1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved. 2 * 3 * This software is available to you under a choice of one of two 4 * licenses. You may choose to be licensed under the terms of the GNU 5 * General Public License (GPL) Version 2, available from the file 6 * COPYING in the main directory of this source tree, or the 7 * OpenIB.org BSD license below: 8 * 9 * Redistribution and use in source and binary forms, with or 10 * without modification, are permitted provided that the following 11 * conditions are met: 12 * 13 * - Redistributions of source code must retain the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer. 16 * 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 */ 31 32 #include <crypto/aead.h> 33 #include <linux/highmem.h> 34 #include <linux/module.h> 35 #include <linux/netdevice.h> 36 #include <net/dst.h> 37 #include <net/inet_connection_sock.h> 38 #include <net/tcp.h> 39 #include <net/tls.h> 40 41 #include "tls.h" 42 #include "trace.h" 43 44 /* device_offload_lock is used to synchronize tls_dev_add 45 * against NETDEV_DOWN notifications. 46 */ 47 static DECLARE_RWSEM(device_offload_lock); 48 49 static struct workqueue_struct *destruct_wq __read_mostly; 50 51 static LIST_HEAD(tls_device_list); 52 static LIST_HEAD(tls_device_down_list); 53 static DEFINE_SPINLOCK(tls_device_lock); 54 55 static struct page *dummy_page; 56 57 static void tls_device_free_ctx(struct tls_context *ctx) 58 { 59 if (ctx->tx_conf == TLS_HW) { 60 kfree(tls_offload_ctx_tx(ctx)); 61 kfree(ctx->tx.rec_seq); 62 kfree(ctx->tx.iv); 63 } 64 65 if (ctx->rx_conf == TLS_HW) 66 kfree(tls_offload_ctx_rx(ctx)); 67 68 tls_ctx_free(NULL, ctx); 69 } 70 71 static void tls_device_tx_del_task(struct work_struct *work) 72 { 73 struct tls_offload_context_tx *offload_ctx = 74 container_of(work, struct tls_offload_context_tx, destruct_work); 75 struct tls_context *ctx = offload_ctx->ctx; 76 struct net_device *netdev; 77 78 /* Safe, because this is the destroy flow, refcount is 0, so 79 * tls_device_down can't store this field in parallel. 80 */ 81 netdev = rcu_dereference_protected(ctx->netdev, 82 !refcount_read(&ctx->refcount)); 83 84 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX); 85 dev_put(netdev); 86 ctx->netdev = NULL; 87 tls_device_free_ctx(ctx); 88 } 89 90 static void tls_device_queue_ctx_destruction(struct tls_context *ctx) 91 { 92 struct net_device *netdev; 93 unsigned long flags; 94 bool async_cleanup; 95 96 spin_lock_irqsave(&tls_device_lock, flags); 97 if (unlikely(!refcount_dec_and_test(&ctx->refcount))) { 98 spin_unlock_irqrestore(&tls_device_lock, flags); 99 return; 100 } 101 102 list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */ 103 104 /* Safe, because this is the destroy flow, refcount is 0, so 105 * tls_device_down can't store this field in parallel. 106 */ 107 netdev = rcu_dereference_protected(ctx->netdev, 108 !refcount_read(&ctx->refcount)); 109 110 async_cleanup = netdev && ctx->tx_conf == TLS_HW; 111 if (async_cleanup) { 112 struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx); 113 114 /* queue_work inside the spinlock 115 * to make sure tls_device_down waits for that work. 116 */ 117 queue_work(destruct_wq, &offload_ctx->destruct_work); 118 } 119 spin_unlock_irqrestore(&tls_device_lock, flags); 120 121 if (!async_cleanup) 122 tls_device_free_ctx(ctx); 123 } 124 125 /* We assume that the socket is already connected */ 126 static struct net_device *get_netdev_for_sock(struct sock *sk) 127 { 128 struct dst_entry *dst = sk_dst_get(sk); 129 struct net_device *netdev = NULL; 130 131 if (likely(dst)) { 132 netdev = netdev_sk_get_lowest_dev(dst->dev, sk); 133 dev_hold(netdev); 134 } 135 136 dst_release(dst); 137 138 return netdev; 139 } 140 141 static void destroy_record(struct tls_record_info *record) 142 { 143 int i; 144 145 for (i = 0; i < record->num_frags; i++) 146 __skb_frag_unref(&record->frags[i], false); 147 kfree(record); 148 } 149 150 static void delete_all_records(struct tls_offload_context_tx *offload_ctx) 151 { 152 struct tls_record_info *info, *temp; 153 154 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { 155 list_del(&info->list); 156 destroy_record(info); 157 } 158 159 offload_ctx->retransmit_hint = NULL; 160 } 161 162 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) 163 { 164 struct tls_context *tls_ctx = tls_get_ctx(sk); 165 struct tls_record_info *info, *temp; 166 struct tls_offload_context_tx *ctx; 167 u64 deleted_records = 0; 168 unsigned long flags; 169 170 if (!tls_ctx) 171 return; 172 173 ctx = tls_offload_ctx_tx(tls_ctx); 174 175 spin_lock_irqsave(&ctx->lock, flags); 176 info = ctx->retransmit_hint; 177 if (info && !before(acked_seq, info->end_seq)) 178 ctx->retransmit_hint = NULL; 179 180 list_for_each_entry_safe(info, temp, &ctx->records_list, list) { 181 if (before(acked_seq, info->end_seq)) 182 break; 183 list_del(&info->list); 184 185 destroy_record(info); 186 deleted_records++; 187 } 188 189 ctx->unacked_record_sn += deleted_records; 190 spin_unlock_irqrestore(&ctx->lock, flags); 191 } 192 193 /* At this point, there should be no references on this 194 * socket and no in-flight SKBs associated with this 195 * socket, so it is safe to free all the resources. 