xref: /openbmc/linux/net/tls/tls_device.c (revision 7ae5c03a)
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40 
41 #include "tls.h"
42 #include "trace.h"
43 
44 /* device_offload_lock is used to synchronize tls_dev_add
45  * against NETDEV_DOWN notifications.
46  */
47 static DECLARE_RWSEM(device_offload_lock);
48 
49 static struct workqueue_struct *destruct_wq __read_mostly;
50 
51 static LIST_HEAD(tls_device_list);
52 static LIST_HEAD(tls_device_down_list);
53 static DEFINE_SPINLOCK(tls_device_lock);
54 
55 static void tls_device_free_ctx(struct tls_context *ctx)
56 {
57 	if (ctx->tx_conf == TLS_HW) {
58 		kfree(tls_offload_ctx_tx(ctx));
59 		kfree(ctx->tx.rec_seq);
60 		kfree(ctx->tx.iv);
61 	}
62 
63 	if (ctx->rx_conf == TLS_HW)
64 		kfree(tls_offload_ctx_rx(ctx));
65 
66 	tls_ctx_free(NULL, ctx);
67 }
68 
69 static void tls_device_tx_del_task(struct work_struct *work)
70 {
71 	struct tls_offload_context_tx *offload_ctx =
72 		container_of(work, struct tls_offload_context_tx, destruct_work);
73 	struct tls_context *ctx = offload_ctx->ctx;
74 	struct net_device *netdev = ctx->netdev;
75 
76 	netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
77 	dev_put(netdev);
78 	ctx->netdev = NULL;
79 	tls_device_free_ctx(ctx);
80 }
81 
82 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
83 {
84 	unsigned long flags;
85 	bool async_cleanup;
86 
87 	spin_lock_irqsave(&tls_device_lock, flags);
88 	if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
89 		spin_unlock_irqrestore(&tls_device_lock, flags);
90 		return;
91 	}
92 
93 	list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
94 	async_cleanup = ctx->netdev && ctx->tx_conf == TLS_HW;
95 	if (async_cleanup) {
96 		struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
97 
98 		/* queue_work inside the spinlock
99 		 * to make sure tls_device_down waits for that work.
100 		 */
101 		queue_work(destruct_wq, &offload_ctx->destruct_work);
102 	}
103 	spin_unlock_irqrestore(&tls_device_lock, flags);
104 
105 	if (!async_cleanup)
106 		tls_device_free_ctx(ctx);
107 }
108 
109 /* We assume that the socket is already connected */
110 static struct net_device *get_netdev_for_sock(struct sock *sk)
111 {
112 	struct dst_entry *dst = sk_dst_get(sk);
113 	struct net_device *netdev = NULL;
114 
115 	if (likely(dst)) {
116 		netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
117 		dev_hold(netdev);
118 	}
119 
120 	dst_release(dst);
121 
122 	return netdev;
123 }
124 
125 static void destroy_record(struct tls_record_info *record)
126 {
127 	int i;
128 
129 	for (i = 0; i < record->num_frags; i++)
130 		__skb_frag_unref(&record->frags[i], false);
131 	kfree(record);
132 }
133 
134 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
135 {
136 	struct tls_record_info *info, *temp;
137 
138 	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
139 		list_del(&info->list);
140 		destroy_record(info);
141 	}
142 
143 	offload_ctx->retransmit_hint = NULL;
144 }
145 
146 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
147 {
148 	struct tls_context *tls_ctx = tls_get_ctx(sk);
149 	struct tls_record_info *info, *temp;
150 	struct tls_offload_context_tx *ctx;
151 	u64 deleted_records = 0;
152 	unsigned long flags;
153 
154 	if (!tls_ctx)
155 		return;
156 
157 	ctx = tls_offload_ctx_tx(tls_ctx);
158 
159 	spin_lock_irqsave(&ctx->lock, flags);
160 	info = ctx->retransmit_hint;
161 	if (info && !before(acked_seq, info->end_seq))
162 		ctx->retransmit_hint = NULL;
163 
164 	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
165 		if (before(acked_seq, info->end_seq))
166 			break;
167 		list_del(&info->list);
168 
169 		destroy_record(info);
170 		deleted_records++;
171 	}
172 
173 	ctx->unacked_record_sn += deleted_records;
174 	spin_unlock_irqrestore(&ctx->lock, flags);
175 }
176 
177 /* At this point, there should be no references on this
178  * socket and no in-flight SKBs associated with this
179  * socket, so it is safe to free all the resources.
