sw_resources; 1275 1276 tls_device_attach(ctx, sk, netdev); 1277 up_read(&device_offload_lock); 1278 1279 dev_put(netdev); 1280 1281 return 0; 1282 1283 free_sw_resources: 1284 up_read(&device_offload_lock); 1285 tls_sw_free_resources_rx(sk); 1286 down_read(&device_offload_lock); 1287 release_ctx: 1288 ctx->priv_ctx_rx = NULL; 1289 release_lock: 1290 up_read(&device_offload_lock); 1291 release_netdev: 1292 dev_put(netdev); 1293 return rc; 1294 } 1295 1296 void tls_device_offload_cleanup_rx(struct sock *sk) 1297 { 1298 struct tls_context *tls_ctx = tls_get_ctx(sk); 1299 struct net_device *netdev; 1300 1301 down_read(&device_offload_lock); 1302 netdev = rcu_dereference_protected(tls_ctx->netdev, 1303 lockdep_is_held(&device_offload_lock)); 1304 if (!netdev) 1305 goto out; 1306 1307 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, 1308 TLS_OFFLOAD_CTX_DIR_RX); 1309 1310 if (tls_ctx->tx_conf != TLS_HW) { 1311 dev_put(netdev); 1312 rcu_assign_pointer(tls_ctx->netdev, NULL); 1313 } else { 1314 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags); 1315 } 1316 out: 1317 up_read(&device_offload_lock); 1318 tls_sw_release_resources_rx(sk); 1319 } 1320 1321 static int tls_device_down(struct net_device *netdev) 1322 { 1323 struct tls_context *ctx, *tmp; 1324 unsigned long flags; 1325 LIST_HEAD(list); 1326 1327 /* Request a write lock to block new offload attempts */ 1328 down_write(&device_offload_lock); 1329 1330 spin_lock_irqsave(&tls_device_lock, flags); 1331 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { 1332 struct net_device *ctx_netdev = 1333 rcu_dereference_protected(ctx->netdev, 1334 lockdep_is_held(&device_offload_lock)); 1335 1336 if (ctx_netdev != netdev || 1337 !refcount_inc_not_zero(&ctx->refcount)) 1338 continue; 1339 1340 list_move(&ctx->list, &list); 1341 } 1342 spin_unlock_irqrestore(&tls_device_lock, flags); 1343 1344 list_for_each_entry_safe(ctx, tmp, &list, list) { 1345 /* Stop offloaded TX and switch to the fallback. 1346 * tls_is_skb_tx_device_offloaded will return false. 1347 */ 1348 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw); 1349 1350 /* Stop the RX and TX resync. 1351 * tls_dev_resync must not be called after tls_dev_del. 1352 */ 1353 rcu_assign_pointer(ctx->netdev, NULL); 1354 1355 /* Start skipping the RX resync logic completely. */ 1356 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags); 1357 1358 /* Sync with inflight packets. After this point: 1359 * TX: no non-encrypted packets will be passed to the driver. 1360 * RX: resync requests from the driver will be ignored. 1361 */ 1362 synchronize_net(); 1363 1364 /* Release the offload context on the driver side. */ 1365 if (ctx->tx_conf == TLS_HW) 1366 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1367 TLS_OFFLOAD_CTX_DIR_TX); 1368 if (ctx->rx_conf == TLS_HW && 1369 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags)) 1370 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1371 TLS_OFFLOAD_CTX_DIR_RX); 1372 1373 dev_put(netdev); 1374 1375 /* Move the context to a separate list for two reasons: 1376 * 1. When the context is deallocated, list_del is called. 1377 * 2. It's no longer an offloaded context, so we don't want to 1378 * run offload-specific code on this context. 1379 */ 1380 spin_lock_irqsave(&tls_device_lock, flags); 1381 list_move_tail(&ctx->list, &tls_device_down_list); 1382 spin_unlock_irqrestore(&tls_device_lock, flags); 1383 1384 /* Device contexts for RX and TX will be freed in on sk_destruct 1385 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW. 1386 * Now release the ref taken above. 1387 */ 1388 if (refcount_dec_and_test(&ctx->refcount)) { 1389 /* sk_destruct ran after tls_device_down took a ref, and 1390 * it returned early. Complete the destruction here. 1391 */ 1392 list_del(&ctx->list); 1393 tls_device_free_ctx(ctx); 1394 } 1395 } 1396 1397 up_write(&device_offload_lock); 1398 1399 flush_workqueue(destruct_wq); 1400 1401 return NOTIFY_DONE; 1402 } 1403 1404 static int tls_dev_event(struct notifier_block *this, unsigned long event, 1405 void *ptr) 1406 { 1407 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1408 1409 if (!dev->tlsdev_ops && 1410 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) 1411 return NOTIFY_DONE; 1412 1413 switch (event) { 1414 case NETDEV_REGISTER: 1415 case NETDEV_FEAT_CHANGE: 1416 if (netif_is_bond_master(dev)) 1417 return NOTIFY_DONE; 1418 if ((dev->features & NETIF_F_HW_TLS_RX) && 1419 !dev->tlsdev_ops->tls_dev_resync) 1420 return NOTIFY_BAD; 1421 1422 if (dev->tlsdev_ops && 1423 dev->tlsdev_ops->tls_dev_add && 1424 dev->tlsdev_ops->tls_dev_del) 1425 return NOTIFY_DONE; 1426 else 1427 return NOTIFY_BAD; 1428 case NETDEV_DOWN: 1429 return tls_device_down(dev); 1430 } 1431 return NOTIFY_DONE; 1432 } 1433 1434 static struct notifier_block tls_dev_notifier = { 1435 .notifier_call = tls_dev_event, 1436 }; 1437 1438 int __init tls_device_init(void) 1439 { 1440 int err; 1441 1442 dummy_page = alloc_page(GFP_KERNEL); 1443 if (!dummy_page) 1444 return -ENOMEM; 1445 1446 destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0); 1447 if (!destruct_wq) { 1448 err = -ENOMEM; 1449 goto err_free_dummy; 1450 } 1451 1452 err = register_netdevice_notifier(&tls_dev_notifier); 1453 if (err) 1454 goto err_destroy_wq; 1455 1456 return 0; 1457 1458 err_destroy_wq: 1459 destroy_workqueue(destruct_wq); 1460 err_free_dummy: 1461 put_page(dummy_page); 1462 return err; 1463 } 1464 1465 void __exit tls_device_cleanup(void) 1466 { 1467 unregister_netdevice_notifier(&tls_dev_notifier); 1468 destroy_workqueue(destruct_wq); 1469 clean_acked_data_flush(); 1470 put_page(dummy_page); 1471 } 1472