196 */ 197 void tls_device_sk_destruct(struct sock *sk) 198 { 199 struct tls_context *tls_ctx = tls_get_ctx(sk); 200 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 201 202 tls_ctx->sk_destruct(sk); 203 204 if (tls_ctx->tx_conf == TLS_HW) { 205 if (ctx->open_record) 206 destroy_record(ctx->open_record); 207 delete_all_records(ctx); 208 crypto_free_aead(ctx->aead_send); 209 clean_acked_data_disable(inet_csk(sk)); 210 } 211 212 tls_device_queue_ctx_destruction(tls_ctx); 213 } 214 EXPORT_SYMBOL_GPL(tls_device_sk_destruct); 215 216 void tls_device_free_resources_tx(struct sock *sk) 217 { 218 struct tls_context *tls_ctx = tls_get_ctx(sk); 219 220 tls_free_partial_record(sk, tls_ctx); 221 } 222 223 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) 224 { 225 struct tls_context *tls_ctx = tls_get_ctx(sk); 226 227 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); 228 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 229 } 230 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); 231 232 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, 233 u32 seq) 234 { 235 struct net_device *netdev; 236 struct sk_buff *skb; 237 int err = 0; 238 u8 *rcd_sn; 239 240 skb = tcp_write_queue_tail(sk); 241 if (skb) 242 TCP_SKB_CB(skb)->eor = 1; 243 244 rcd_sn = tls_ctx->tx.rec_seq; 245 246 trace_tls_device_tx_resync_send(sk, seq, rcd_sn); 247 down_read(&device_offload_lock); 248 netdev = rcu_dereference_protected(tls_ctx->netdev, 249 lockdep_is_held(&device_offload_lock)); 250 if (netdev) 251 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, 252 rcd_sn, 253 TLS_OFFLOAD_CTX_DIR_TX); 254 up_read(&device_offload_lock); 255 if (err) 256 return; 257 258 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 259 } 260 261 static void tls_append_frag(struct tls_record_info *record, 262 struct page_frag *pfrag, 263 int size) 264 { 265 skb_frag_t *frag; 266 267 frag = &record->frags[record->num_frags - 1]; 268 if (skb_frag_page(frag) == pfrag->page && 269 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { 270 skb_frag_size_add(frag, size); 271 } else { 272 ++frag; 273 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset, 274 size); 275 ++record->num_frags; 276 get_page(pfrag->page); 277 } 278 279 pfrag->offset += size; 280 record->len += size; 281 } 282 283 static int tls_push_record(struct sock *sk, 284 struct tls_context *ctx, 285 struct tls_offload_context_tx *offload_ctx, 286 struct tls_record_info *record, 287 int flags) 288 { 289 struct tls_prot_info *prot = &ctx->prot_info; 290 struct tcp_sock *tp = tcp_sk(sk); 291 skb_frag_t *frag; 292 int i; 293 294 record->end_seq = tp->write_seq + record->len; 295 list_add_tail_rcu(&record->list, &offload_ctx->records_list); 296 offload_ctx->open_record = NULL; 297 298 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) 299 tls_device_resync_tx(sk, ctx, tp->write_seq); 300 301 tls_advance_record_sn(sk, prot, &ctx->tx); 302 303 for (i = 0; i < record->num_frags; i++) { 304 frag = &record->frags[i]; 305 sg_unmark_end(&offload_ctx->sg_tx_data[i]); 306 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), 307 skb_frag_size(frag), skb_frag_off(frag)); 308 sk_mem_charge(sk, skb_frag_size(frag)); 309 get_page(skb_frag_page(frag)); 310 } 311 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); 312 313 /* all ready, send */ 314 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); 315 } 316 317 static void tls_device_record_close(struct sock *sk, 318 struct tls_context *ctx, 319 struct tls_record_info *record, 320 struct page_frag *pfrag, 321 unsigned char record_type) 322 { 323 struct tls_prot_info *prot = &ctx->prot_info; 324 struct page_frag dummy_tag_frag; 325 326 /* append tag 327 * device will fill in the tag, we just need to append a placeholder 328 * use socket memory to improve coalescing (re-using a single buffer 329 * increases frag count) 330 * if we can't allocate memory now use the dummy page 331 */ 332 if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) && 333 !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) { 334 dummy_tag_frag.page = dummy_page; 335 dummy_tag_frag.offset = 0; 336 pfrag = &dummy_tag_frag; 337 } 338 tls_append_frag(record, pfrag, prot->tag_size); 339 340 /* fill prepend */ 341 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), 342 record->len - prot->overhead_size, 343 record_type); 344 } 345 346 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, 347 struct page_frag *pfrag, 348 size_t prepend_size) 349 { 350 struct tls_record_info *record; 351 skb_frag_t *frag; 352 353 record = kmalloc(sizeof(*record), GFP_KERNEL); 354 if (!record) 355 return -ENOMEM; 356 357 frag = &record->frags[0]; 358 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset, 359 prepend_size); 360 361 get_page(pfrag->page); 362 pfrag->offset += prepend_size; 363 364 record->num_frags = 1; 365 record->len = prepend_size; 366 offload_ctx->open_record = record; 367 return 0; 368 } 369 370 static int tls_do_allocation(struct sock *sk, 371 struct tls_offload_context_tx *offload_ctx, 