180  */
181 void tls_device_sk_destruct(struct sock *sk)
182 {
183 	struct tls_context *tls_ctx = tls_get_ctx(sk);
184 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
185 
186 	tls_ctx->sk_destruct(sk);
187 
188 	if (tls_ctx->tx_conf == TLS_HW) {
189 		if (ctx->open_record)
190 			destroy_record(ctx->open_record);
191 		delete_all_records(ctx);
192 		crypto_free_aead(ctx->aead_send);
193 		clean_acked_data_disable(inet_csk(sk));
194 	}
195 
196 	tls_device_queue_ctx_destruction(tls_ctx);
197 }
198 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
199 
200 void tls_device_free_resources_tx(struct sock *sk)
201 {
202 	struct tls_context *tls_ctx = tls_get_ctx(sk);
203 
204 	tls_free_partial_record(sk, tls_ctx);
205 }
206 
207 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
208 {
209 	struct tls_context *tls_ctx = tls_get_ctx(sk);
210 
211 	trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
212 	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
213 }
214 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
215 
216 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
217 				 u32 seq)
218 {
219 	struct net_device *netdev;
220 	struct sk_buff *skb;
221 	int err = 0;
222 	u8 *rcd_sn;
223 
224 	skb = tcp_write_queue_tail(sk);
225 	if (skb)
226 		TCP_SKB_CB(skb)->eor = 1;
227 
228 	rcd_sn = tls_ctx->tx.rec_seq;
229 
230 	trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
231 	down_read(&device_offload_lock);
232 	netdev = tls_ctx->netdev;
233 	if (netdev)
234 		err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
235 							 rcd_sn,
236 							 TLS_OFFLOAD_CTX_DIR_TX);
237 	up_read(&device_offload_lock);
238 	if (err)
239 		return;
240 
241 	clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
242 }
243 
244 static void tls_append_frag(struct tls_record_info *record,
245 			    struct page_frag *pfrag,
246 			    int size)
247 {
248 	skb_frag_t *frag;
249 
250 	frag = &record->frags[record->num_frags - 1];
251 	if (skb_frag_page(frag) == pfrag->page &&
252 	    skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
253 		skb_frag_size_add(frag, size);
254 	} else {
255 		++frag;
256 		__skb_frag_set_page(frag, pfrag->page);
257 		skb_frag_off_set(frag, pfrag->offset);
258 		skb_frag_size_set(frag, size);
259 		++record->num_frags;
260 		get_page(pfrag->page);
261 	}
262 
263 	pfrag->offset += size;
264 	record->len += size;
265 }
266 
267 static int tls_push_record(struct sock *sk,
268 			   struct tls_context *ctx,
269 			   struct tls_offload_context_tx *offload_ctx,
270 			   struct tls_record_info *record,
271 			   int flags)
272 {
273 	struct tls_prot_info *prot = &ctx->prot_info;
274 	struct tcp_sock *tp = tcp_sk(sk);
275 	skb_frag_t *frag;
276 	int i;
277 
278 	record->end_seq = tp->write_seq + record->len;
279 	list_add_tail_rcu(&record->list, &offload_ctx->records_list);
280 	offload_ctx->open_record = NULL;
281 
282 	if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
283 		tls_device_resync_tx(sk, ctx, tp->write_seq);
284 
285 	tls_advance_record_sn(sk, prot, &ctx->tx);
286 
287 	for (i = 0; i < record->num_frags; i++) {
288 		frag = &record->frags[i];
289 		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
290 		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
291 			    skb_frag_size(frag), skb_frag_off(frag));
292 		sk_mem_charge(sk, skb_frag_size(frag));
293 		get_page(skb_frag_page(frag));
294 	}
295 	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
296 
297 	/* all ready, send */
298 	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
299 }
300 
301 static int tls_device_record_close(struct sock *sk,
302 				   struct tls_context *ctx,
303 				   struct tls_record_info *record,
304 				   struct page_frag *pfrag,
305 				   unsigned char record_type)
306 {
307 	struct tls_prot_info *prot = &ctx->prot_info;
308 	int ret;
309 
310 	/* append tag
311 	 * device will fill in the tag, we just need to append a placeholder
312 	 * use socket memory to improve coalescing (re-using a single buffer
313 	 * increases frag count)
314 	 * if we can't allocate memory now, steal some back from data
315 	 */
316 	if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
317 					sk->sk_allocation))) {
318 		ret = 0;
319 		tls_append_frag(record, pfrag, prot->tag_size);
320 	} else {
321 		ret = prot->tag_size;
322 		if (record->len <= prot->overhead_size)
323 			return -ENOMEM;
324 	}
325 
326 	/* fill prepend */
327 	tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
328 			 record->len - prot->overhead_size,
329 			 record_type);
330 	return ret;
331 }
332 
333 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
334 				 struct page_frag *pfrag,
335 				 size_t prepend_size)
336 {
337 	struct tls_record_info *record;
338 	skb_frag_t *frag;
339 
340 	record = kmalloc(sizeof(*record), GFP_KERNEL);
341 	if (!record)
342 		return -ENOMEM;
343 
344 	frag = &record->frags[0];
345 	__skb_frag_set_page(frag, pfrag->page);
346 	skb_frag_off_set(frag, pfrag->offset);
347 	skb_frag_size_set(frag, prepend_size);
348 
349 	get_page(pfrag->page);
350 	pfrag->offset += prepend_size;
351 
352 	record->num_frags = 1;
353 	record->len = prepend_size;
354 	offload_ctx->open_record = record;
355 	return 0;
356 }
357 
358 static int tls_do_allocation(struct sock *sk,
359 			     struct tls_offload_context_tx *offload_ctx,
360 			     struct page_frag *pfrag,
361 			     size_t prepend_size)
362 {
363 	int ret;
364 
365 	if (!offload_ctx->open_record) {
366 		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
367 						   sk->sk_allocation))) {
368 			READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
369 			sk_stream_moderate_sndbuf(sk);
370 			return -ENOMEM;
371 		}
372 
373 		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
374 		if (ret)
375 			return ret;
376 
377 		if (pfrag->size > pfrag->offset)
378 			return 0;
379 	}
380 
381 	if (!sk_page_frag_refill(sk, pfrag))
382 		return -ENOMEM;
383 
384 	return 0;
385 }
386 
387 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
388 {
389 	size_t pre_copy, nocache;
390 
391 	pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
392 	if (pre_copy) {
393 		pre_copy = min(pre_copy, bytes);
394 		if (copy_from_iter(addr, pre_copy, i) != pre_copy)
395 			return -EFAULT;
396 		bytes -= pre_copy;
397 		addr += pre_copy;
398 	}
399 
400 	nocache = round_down(bytes, SMP_CACHE_BYTES);
401 	if (copy_from_iter_nocache(addr, nocache, i) != nocache)
402 		return -EFAULT;
403 	bytes -= nocache;
404 	addr += nocache;
405 
406 	if (bytes && copy_from_iter(addr, bytes, i) != bytes)
407 		return -EFAULT;
408 
409 	return 0;
410 }
411 
412 union tls_iter_offset {
413 	struct iov_iter *msg_iter;
414 	int offset;
415 };
416 
417 static int tls_push_data(struct sock *sk,
418 			 union tls_iter_offset iter_offset,
419 			 size_t size, int flags,
420 			 unsigned char record_type,
421 			 struct page *zc_page)
422 {
423 	struct tls_context *tls_ctx = tls_get_ctx(sk);
424 	struct tls_prot_info *prot = &tls_ctx->prot_info;
425 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
426 	struct tls_record_info *record;
427 	int tls_push_record_flags;
428 	struct page_frag *pfrag;
429 	size_t orig_size = size;
430 	u32 max_open_record_len;
431 	bool more = false;
432 	bool done = false;
433 	int copy, rc = 0;
434 	long timeo;
435 
436 	if (flags &
437 	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
438 		return -EOPNOTSUPP;
439 
440 	if (unlikely(sk->sk_err))
441 		return -sk->sk_err;
442 
443 	flags |= MSG_SENDPAGE_DECRYPTED;
444 	tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
445 
446 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
447 	if (tls_is_partially_sent_record(tls_ctx)) {
448 		rc = tls_push_partial_record(sk, tls_ctx, flags);
449 		if (rc < 0)
450 			return rc;
451 	}
452 
453 	pfrag = sk_page_frag(sk);
454 
455 	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
456 	 * we need to leave room for an authentication tag.
457 	 */
458 	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
459 			      prot->prepend_size;
460 	do {
461 		rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
462 		if (unlikely(rc)) {
463 			rc = sk_stream_wait_memory(sk, &timeo);
464 			if (!rc)
465 				continue;
466 
467 			record = ctx->open_record;
468 			if (!record)
469 				break;
470 handle_error:
471 			if (record_type != TLS_RECORD_TYPE_DATA) {
472 				/* avoid sending partial
473 				 * record with type !=
474 				 * application_data
475 				 */
476 				size = orig_size;
477 				destroy_record(record);
478 				ctx->open_record = NULL;
479 			} else if (record->len > prot->prepend_size) {
480 				goto last_record;
481 			}
482 
483 			break;
484 		}
485 
486 		record = ctx->open_record;
487 
488 		copy = min_t(size_t, size, max_open_record_len - record->len);
489 		if (copy && zc_page) {
490 			struct page_frag zc_pfrag;
491 
492 			zc_pfrag.page = zc_page;
493 			zc_pfrag.offset = iter_offset.offset;
494 			zc_pfrag.size = copy;
495 			tls_append_frag(record, &zc_pfrag, copy);
496 		} else if (copy) {
497 			copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
498 
499 			rc = tls_device_copy_data(page_address(pfrag->page) +
500 						  pfrag->offset, copy,
501 						  iter_offset.msg_iter);
502 			if (rc)
503 				goto handle_error;
504 			tls_append_frag(record, pfrag, copy);
505 		}
506 
507 		size -= copy;
508 		if (!size) {
509 last_record:
510 			tls_push_record_flags = flags;
511 			if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
512 				more = true;
513 				break;
514 			}
515 
516 			done = true;
517 		}
518 
519 		if (done || record->len >= max_open_record_len ||
520 		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
521 			rc = tls_device_record_close(sk, tls_ctx, record,
522 						     pfrag, record_type);
523 			if (rc) {
524 				if (rc > 0) {
525 					size += rc;
526 				} else {
527 					size = orig_size;
528 					destroy_record(record);
529 					ctx->open_record = NULL;
530 					break;
531 				}
532 			}
533 
534 			rc = tls_push_record(sk,
535 					     tls_ctx,
536 					     ctx,
537 					     record,
538 					     tls_push_record_flags);
539 			if (rc < 0)
540 				break;
541 		}
542 	} while (!done);
543 
544 	tls_ctx->pending_open_record_frags = more;
545 
546 	if (orig_size - size > 0)
547 		rc = orig_size - size;
548 
549 	return rc;
550 }
551 
552 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
553 {
554 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
555 	struct tls_context *tls_ctx = tls_get_ctx(sk);
556 	union tls_iter_offset iter;
557 	int rc;
558 
559 	mutex_lock(&tls_ctx->tx_lock);
560 	lock_sock(sk);
561 
562 	if (unlikely(msg->msg_controllen)) {
563 		rc = tls_process_cmsg(sk, msg, &record_type);
564 		if (rc)
565 			goto out;
566 	}
567 
568 	iter.msg_iter = &msg->msg_iter;
569 	rc = tls_push_data(sk, iter, size, msg->msg_flags, record_type, NULL);
570 
571 out:
572 	release_sock(sk);
573 	mutex_unlock(&tls_ctx->tx_lock);
574 	return rc;
575 }
576 
577 int tls_device_sendpage(struct sock *sk, struct page *page,
578 			int offset, size_t size, int flags)
579 {
580 	struct tls_context *tls_ctx = tls_get_ctx(sk);
581 	union tls_iter_offset iter_offset;
582 	struct iov_iter msg_iter;
583 	char *kaddr;
584 	struct kvec iov;
585 	int rc;
586 
587 	if (flags & MSG_SENDPAGE_NOTLAST)
588 		flags |= MSG_MORE;
589 
590 	mutex_lock(&tls_ctx->tx_lock);
591 	lock_sock(sk);
592 
593 	if (flags & MSG_OOB) {
594 		rc = -EOPNOTSUPP;
595 		goto out;
596 	}
597 
598 	if (tls_ctx->zerocopy_sendfile) {
599 		iter_offset.offset = offset;
600 		rc = tls_push_data(sk, iter_offset, size,
601 				   flags, TLS_RECORD_TYPE_DATA, page);
602 		goto out;
603 	}
604 
605 	kaddr = kmap(page);
606 	iov.iov_base = kaddr + offset;
607 	iov.iov_len = size;
608 	iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
609 	iter_offset.msg_iter = &msg_iter;
610 	rc = tls_push_data(sk, iter_offset, size, flags, TLS_RECORD_TYPE_DATA,
611 			   NULL);
612 	kunmap(page);
613 
614 out:
615 	release_sock(sk);
616 	mutex_unlock(&tls_ctx->tx_lock);
617 	return rc;
618 }
619 
620 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
621 				       u32 seq, u64 *p_record_sn)
622 {
623 	u64 record_sn = context->hint_record_sn;
624 	struct tls_record_info *info, *last;
625 
626 	info = context->retransmit_hint;
627 	if (!info ||
628 	    before(seq, info->end_seq - info->len)) {
629 		/* if retransmit_hint is irrelevant start
630 		 * from the beginning of the list
631 		 */
632 		info = list_first_entry_or_null(&context->records_list,
633 						struct tls_record_info, list);
634 		if (!info)
635 			return NULL;
636 		/* send the start_marker record if seq number is before the
637 		 * tls offload start marker sequence number. This record is
638 		 * required to handle TCP packets which are before TLS offload
639 		 * started.