372 struct page_frag *pfrag, 373 size_t prepend_size) 374 { 375 int ret; 376 377 if (!offload_ctx->open_record) { 378 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, 379 sk->sk_allocation))) { 380 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); 381 sk_stream_moderate_sndbuf(sk); 382 return -ENOMEM; 383 } 384 385 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); 386 if (ret) 387 return ret; 388 389 if (pfrag->size > pfrag->offset) 390 return 0; 391 } 392 393 if (!sk_page_frag_refill(sk, pfrag)) 394 return -ENOMEM; 395 396 return 0; 397 } 398 399 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) 400 { 401 size_t pre_copy, nocache; 402 403 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); 404 if (pre_copy) { 405 pre_copy = min(pre_copy, bytes); 406 if (copy_from_iter(addr, pre_copy, i) != pre_copy) 407 return -EFAULT; 408 bytes -= pre_copy; 409 addr += pre_copy; 410 } 411 412 nocache = round_down(bytes, SMP_CACHE_BYTES); 413 if (copy_from_iter_nocache(addr, nocache, i) != nocache) 414 return -EFAULT; 415 bytes -= nocache; 416 addr += nocache; 417 418 if (bytes && copy_from_iter(addr, bytes, i) != bytes) 419 return -EFAULT; 420 421 return 0; 422 } 423 424 static int tls_push_data(struct sock *sk, 425 struct iov_iter *iter, 426 size_t size, int flags, 427 unsigned char record_type) 428 { 429 struct tls_context *tls_ctx = tls_get_ctx(sk); 430 struct tls_prot_info *prot = &tls_ctx->prot_info; 431 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 432 struct tls_record_info *record; 433 int tls_push_record_flags; 434 struct page_frag *pfrag; 435 size_t orig_size = size; 436 u32 max_open_record_len; 437 bool more = false; 438 bool done = false; 439 int copy, rc = 0; 440 long timeo; 441 442 if (flags & 443 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 444 MSG_SPLICE_PAGES | MSG_EOR)) 445 return -EOPNOTSUPP; 446 447 if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR)) 448 return -EINVAL; 449 450 if (unlikely(sk->sk_err)) 451 return -sk->sk_err; 452 453 flags |= MSG_SENDPAGE_DECRYPTED; 454 tls_push_record_flags = flags | MSG_MORE; 455 456 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 457 if (tls_is_partially_sent_record(tls_ctx)) { 458 rc = tls_push_partial_record(sk, tls_ctx, flags); 459 if (rc < 0) 460 return rc; 461 } 462 463 pfrag = sk_page_frag(sk); 464 465 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and 466 * we need to leave room for an authentication tag. 467 */ 468 max_open_record_len = TLS_MAX_PAYLOAD_SIZE + 469 prot->prepend_size; 470 do { 471 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); 472 if (unlikely(rc)) { 473 rc = sk_stream_wait_memory(sk, &timeo); 474 if (!rc) 475 continue; 476 477 record = ctx->open_record; 478 if (!record) 479 break; 480 handle_error: 481 if (record_type != TLS_RECORD_TYPE_DATA) { 482 /* avoid sending partial 483 * record with type != 484 * application_data 485 */ 486 size = orig_size; 487 destroy_record(record); 488 ctx->open_record = NULL; 489 } else if (record->len > prot->prepend_size) { 490 goto last_record; 491 } 492 493 break; 494 } 495 496 record = ctx->open_record; 497 498 copy = min_t(size_t, size, max_open_record_len - record->len); 499 if (copy && (flags & MSG_SPLICE_PAGES)) { 500 struct page_frag zc_pfrag; 501 struct page **pages = &zc_pfrag.page; 502 size_t off; 503 504 rc = iov_iter_extract_pages(iter, &pages, 505 copy, 1, 0, &off); 506 if (rc <= 0) { 507 if (rc == 0) 508 rc = -EIO; 509 goto handle_error; 510 } 511 copy = rc; 512 513 if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) { 514 iov_iter_revert(iter, copy); 515 rc = -EIO; 516 goto handle_error; 517 } 518 519 zc_pfrag.offset = off; 520 zc_pfrag.size = copy; 521 tls_append_frag(record, &zc_pfrag, copy); 522 } else if (copy) { 523 copy = min_t(size_t, copy, pfrag->size - pfrag->offset); 524 525 rc = tls_device_copy_data(page_address(pfrag->page) + 526 pfrag->offset, copy, 527 iter); 528 if (rc) 529 goto handle_error; 530 tls_append_frag(record, pfrag, copy); 531 } 532 533 size -= copy; 534 if (!size) { 535 last_record: 536 tls_push_record_flags = flags; 537 if (flags & MSG_MORE) { 538 more = true; 539 break; 540 } 541 542 done = true; 543 } 544 545 if (done || record->len >= max_open_record_len || 546 (record->num_frags >= MAX_SKB_FRAGS - 1)) { 547 tls_device_record_close(sk, tls_ctx, record, 548 pfrag, record_type); 549 550 rc = tls_push_record(sk, 551 tls_ctx, 552 ctx, 553 record, 554 tls_push_record_flags); 555 if (rc < 0) 556 break; 557 } 558 } while (!done); 559 560 tls_ctx->pending_open_record_frags = more; 561 562 if (orig_size - size > 0) 563 rc = orig_size - size; 564 565 return rc; 566 } 567 568 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 569 { 570 unsigned char record_type = TLS_RECORD_TYPE_DATA; 571 struct tls_context *tls_ctx = tls_get_ctx(sk); 572 int rc; 573 574 if (!tls_ctx->zerocopy_sendfile) 575 msg->msg_flags &= ~MSG_SPLICE_PAGES; 576 577 mutex_lock(&tls_ctx->tx_lock); 578 lock_sock(sk); 579 580 if (unlikely(msg->msg_controllen)) { 581 rc = tls_process_cmsg(sk, msg, &record_type); 582 if (rc) 583 goto out; 584 } 585 586 rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags, 587 record_type); 588 589 out: 590 release_sock(sk); 591 mutex_unlock(&tls_ctx->tx_lock); 592 return rc; 593 } 594 595 void tls_device_splice_eof(struct socket *sock) 596 { 597 struct sock *sk = sock->sk; 598 struct tls_context *tls_ctx = tls_get_ctx(sk); 599 struct iov_iter iter = {}; 600 601 if (!tls_is_partially_sent_record(tls_ctx)) 602 return; 603 604 mutex_lock(&tls_ctx->tx_lock); 605 lock_sock(sk); 606 607 if (tls_is_partially_sent_record(tls_ctx)) { 608 iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0); 609 tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA); 610 } 611 612 release_sock(sk); 613 mutex_unlock(&tls_ctx->tx_lock); 614 } 615 616 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 617 u32 seq, u64 *p_record_sn) 618 { 619 u64 record_sn = context->hint_record_sn; 620 struct tls_record_info *info, *last; 621 622 info = context->retransmit_hint; 623 if (!info || 624 before(seq, info->end_seq - info->len)) { 625 /* if retransmit_hint is irrelevant start 626 * from the beginning of the list 627 */ 628 info = list_first_entry_or_null(&context->records_list, 629 struct tls_record_info, list); 630 if (!info) 631 return NULL; 632 /* send the start_marker record if seq number is before the 633 * tls offload start marker sequence number. This record is 634 * required to handle TCP packets which are before TLS offload 635 * started. 636 * And if it's not start marker, look if this seq number 637 * belongs to the list. 638 */ 639 if (likely(!tls_record_is_start_marker(info))) { 640 /* we have the first record, get the last record to see 641 * if this seq number belongs to the list. 642 */ 643 last = list_last_entry(&context->records_list, 644 struct tls_record_info, list); 645 646 if (!between(seq, tls_record_start_seq(info), 647 last->end_seq)) 648 return NULL; 649 } 650 record_sn = context->unacked_record_sn; 651 } 652 653 /* We just need the _rcu for the READ_ONCE() */ 654 rcu_read_lock(); 655 list_for_each_entry_from_rcu(info, &context->records_list, list) { 656 if (before(seq, info->end_seq)) { 657 if (!context->retransmit_hint || 658 after(info->end_seq, 659 context->retransmit_hint->end_seq)) { 660 context->hint_record_sn = record_sn; 661 context->retransmit_hint = info; 662 } 663 *p_record_sn = record_sn; 664 goto exit_rcu_unlock; 665 } 666 record_sn++; 667 } 668 info = NULL; 669 670 exit_rcu_unlock: 671 rcu_read_unlock(); 672 return info; 673 } 674 EXPORT_SYMBOL(tls_get_record); 675 676 static int tls_device_push_pending_record(struct sock *sk, int flags) 677 { 678 struct iov_iter iter; 679 680 iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0); 681 return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA); 682 } 683 684 void tls_device_write_space(struct sock *sk, struct tls_context *ctx) 685 { 686 if (tls_is_partially_sent_record(ctx)) { 687 gfp_t sk_allocation = sk->sk_allocation; 688 689 WARN_ON_ONCE(sk->sk_write_pending); 690 691 sk->sk_allocation = GFP_ATOMIC; 692 tls_push_partial_record(sk, ctx, 693 MSG_DONTWAIT | MSG_NOSIGNAL | 694 MSG_SENDPAGE_DECRYPTED); 695 sk->sk_allocation = sk_allocation; 696 } 697 } 698 699 static void tls_device_resync_rx(struct tls_context *tls_ctx, 700 struct sock *sk, u32 seq, u8 *rcd_sn) 701 { 702 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 703 struct net_device *netdev; 704 705 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); 706 rcu_read_lock(); 707 netdev = rcu_dereference(tls_ctx->netdev); 708 if (netdev) 709 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, 710 TLS_OFFLOAD_CTX_DIR_RX); 711 rcu_read_unlock(); 712 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); 713 } 714 715 static bool 716 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, 717 s64 resync_req, u32 *seq, u16 *rcd_delta) 718 { 719 u32 is_async = resync_req & RESYNC_REQ_ASYNC; 720 u32 req_seq = resync_req >> 32; 721 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); 722 u16 i; 723 724 *rcd_delta = 0; 725 726 if (is_async) { 727 /* shouldn't get to wraparound: 728 * too long in async stage, something bad happened 729 */ 730 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) 731 return false; 732 733 /* asynchronous stage: log all headers seq such that 734 * req_seq <= seq <= end_seq, and wait for real resync request 735 */ 736 if (before(*seq, req_seq)) 737 return false; 738 if (!after(*seq, req_end) && 739 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) 740 resync_async->log[resync_async->loglen++] = *seq; 741 742 resync_async->rcd_delta++; 743 744 return false; 745 } 746 747 /* synchronous stage: check against the logged entries and 748 * proceed to check the next entries if no match was found 749 */ 750 for (i = 0; i < resync_async->loglen; i++) 751 if (req_seq == resync_async->log[i] && 752 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) { 753 *rcd_delta = resync_async->rcd_delta - i; 754 *seq = req_seq; 755 resync_async->loglen = 0; 756 resync_async->rcd_delta = 0; 757 return true; 758 } 759 760 resync_async->loglen = 0; 761 resync_async->rcd_delta = 0; 762 763 if (req_seq == *seq && 764 