640 		 *  And if it's not start marker, look if this seq number
641 		 * belongs to the list.
642 		 */
643 		if (likely(!tls_record_is_start_marker(info))) {
644 			/* we have the first record, get the last record to see
645 			 * if this seq number belongs to the list.
646 			 */
647 			last = list_last_entry(&context->records_list,
648 					       struct tls_record_info, list);
649 
650 			if (!between(seq, tls_record_start_seq(info),
651 				     last->end_seq))
652 				return NULL;
653 		}
654 		record_sn = context->unacked_record_sn;
655 	}
656 
657 	/* We just need the _rcu for the READ_ONCE() */
658 	rcu_read_lock();
659 	list_for_each_entry_from_rcu(info, &context->records_list, list) {
660 		if (before(seq, info->end_seq)) {
661 			if (!context->retransmit_hint ||
662 			    after(info->end_seq,
663 				  context->retransmit_hint->end_seq)) {
664 				context->hint_record_sn = record_sn;
665 				context->retransmit_hint = info;
666 			}
667 			*p_record_sn = record_sn;
668 			goto exit_rcu_unlock;
669 		}
670 		record_sn++;
671 	}
672 	info = NULL;
673 
674 exit_rcu_unlock:
675 	rcu_read_unlock();
676 	return info;
677 }
678 EXPORT_SYMBOL(tls_get_record);
679 
680 static int tls_device_push_pending_record(struct sock *sk, int flags)
681 {
682 	union tls_iter_offset iter;
683 	struct iov_iter msg_iter;
684 
685 	iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
686 	iter.msg_iter = &msg_iter;
687 	return tls_push_data(sk, iter, 0, flags, TLS_RECORD_TYPE_DATA, NULL);
688 }
689 
690 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
691 {
692 	if (tls_is_partially_sent_record(ctx)) {
693 		gfp_t sk_allocation = sk->sk_allocation;
694 
695 		WARN_ON_ONCE(sk->sk_write_pending);
696 
697 		sk->sk_allocation = GFP_ATOMIC;
698 		tls_push_partial_record(sk, ctx,
699 					MSG_DONTWAIT | MSG_NOSIGNAL |
700 					MSG_SENDPAGE_DECRYPTED);
701 		sk->sk_allocation = sk_allocation;
702 	}
703 }
704 
705 static void tls_device_resync_rx(struct tls_context *tls_ctx,
706 				 struct sock *sk, u32 seq, u8 *rcd_sn)
707 {
708 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
709 	struct net_device *netdev;
710 
711 	trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
712 	rcu_read_lock();
713 	netdev = READ_ONCE(tls_ctx->netdev);
714 	if (netdev)
715 		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
716 						   TLS_OFFLOAD_CTX_DIR_RX);
717 	rcu_read_unlock();
718 	TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
719 }
720 
721 static bool
722 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
723 			   s64 resync_req, u32 *seq, u16 *rcd_delta)
724 {
725 	u32 is_async = resync_req & RESYNC_REQ_ASYNC;
726 	u32 req_seq = resync_req >> 32;
727 	u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
728 	u16 i;
729 
730 	*rcd_delta = 0;
731 
732 	if (is_async) {
733 		/* shouldn't get to wraparound:
734 		 * too long in async stage, something bad happened
735 		 */
736 		if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
737 			return false;
738 
739 		/* asynchronous stage: log all headers seq such that
740 		 * req_seq <= seq <= end_seq, and wait for real resync request
741 		 */
742 		if (before(*seq, req_seq))
743 			return false;
744 		if (!after(*seq, req_end) &&
745 		    resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
746 			resync_async->log[resync_async->loglen++] = *seq;
747 
748 		resync_async->rcd_delta++;
749 
750 		return false;
751 	}
752 
753 	/* synchronous stage: check against the logged entries and
754 	 * proceed to check the next entries if no match was found
755 	 */
756 	for (i = 0; i < resync_async->loglen; i++)
757 		if (req_seq == resync_async->log[i] &&
758 		    atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
759 			*rcd_delta = resync_async->rcd_delta - i;
760 			*seq = req_seq;
761 			resync_async->loglen = 0;
762 			resync_async->rcd_delta = 0;
763 			return true;
764 		}
765 
766 	resync_async->loglen = 0;
767 	resync_async->rcd_delta = 0;
768 
769 	if (req_seq == *seq &&
770 	    atomic64_try_cmpxchg(&resync_async->req,
771 				 &resync_req, 0))
772 		return true;
773 
774 	return false;
775 }
776 
777 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
778 {
779 	struct tls_context *tls_ctx = tls_get_ctx(sk);
780 	struct tls_offload_context_rx *rx_ctx;
781 	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
782 	u32 sock_data, is_req_pending;
783 	struct tls_prot_info *prot;
784 	s64 resync_req;
785 	u16 rcd_delta;
786 	u32 req_seq;
787 
788 	if (tls_ctx->rx_conf != TLS_HW)
789 		return;
790 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
791 		return;
792 
793 	prot = &tls_ctx->prot_info;
794 	rx_ctx = tls_offload_ctx_rx(tls_ctx);
795 	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
796 
797 	switch (rx_ctx->resync_type) {
798 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
799 		resync_req = atomic64_read(&rx_ctx->resync_req);
800 		req_seq = resync_req >> 32;
801 		seq += TLS_HEADER_SIZE - 1;
802 		is_req_pending = resync_req;
803 
804 		if (likely(!is_req_pending) || req_seq != seq ||
805 		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
806 			return;
807 		break;
808 	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
809 		if (likely(!rx_ctx->resync_nh_do_now))
810 			return;
811 
812 		/* head of next rec is already in, note that the sock_inq will
813 		 * include the currently parsed message when called from parser
814 		 */
815 		sock_data = tcp_inq(sk);
816 		if (sock_data > rcd_len) {
817 			trace_tls_device_rx_resync_nh_delay(sk, sock_data,
818 							    rcd_len);
819 			return;
820 		}
821 
822 		rx_ctx->resync_nh_do_now = 0;
823 		seq += rcd_len;
824 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
825 		break;
826 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
827 		resync_req = atomic64_read(&rx_ctx->resync_async->req);
828 		is_req_pending = resync_req;
829 		if (likely(!is_req_pending))
830 			return;
831 
832 		if (!tls_device_rx_resync_async(rx_ctx->resync_async,
833 						resync_req, &seq, &rcd_delta))
834 			return;
835 		tls_bigint_subtract(rcd_sn, rcd_delta);
836 		break;
837 	}
838 
839 	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
840 }
841 
842 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
843 					   struct tls_offload_context_rx *ctx,
844 					   struct sock *sk, struct sk_buff *skb)
845 {
846 	struct strp_msg *rxm;
847 
848 	/* device will request resyncs by itself based on stream scan */
849 	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
850 		return;
851 	/* already scheduled */
852 	if (ctx->resync_nh_do_now)
853 		return;
854 	/* seen decrypted fragments since last fully-failed record */
855 	if (ctx->resync_nh_reset) {
856 		ctx->resync_nh_reset = 0;
857 		ctx->resync_nh.decrypted_failed = 1;
858 		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
859 		return;
860 	}
861 
862 	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
863 		return;
864 
865 	/* doing resync, bump the next target in case it fails */
866 	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
867 		ctx->resync_nh.decrypted_tgt *= 2;
868 	else
869 		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
870 
871 	rxm = strp_msg(skb);
872 
873 	/* head of next rec is already in, parser will sync for us */
874 	if (tcp_inq(sk) > rxm->full_len) {
875 		trace_tls_device_rx_resync_nh_schedule(sk);
876 		ctx->resync_nh_do_now = 1;
877 	} else {
878 		struct tls_prot_info *prot = &tls_ctx->prot_info;
879 		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
880 
881 		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
882 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
883 
884 		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
885 				     rcd_sn);
886 	}
887 }
888 
889 static int
890 tls_device_reencrypt(struct sock *sk, struct tls_sw_context_rx *sw_ctx)
891 {
892 	int err, offset, copy, data_len, pos;
893 	struct sk_buff *skb, *skb_iter;
894 	struct scatterlist sg[1];
895 	struct strp_msg *rxm;
896 	char *orig_buf, *buf;
897 
898 	rxm = strp_msg(tls_strp_msg(sw_ctx));
899 	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
900 			   TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
901 	if (!orig_buf)
902 		return -ENOMEM;
903 	buf = orig_buf;
904 
905 	err = tls_strp_msg_cow(sw_ctx);
906 	if (unlikely(err))
907 		goto free_buf;
908 
909 	skb = tls_strp_msg(sw_ctx);
910 	rxm = strp_msg(skb);
911 	offset = rxm->offset;
912 
913 	sg_init_table(sg, 1);
914 	sg_set_buf(&sg[0], buf,
915 		   rxm->full_len + TLS_HEADER_SIZE +
916 		   TLS_CIPHER_AES_GCM_128_IV_SIZE);
917 	err = skb_copy_bits(skb, offset, buf,
918 			    TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
919 	if (err)
920 		goto free_buf;
921 
922 	/* We are interested only in the decrypted data not the auth */
923 	err = decrypt_skb(sk, sg);
924 	if (err != -EBADMSG)
925 		goto free_buf;
926 	else
927 		err = 0;
928 
929 	data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
930 
931 	if (skb_pagelen(skb) > offset) {
932 		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
933 
934 		if (skb->decrypted) {
935 			err = skb_store_bits(skb, offset, buf, copy);
936 			if (err)
937 				goto free_buf;
938 		}
939 
940 		offset += copy;
941 		buf += copy;
942 	}
943 
944 	pos = skb_pagelen(skb);
945 	skb_walk_frags(skb, skb_iter) {
946 		int frag_pos;
947 
948 		/* Practically all frags must belong to msg if reencrypt
949 		 * is needed with current strparser and coalescing logic,
950 		 * but strparser may "get optimized", so let's be safe.