atomic64_try_cmpxchg(&resync_async->req, 765 &resync_req, 0)) 766 return true; 767 768 return false; 769 } 770 771 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) 772 { 773 struct tls_context *tls_ctx = tls_get_ctx(sk); 774 struct tls_offload_context_rx *rx_ctx; 775 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 776 u32 sock_data, is_req_pending; 777 struct tls_prot_info *prot; 778 s64 resync_req; 779 u16 rcd_delta; 780 u32 req_seq; 781 782 if (tls_ctx->rx_conf != TLS_HW) 783 return; 784 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) 785 return; 786 787 prot = &tls_ctx->prot_info; 788 rx_ctx = tls_offload_ctx_rx(tls_ctx); 789 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 790 791 switch (rx_ctx->resync_type) { 792 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: 793 resync_req = atomic64_read(&rx_ctx->resync_req); 794 req_seq = resync_req >> 32; 795 seq += TLS_HEADER_SIZE - 1; 796 is_req_pending = resync_req; 797 798 if (likely(!is_req_pending) || req_seq != seq || 799 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) 800 return; 801 break; 802 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: 803 if (likely(!rx_ctx->resync_nh_do_now)) 804 return; 805 806 /* head of next rec is already in, note that the sock_inq will 807 * include the currently parsed message when called from parser 808 */ 809 sock_data = tcp_inq(sk); 810 if (sock_data > rcd_len) { 811 trace_tls_device_rx_resync_nh_delay(sk, sock_data, 812 rcd_len); 813 return; 814 } 815 816 rx_ctx->resync_nh_do_now = 0; 817 seq += rcd_len; 818 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 819 break; 820 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: 821 resync_req = atomic64_read(&rx_ctx->resync_async->req); 822 is_req_pending = resync_req; 823 if (likely(!is_req_pending)) 824 return; 825 826 if (!tls_device_rx_resync_async(rx_ctx->resync_async, 827 resync_req, &seq, &rcd_delta)) 828 return; 829 tls_bigint_subtract(rcd_sn, rcd_delta); 830 break; 831 } 832 833 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); 834 } 835 836 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, 837 struct tls_offload_context_rx *ctx, 838 struct sock *sk, struct sk_buff *skb) 839 { 840 struct strp_msg *rxm; 841 842 /* device will request resyncs by itself based on stream scan */ 843 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) 844 return; 845 /* already scheduled */ 846 if (ctx->resync_nh_do_now) 847 return; 848 /* seen decrypted fragments since last fully-failed record */ 849 if (ctx->resync_nh_reset) { 850 ctx->resync_nh_reset = 0; 851 ctx->resync_nh.decrypted_failed = 1; 852 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; 853 return; 854 } 855 856 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) 857 return; 858 859 /* doing resync, bump the next target in case it fails */ 860 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) 861 ctx->resync_nh.decrypted_tgt *= 2; 862 else 863 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; 864 865 rxm = strp_msg(skb); 866 867 /* head of next rec is already in, parser will sync for us */ 868 if (tcp_inq(sk) > rxm->full_len) { 869 trace_tls_device_rx_resync_nh_schedule(sk); 870 ctx->resync_nh_do_now = 1; 871 } else { 872 struct tls_prot_info *prot = &tls_ctx->prot_info; 873 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 874 875 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 876 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 877 878 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, 879 rcd_sn); 880 } 881 } 882 883 static int 884 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx) 885 { 886 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx); 887 const struct tls_cipher_size_desc *cipher_sz; 888 int err, offset, copy, data_len, pos; 889 struct sk_buff *skb, *skb_iter; 890 struct scatterlist sg[1]; 891 struct strp_msg *rxm; 892 char *orig_buf, *buf; 893 894 switch (tls_ctx->crypto_recv.info.cipher_type) { 895 case TLS_CIPHER_AES_GCM_128: 896 case TLS_CIPHER_AES_GCM_256: 897 break; 898 default: 899 return -EINVAL; 900 } 901 cipher_sz = &tls_cipher_size_desc[tls_ctx->crypto_recv.info.cipher_type]; 902 903 rxm = strp_msg(tls_strp_msg(sw_ctx)); 904 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv, 905 sk->sk_allocation); 906 if (!orig_buf) 907 return -ENOMEM; 908 buf = orig_buf; 909 910 err = tls_strp_msg_cow(sw_ctx); 911 if (unlikely(err)) 912 goto free_buf; 913 914 skb = tls_strp_msg(sw_ctx); 915 rxm = strp_msg(skb); 916 offset = rxm->offset; 917 918 sg_init_table(sg, 1); 919 sg_set_buf(&sg[0], buf, 920 rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv); 921 err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_sz->iv); 922 if (err) 923 goto free_buf; 924 925 /* We are interested only in the decrypted data not the auth */ 926 err = decrypt_skb(sk, sg); 927 if (err != -EBADMSG) 928 goto free_buf; 929 else 930 err = 0; 931 932 data_len = rxm->full_len - cipher_sz->tag; 933 934 if (skb_pagelen(skb) > offset) { 935 copy = min_t(int, skb_pagelen(skb) - offset, data_len); 936 937 if (skb->decrypted) { 938 err = skb_store_bits(skb, offset, buf, copy); 