951 		 */
952 		if (pos + skb_iter->len <= offset)
953 			goto done_with_frag;
954 		if (pos >= data_len + rxm->offset)
955 			break;
956 
957 		frag_pos = offset - pos;
958 		copy = min_t(int, skb_iter->len - frag_pos,
959 			     data_len + rxm->offset - offset);
960 
961 		if (skb_iter->decrypted) {
962 			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
963 			if (err)
964 				goto free_buf;
965 		}
966 
967 		offset += copy;
968 		buf += copy;
969 done_with_frag:
970 		pos += skb_iter->len;
971 	}
972 
973 free_buf:
974 	kfree(orig_buf);
975 	return err;
976 }
977 
978 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
979 {
980 	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
981 	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
982 	struct sk_buff *skb = tls_strp_msg(sw_ctx);
983 	struct strp_msg *rxm = strp_msg(skb);
984 	int is_decrypted = skb->decrypted;
985 	int is_encrypted = !is_decrypted;
986 	struct sk_buff *skb_iter;
987 
988 	/* Check if all the data is decrypted already */
989 	skb_walk_frags(skb, skb_iter) {
990 		is_decrypted &= skb_iter->decrypted;
991 		is_encrypted &= !skb_iter->decrypted;
992 	}
993 
994 	trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
995 				   tls_ctx->rx.rec_seq, rxm->full_len,
996 				   is_encrypted, is_decrypted);
997 
998 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
999 		if (likely(is_encrypted || is_decrypted))
1000 			return is_decrypted;
1001 
1002 		/* After tls_device_down disables the offload, the next SKB will
1003 		 * likely have initial fragments decrypted, and final ones not
1004 		 * decrypted. We need to reencrypt that single SKB.
1005 		 */
1006 		return tls_device_reencrypt(sk, sw_ctx);
1007 	}
1008 
1009 	/* Return immediately if the record is either entirely plaintext or
1010 	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1011 	 * record.
1012 	 */
1013 	if (is_decrypted) {
1014 		ctx->resync_nh_reset = 1;
1015 		return is_decrypted;
1016 	}
1017 	if (is_encrypted) {
1018 		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1019 		return 0;
1020 	}
1021 
1022 	ctx->resync_nh_reset = 1;
1023 	return tls_device_reencrypt(sk, sw_ctx);
1024 }
1025 
1026 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1027 			      struct net_device *netdev)
1028 {
1029 	if (sk->sk_destruct != tls_device_sk_destruct) {
1030 		refcount_set(&ctx->refcount, 1);
1031 		dev_hold(netdev);
1032 		ctx->netdev = netdev;
1033 		spin_lock_irq(&tls_device_lock);
1034 		list_add_tail(&ctx->list, &tls_device_list);
1035 		spin_unlock_irq(&tls_device_lock);
1036 
1037 		ctx->sk_destruct = sk->sk_destruct;
1038 		smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1039 	}
1040 }
1041 
1042 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1043 {
1044 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
1045 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1046 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1047 	struct tls_record_info *start_marker_record;
1048 	struct tls_offload_context_tx *offload_ctx;
1049 	struct tls_crypto_info *crypto_info;
1050 	struct net_device *netdev;
1051 	char *iv, *rec_seq;
1052 	struct sk_buff *skb;
1053 	__be64 rcd_sn;
1054 	int rc;
1055 
1056 	if (!ctx)
1057 		return -EINVAL;
1058 
1059 	if (ctx->priv_ctx_tx)
1060 		return -EEXIST;
1061 
1062 	netdev = get_netdev_for_sock(sk);
1063 	if (!netdev) {
1064 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1065 		return -EINVAL;
1066 	}
1067 
1068 	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1069 		rc = -EOPNOTSUPP;
1070 		goto release_netdev;
1071 	}
1072 
1073 	crypto_info = &ctx->crypto_send.info;
1074 	if (crypto_info->version != TLS_1_2_VERSION) {
1075 		rc = -EOPNOTSUPP;
1076 		goto release_netdev;
1077 	}
1078 
1079 	switch (crypto_info->cipher_type) {
1080 	case TLS_CIPHER_AES_GCM_128:
1081 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1082 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1083 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1084 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1085 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1086 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
1087 		rec_seq =
1088 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1089 		break;
1090 	default:
1091 		rc = -EINVAL;
1092 		goto release_netdev;
1093 	}
1094 
1095 	/* Sanity-check the rec_seq_size for stack allocations */
1096 	if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
1097 		rc = -EINVAL;
1098 		goto release_netdev;
1099 	}
1100 
1101 	prot->version = crypto_info->version;
1102 	prot->cipher_type = crypto_info->cipher_type;
1103 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
1104 	prot->tag_size = tag_size;
1105 	prot->overhead_size = prot->prepend_size + prot->tag_size;
1106 	prot->iv_size = iv_size;
1107 	prot->salt_size = salt_size;
1108 	ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1109 			     GFP_KERNEL);
1110 	if (!ctx->tx.iv) {
1111 		rc = -ENOMEM;
1112 		goto release_netdev;
1113 	}
1114 
1115 	memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1116 
1117 	prot->rec_seq_size = rec_seq_size;
1118 	ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1119 	if (!ctx->tx.rec_seq) {
1120 		rc = -ENOMEM;
1121 		goto free_iv;
1122 	}
1123 
1124 	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1125 	if (!start_marker_record) {
1126 		rc = -ENOMEM;
1127 		goto free_rec_seq;
1128 	}
1129 
1130 	offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1131 	if (!offload_ctx) {
1132 		rc = -ENOMEM;
1133 		goto free_marker_record;
1134 	}
1135 
1136 	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1137 	if (rc)
1138 		goto free_offload_ctx;
1139 
1140 	/* start at rec_seq - 1 to account for the start marker record */
1141 	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1142 	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1143 
1144 	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1145 	start_marker_record->len = 0;
1146 	start_marker_record->num_frags = 0;
1147 
1148 	INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1149 	offload_ctx->ctx = ctx;
1150 
1151 	INIT_LIST_HEAD(&offload_ctx->records_list);
1152 	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1153 	spin_lock_init(&offload_ctx->lock);
1154 	sg_init_table(offload_ctx->sg_tx_data,
1155 		      ARRAY_SIZE(offload_ctx->sg_tx_data));
1156 
1157 	clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1158 	ctx->push_pending_record = tls_device_push_pending_record;
1159 
1160 	/* TLS offload is greatly simplified if we don't send
1161 	 * SKBs where only part of the payload needs to be encrypted.