939 if (err) 940 goto free_buf; 941 } 942 943 offset += copy; 944 buf += copy; 945 } 946 947 pos = skb_pagelen(skb); 948 skb_walk_frags(skb, skb_iter) { 949 int frag_pos; 950 951 /* Practically all frags must belong to msg if reencrypt 952 * is needed with current strparser and coalescing logic, 953 * but strparser may "get optimized", so let's be safe. 954 */ 955 if (pos + skb_iter->len <= offset) 956 goto done_with_frag; 957 if (pos >= data_len + rxm->offset) 958 break; 959 960 frag_pos = offset - pos; 961 copy = min_t(int, skb_iter->len - frag_pos, 962 data_len + rxm->offset - offset); 963 964 if (skb_iter->decrypted) { 965 err = skb_store_bits(skb_iter, frag_pos, buf, copy); 966 if (err) 967 goto free_buf; 968 } 969 970 offset += copy; 971 buf += copy; 972 done_with_frag: 973 pos += skb_iter->len; 974 } 975 976 free_buf: 977 kfree(orig_buf); 978 return err; 979 } 980 981 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) 982 { 983 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); 984 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx); 985 struct sk_buff *skb = tls_strp_msg(sw_ctx); 986 struct strp_msg *rxm = strp_msg(skb); 987 int is_decrypted, is_encrypted; 988 989 if (!tls_strp_msg_mixed_decrypted(sw_ctx)) { 990 is_decrypted = skb->decrypted; 991 is_encrypted = !is_decrypted; 992 } else { 993 is_decrypted = 0; 994 is_encrypted = 0; 995 } 996 997 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, 998 tls_ctx->rx.rec_seq, rxm->full_len, 999 is_encrypted, is_decrypted); 1000 1001 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) { 1002 if (likely(is_encrypted || is_decrypted)) 1003 return is_decrypted; 1004 1005 /* After tls_device_down disables the offload, the next SKB will 1006 * likely have initial fragments decrypted, and final ones not 1007 * decrypted. We need to reencrypt that single SKB. 1008 */ 1009 return tls_device_reencrypt(sk, tls_ctx); 1010 } 1011 1012 /* Return immediately if the record is either entirely plaintext or 1013 * entirely ciphertext. Otherwise handle reencrypt partially decrypted 1014 * record. 1015 */ 1016 if (is_decrypted) { 1017 ctx->resync_nh_reset = 1; 1018 return is_decrypted; 1019 } 1020 if (is_encrypted) { 1021 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); 1022 return 0; 1023 } 1024 1025 ctx->resync_nh_reset = 1; 1026 return tls_device_reencrypt(sk, tls_ctx); 1027 } 1028 1029 static void tls_device_attach(struct tls_context *ctx, struct sock *sk, 1030 struct net_device *netdev) 1031 { 1032 if (sk->sk_destruct != tls_device_sk_destruct) { 1033 refcount_set(&ctx->refcount, 1); 1034 dev_hold(netdev); 1035 RCU_INIT_POINTER(ctx->netdev, netdev); 1036 spin_lock_irq(&tls_device_lock); 1037 list_add_tail(&ctx->list, &tls_device_list); 1038 spin_unlock_irq(&tls_device_lock); 1039 1040 ctx->sk_destruct = sk->sk_destruct; 1041 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); 1042 } 1043 } 1044 1045 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 1046 { 1047 struct tls_context *tls_ctx = tls_get_ctx(sk); 1048 struct tls_prot_info *prot = &tls_ctx->prot_info; 1049 const struct tls_cipher_size_desc *cipher_sz; 1050 struct tls_record_info *start_marker_record; 1051 struct tls_offload_context_tx *offload_ctx; 1052 struct tls_crypto_info *crypto_info; 1053 struct net_device *netdev; 1054 char *iv, *rec_seq; 1055 struct sk_buff *skb; 1056 __be64 rcd_sn; 1057 int rc; 1058 1059 if (!ctx) 1060 return -EINVAL; 1061 1062 if (ctx->priv_ctx_tx) 1063 return -EEXIST; 1064 1065 netdev = get_netdev_for_sock(sk); 1066 if (!netdev) { 1067 pr_err_ratelimited("%s: netdev not found\n", __func__); 1068 return -EINVAL; 1069 } 1070 1071 if (!(netdev->features & NETIF_F_HW_TLS_TX)) { 1072 rc = -EOPNOTSUPP; 1073 goto release_netdev; 1074 } 1075 1076 crypto_info = &ctx->crypto_send.info; 1077 if (crypto_info->version != TLS_1_2_VERSION) { 1078 rc = -EOPNOTSUPP; 1079 goto release_netdev; 1080 } 1081 1082 switch (crypto_info->cipher_type) { 1083 case TLS_CIPHER_AES_GCM_128: 1084 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 1085 rec_seq = 1086 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 1087 break; 1088 case TLS_CIPHER_AES_GCM_256: 1089 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 1090 rec_seq = 1091 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 1092 break; 1093 default: 1094 rc = -EINVAL; 1095 goto release_netdev; 1096 } 1097 cipher_sz = &tls_cipher_size_desc[crypto_info->cipher_type]; 1098 1099 /* Sanity-check the rec_seq_size for stack allocations */ 1100 if (cipher_sz->rec_seq > TLS_MAX_REC_SEQ_SIZE) { 1101 rc = -EINVAL; 1102 goto release_netdev; 1103 } 1104 1105 prot->version = crypto_info->version; 1106 prot->cipher_type = crypto_info->cipher_type; 1107 prot->prepend_size = TLS_HEADER_SIZE + cipher_sz->iv; 1108 prot->tag_size = cipher_sz->tag; 1109 prot->overhead_size = prot->prepend_size + prot->tag_size; 1110 prot->iv_size = cipher_sz->iv; 1111 prot->salt_size = cipher_sz->salt; 1112 ctx->tx.iv = kmalloc(cipher_sz->iv + cipher_sz->salt, GFP_KERNEL); 1113 if (!ctx->tx.iv) { 1114 rc = -ENOMEM; 1115 goto release_netdev; 1116 } 1117 1118 memcpy(ctx->tx.iv + cipher_sz->salt, iv, cipher_sz->iv); 1119 1120 prot->rec_seq_size = cipher_sz->rec_seq; 1121 ctx->tx.rec_seq = kmemdup(rec_seq, cipher_sz->rec_seq, GFP_KERNEL); 1122 if (!ctx->tx.rec_seq) { 1123 rc = -ENOMEM; 1124 goto free_iv; 1125 } 1126 1127 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); 1128 if (!start_marker_record) { 1129 rc = -ENOMEM; 1130 goto free_rec_seq; 1131 } 1132 1133 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); 1134 if (!offload_ctx) { 1135 rc = -ENOMEM; 1136 goto free_marker_record; 1137 } 1138 1139 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); 1140 if (rc) 1141 goto free_offload_ctx; 1142 1143 /* start at rec_seq - 1 to account for the start marker record */ 1144 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); 1145 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; 1146 1147 start_marker_record->end_seq = tcp_sk(sk)->write_seq; 1148 start_marker_record->len = 0; 1149 start_marker_record->num_frags = 0; 1150 1151 INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task); 1152 offload_ctx->ctx = ctx; 1153 1154 INIT_LIST_HEAD(&offload_ctx->records_list); 1155 list_add_tail(&start_marker_record->list, &offload_ctx->records_list); 1156 spin_lock_init(&offload_ctx->lock); 1157 sg_init_table(offload_ctx->sg_tx_data, 1158 ARRAY_SIZE(offload_ctx->sg_tx_data)); 1159 1160 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); 1161 ctx->push_pending_record = tls_device_push_pending_record; 1162 1163 /* TLS offload is greatly simplified if we don't send 1164 * SKBs where only part of the payload needs to be encrypted. 1165 * So mark the last skb in the write queue as end of record. 1166 */ 1167 skb = tcp_write_queue_tail(sk); 1168 if (skb) 1169 TCP_SKB_CB(skb)->eor = 1; 1170 1171 /* Avoid offloading if the device is down 1172 * We don't want to offload new flows after 1173 * the NETDEV_DOWN event 1174 * 1175 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1176 * handler thus protecting from the device going down before 1177 * ctx was added to tls_device_list. 1178 */ 1179 down_read(&device_offload_lock); 1180 if (!(netdev->flags & IFF_UP)) { 1181 rc = -EINVAL; 1182 goto release_lock; 1183 } 1184 1185 ctx->priv_ctx_tx = offload_ctx; 1186 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, 1187 &ctx->crypto_send.info, 1188 tcp_sk(sk)->write_seq); 1189 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, 1190 tcp_sk(sk)->write_seq, rec_seq, rc); 1191 if (rc) 1192 goto release_lock; 1193 1194 tls_device_attach(ctx, sk, netdev); 1195 up_read(&device_offload_lock); 1196 1197 /* following this assignment tls_is_skb_tx_device_offloaded 1198 * will return true and the context might be accessed 1199 * by the netdev's xmit function. 1200 */ 1201 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); 1202 dev_put(netdev); 1203 1204 return 0; 1205 1206 release_lock: 1207 up_read(&device_offload_lock); 1208 clean_acked_data_disable(inet_csk(sk)); 1209 crypto_free_aead(offload_ctx->aead_send); 1210 free_offload_ctx: 1211 kfree(offload_ctx); 1212 ctx->priv_ctx_tx = NULL; 1213 free_marker_record: 1214 kfree(start_marker_record); 1215 free_rec_seq: 1216 kfree(ctx->tx.rec_seq); 1217 free_iv: 1218 kfree(ctx->tx.iv); 1219 release_netdev: 1220 dev_put(netdev); 1221 return rc; 1222 } 1223 1224 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 1225 { 1226 struct tls12_crypto_info_aes_gcm_128 *info; 1227 struct tls_offload_context_rx *context; 1228 struct net_device *netdev; 1229 int rc = 0; 1230 1231 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) 1232 return -EOPNOTSUPP; 1233 1234 netdev = get_netdev_for_sock(sk); 1235 if (!netdev) { 1236 pr_err_ratelimited("%s: netdev not found\n", __func__); 1237 return -EINVAL; 1238 } 1239 1240 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 1241 rc = -EOPNOTSUPP; 1242 goto release_netdev; 1243 } 1244 1245 /* Avoid offloading if the device is down 1246 * We don't want to offload new flows after 1247 * the NETDEV_DOWN event 1248 * 1249 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1250 * handler thus protecting from the device going down before 1251 * ctx was added to tls_device_list. 1252 */ 1253 down_read(&device_offload_lock); 1254 if (!(netdev->flags & IFF_UP)) { 1255 rc = -EINVAL; 1256 goto release_lock; 1257 } 1258 1259 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); 1260 if (!context) { 1261 rc = -ENOMEM; 1262 goto release_lock; 1263 } 1264 context->resync_nh_reset = 1; 1265 1266 ctx->priv_ctx_rx = context; 1267 rc = tls_set_sw_offload(sk, ctx, 0); 1268 if (rc) 1269 goto release_ctx; 1270 1271 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, 1272 &ctx->crypto_recv.info, 1273 tcp_sk(sk)->copied_seq); 1274 info = (void *)&ctx->crypto_recv.info; 1275 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, 1276 tcp_sk(sk)->copied_seq, info->rec_seq, rc); 1277 if (rc) 1278 goto free_sw_resources; 1279 1280 tls_device_attach(ctx, sk, netdev); 1281 up_read(&device_offload_lock); 1282 1283 dev_put(netdev); 1284 1285 return 0; 1286 1287 free_sw_resources: 1288 up_read(&device_offload_lock); 1289 