1162 	 * So mark the last skb in the write queue as end of record.
1163 	 */
1164 	skb = tcp_write_queue_tail(sk);
1165 	if (skb)
1166 		TCP_SKB_CB(skb)->eor = 1;
1167 
1168 	/* Avoid offloading if the device is down
1169 	 * We don't want to offload new flows after
1170 	 * the NETDEV_DOWN event
1171 	 *
1172 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1173 	 * handler thus protecting from the device going down before
1174 	 * ctx was added to tls_device_list.
1175 	 */
1176 	down_read(&device_offload_lock);
1177 	if (!(netdev->flags & IFF_UP)) {
1178 		rc = -EINVAL;
1179 		goto release_lock;
1180 	}
1181 
1182 	ctx->priv_ctx_tx = offload_ctx;
1183 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1184 					     &ctx->crypto_send.info,
1185 					     tcp_sk(sk)->write_seq);
1186 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1187 				     tcp_sk(sk)->write_seq, rec_seq, rc);
1188 	if (rc)
1189 		goto release_lock;
1190 
1191 	tls_device_attach(ctx, sk, netdev);
1192 	up_read(&device_offload_lock);
1193 
1194 	/* following this assignment tls_is_sk_tx_device_offloaded
1195 	 * will return true and the context might be accessed
1196 	 * by the netdev's xmit function.
1197 	 */
1198 	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1199 	dev_put(netdev);
1200 
1201 	return 0;
1202 
1203 release_lock:
1204 	up_read(&device_offload_lock);
1205 	clean_acked_data_disable(inet_csk(sk));
1206 	crypto_free_aead(offload_ctx->aead_send);
1207 free_offload_ctx:
1208 	kfree(offload_ctx);
1209 	ctx->priv_ctx_tx = NULL;
1210 free_marker_record:
1211 	kfree(start_marker_record);
1212 free_rec_seq:
1213 	kfree(ctx->tx.rec_seq);
1214 free_iv:
1215 	kfree(ctx->tx.iv);
1216 release_netdev:
1217 	dev_put(netdev);
1218 	return rc;
1219 }
1220 
1221 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1222 {
1223 	struct tls12_crypto_info_aes_gcm_128 *info;
1224 	struct tls_offload_context_rx *context;
1225 	struct net_device *netdev;
1226 	int rc = 0;
1227 
1228 	if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1229 		return -EOPNOTSUPP;
1230 
1231 	netdev = get_netdev_for_sock(sk);
1232 	if (!netdev) {
1233 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1234 		return -EINVAL;
1235 	}
1236 
1237 	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1238 		rc = -EOPNOTSUPP;
1239 		goto release_netdev;
1240 	}
1241 
1242 	/* Avoid offloading if the device is down
1243 	 * We don't want to offload new flows after
1244 	 * the NETDEV_DOWN event
1245 	 *
1246 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1247 	 * handler thus protecting from the device going down before
1248 	 * ctx was added to tls_device_list.
1249 	 */
1250 	down_read(&device_offload_lock);
1251 	if (!(netdev->flags & IFF_UP)) {
1252 		rc = -EINVAL;
1253 		goto release_lock;
1254 	}
1255 
1256 	context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1257 	if (!context) {
1258 		rc = -ENOMEM;
1259 		goto release_lock;
1260 	}
1261 	context->resync_nh_reset = 1;
1262 
1263 	ctx->priv_ctx_rx = context;
1264 	rc = tls_set_sw_offload(sk, ctx, 0);
1265 	if (rc)
1266 		goto release_ctx;
1267 
1268 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1269 					     &ctx->crypto_recv.info,
1270 					     tcp_sk(sk)->copied_seq);
1271 	info = (void *)&ctx->crypto_recv.info;
1272 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1273 				     tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1274 	if (rc)
1275 		goto free_sw_resources;
1276 
1277 	tls_device_attach(ctx, sk, netdev);
1278 	up_read(&device_offload_lock);
1279 
1280 	dev_put(netdev);
1281 
1282 	return 0;
1283 
1284 free_sw_resources:
1285 	up_read(&device_offload_lock);
1286 	tls_sw_free_resources_rx(sk);
1287 	down_read(&device_offload_lock);
1288 release_ctx:
1289 	ctx->priv_ctx_rx = NULL;
1290 release_lock:
1291 	up_read(&device_offload_lock);
1292 release_netdev:
1293 	dev_put(netdev);
1294 	return rc;
1295 }
1296 
1297 void tls_device_offload_cleanup_rx(struct sock *sk)
1298 {
1299 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1300 	struct net_device *netdev;
1301 
1302 	down_read(&device_offload_lock);
1303 	netdev = tls_ctx->netdev;
1304 	if (!netdev)
1305 		goto out;
1306 
1307 	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1308 					TLS_OFFLOAD_CTX_DIR_RX);
1309 
1310 	if (tls_ctx->tx_conf != TLS_HW) {
1311 		dev_put(netdev);
1312 		tls_ctx->netdev = NULL;
1313 	} else {
1314 		set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1315 	}
1316 out:
1317 	up_read(&device_offload_lock);
1318 	tls_sw_release_resources_rx(sk);
1319 }
1320 
1321 static int tls_device_down(struct net_device *netdev)
1322 {
1323 	struct tls_context *ctx, *tmp;
1324 	unsigned long flags;
1325 	LIST_HEAD(list);
1326 
1327 	/* Request a write lock to block new offload attempts */
1328 	down_write(&device_offload_lock);
1329 
1330 	spin_lock_irqsave(&tls_device_lock, flags);
1331 	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1332 		if (ctx->netdev != netdev ||
1333 		    !refcount_inc_not_zero(&ctx->refcount))
1334 			continue;
1335 
1336 		list_move(&ctx->list, &list);
1337 	}
1338 	spin_unlock_irqrestore(&tls_device_lock, flags);
1339 
1340 	list_for_each_entry_safe(ctx, tmp, &list, list)	{
1341 		/* Stop offloaded TX and switch to the fallback.
1342 		 * tls_is_sk_tx_device_offloaded will return false.
1343 		 */
1344 		WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1345 
1346 		/* Stop the RX and TX resync.
1347 		 * tls_dev_resync must not be called after tls_dev_del.
1348 		 */
1349 		WRITE_ONCE(ctx->netdev, NULL);
1350 
1351 		/* Start skipping the RX resync logic completely. */
1352 		set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1353 
1354 		/* Sync with inflight packets. After this point:
1355 		 * TX: no non-encrypted packets will be passed to the driver.
1356 		 * RX: resync requests from the driver will be ignored.
1357 		 */
1358 		synchronize_net();
1359 
1360 		/* Release the offload context on the driver side. */
1361 		if (ctx->tx_conf == TLS_HW)
1362 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1363 							TLS_OFFLOAD_CTX_DIR_TX);
1364 		if (ctx->rx_conf == TLS_HW &&
1365 		    !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1366 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1367 							TLS_OFFLOAD_CTX_DIR_RX);
1368 
1369 		dev_put(netdev);
1370 
1371 		/* Move the context to a separate list for two reasons:
1372 		 * 1. When the context is deallocated, list_del is called.
1373 		 * 2. It's no longer an offloaded context, so we don't want to
1374 		 *    run offload-specific code on this context.
1375 		 */
1376 		spin_lock_irqsave(&tls_device_lock, flags);
1377 		list_move_tail(&ctx->list, &tls_device_down_list);
1378 		spin_unlock_irqrestore(&tls_device_lock, flags);
1379 
1380 		/* Device contexts for RX and TX will be freed in on sk_destruct
1381 		 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1382 		 * Now release the ref taken above.
1383 		 */
1384 		if (refcount_dec_and_test(&ctx->refcount)) {
1385 			/* sk_destruct ran after tls_device_down took a ref, and
1386 			 * it returned early. Complete the destruction here.
1387 			 */
1388 			list_del(&ctx->list);
1389 			tls_device_free_ctx(ctx);
1390 		}
1391 	}
1392 
1393 	up_write(&device_offload_lock);
1394 
1395 	flush_workqueue(destruct_wq);
1396 
1397 	return NOTIFY_DONE;
1398 }
1399 
1400 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1401 			 void *ptr)
1402 {
1403 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1404 
1405 	if (!dev->tlsdev_ops &&
1406 	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1407 		return NOTIFY_DONE;
1408 
1409 	switch (event) {
1410 	case NETDEV_REGISTER:
1411 	case NETDEV_FEAT_CHANGE:
1412 		if (netif_is_bond_master(dev))
1413 			return NOTIFY_DONE;
1414 		if ((dev->features & NETIF_F_HW_TLS_RX) &&
1415 		    !dev->tlsdev_ops->tls_dev_resync)
1416 			return NOTIFY_BAD;
1417 
1418 		if  (dev->tlsdev_ops &&
1419 		     dev->tlsdev_ops->tls_dev_add &&
1420 		     dev->tlsdev_ops->tls_dev_del)
1421 			return NOTIFY_DONE;
1422 		else
1423 			return NOTIFY_BAD;
1424 	case NETDEV_DOWN:
1425 		return tls_device_down(dev);
1426 	}
1427 	return NOTIFY_DONE;
1428 }
1429 
1430 static struct notifier_block tls_dev_notifier = {
1431 	.notifier_call	= tls_dev_event,
1432 };
1433 
1434 int __init tls_device_init(void)
1435 {
1436 	int err;
1437 
1438 	destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0);
1439 	if (!destruct_wq)
1440 		return -ENOMEM;
1441 
1442 	err = register_netdevice_notifier(&tls_dev_notifier);
1443 	if (err)
1444 		destroy_workqueue(destruct_wq);
1445 
1446 	return err;
1447 }
1448 
1449 void __exit tls_device_cleanup(void)
1450 {
1451 	unregister_netdevice_notifier(&tls_dev_notifier);
1452 	destroy_workqueue(destruct_wq);
1453 	clean_acked_data_flush();
1454 }
1455