tls_sw_free_resources_rx(sk); 1290 down_read(&device_offload_lock); 1291 release_ctx: 1292 ctx->priv_ctx_rx = NULL; 1293 release_lock: 1294 up_read(&device_offload_lock); 1295 release_netdev: 1296 dev_put(netdev); 1297 return rc; 1298 } 1299 1300 void tls_device_offload_cleanup_rx(struct sock *sk) 1301 { 1302 struct tls_context *tls_ctx = tls_get_ctx(sk); 1303 struct net_device *netdev; 1304 1305 down_read(&device_offload_lock); 1306 netdev = rcu_dereference_protected(tls_ctx->netdev, 1307 lockdep_is_held(&device_offload_lock)); 1308 if (!netdev) 1309 goto out; 1310 1311 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, 1312 TLS_OFFLOAD_CTX_DIR_RX); 1313 1314 if (tls_ctx->tx_conf != TLS_HW) { 1315 dev_put(netdev); 1316 rcu_assign_pointer(tls_ctx->netdev, NULL); 1317 } else { 1318 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags); 1319 } 1320 out: 1321 up_read(&device_offload_lock); 1322 tls_sw_release_resources_rx(sk); 1323 } 1324 1325 static int tls_device_down(struct net_device *netdev) 1326 { 1327 struct tls_context *ctx, *tmp; 1328 unsigned long flags; 1329 LIST_HEAD(list); 1330 1331 /* Request a write lock to block new offload attempts */ 1332 down_write(&device_offload_lock); 1333 1334 spin_lock_irqsave(&tls_device_lock, flags); 1335 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { 1336 struct net_device *ctx_netdev = 1337 rcu_dereference_protected(ctx->netdev, 1338 lockdep_is_held(&device_offload_lock)); 1339 1340 if (ctx_netdev != netdev || 1341 !refcount_inc_not_zero(&ctx->refcount)) 1342 continue; 1343 1344 list_move(&ctx->list, &list); 1345 } 1346 spin_unlock_irqrestore(&tls_device_lock, flags); 1347 1348 list_for_each_entry_safe(ctx, tmp, &list, list) { 1349 /* Stop offloaded TX and switch to the fallback. 1350 * tls_is_skb_tx_device_offloaded will return false. 1351 */ 1352 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw); 1353 1354 /* Stop the RX and TX resync. 1355 * tls_dev_resync must not be called after tls_dev_del. 1356 */ 1357 rcu_assign_pointer(ctx->netdev, NULL); 1358 1359 /* Start skipping the RX resync logic completely. */ 1360 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags); 1361 1362 /* Sync with inflight packets. After this point: 1363 * TX: no non-encrypted packets will be passed to the driver. 1364 * RX: resync requests from the driver will be ignored. 1365 */ 1366 synchronize_net(); 1367 1368 /* Release the offload context on the driver side. */ 1369 if (ctx->tx_conf == TLS_HW) 1370 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1371 TLS_OFFLOAD_CTX_DIR_TX); 1372 if (ctx->rx_conf == TLS_HW && 1373 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags)) 1374 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1375 TLS_OFFLOAD_CTX_DIR_RX); 1376 1377 dev_put(netdev); 1378 1379 /* Move the context to a separate list for two reasons: 1380 * 1. When the context is deallocated, list_del is called. 1381 * 2. It's no longer an offloaded context, so we don't want to 1382 * run offload-specific code on this context. 1383 */ 1384 spin_lock_irqsave(&tls_device_lock, flags); 1385 list_move_tail(&ctx->list, &tls_device_down_list); 1386 spin_unlock_irqrestore(&tls_device_lock, flags); 1387 1388 /* Device contexts for RX and TX will be freed in on sk_destruct 1389 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW. 1390 * Now release the ref taken above. 1391 */ 1392 if (refcount_dec_and_test(&ctx->refcount)) { 1393 /* sk_destruct ran after tls_device_down took a ref, and 1394 * it returned early. Complete the destruction here. 1395 */ 1396 list_del(&ctx->list); 1397 tls_device_free_ctx(ctx); 1398 } 1399 } 1400 1401 up_write(&device_offload_lock); 1402 1403 flush_workqueue(destruct_wq); 1404 1405 return NOTIFY_DONE; 1406 } 1407 1408 static int tls_dev_event(struct notifier_block *this, unsigned long event, 1409 void *ptr) 1410 { 1411 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1412 1413 if (!dev->tlsdev_ops && 1414 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) 1415 return NOTIFY_DONE; 1416 1417 switch (event) { 1418 case NETDEV_REGISTER: 1419 case NETDEV_FEAT_CHANGE: 1420 if (netif_is_bond_master(dev)) 1421 return NOTIFY_DONE; 1422 if ((dev->features & NETIF_F_HW_TLS_RX) && 1423 !dev->tlsdev_ops->tls_dev_resync) 1424 return NOTIFY_BAD; 1425 1426 if (dev->tlsdev_ops && 1427 dev->tlsdev_ops->tls_dev_add && 1428 dev->tlsdev_ops->tls_dev_del) 1429 return NOTIFY_DONE; 1430 else 1431 return NOTIFY_BAD; 1432 case NETDEV_DOWN: 1433 return tls_device_down(dev); 1434 } 1435 return NOTIFY_DONE; 1436 } 1437 1438 static struct notifier_block tls_dev_notifier = { 1439 .notifier_call = tls_dev_event, 1440 }; 1441 1442 int __init tls_device_init(void) 1443 { 1444 int err; 1445 1446 dummy_page = alloc_page(GFP_KERNEL); 1447 if (!dummy_page) 1448 return -ENOMEM; 1449 1450 destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0); 1451 if (!destruct_wq) { 1452 err = -ENOMEM; 1453 goto err_free_dummy; 1454 } 1455 1456 err = register_netdevice_notifier(&tls_dev_notifier); 1457 if (err) 1458 goto err_destroy_wq; 1459 1460 return 0; 1461 1462 err_destroy_wq: 1463 destroy_workqueue(destruct_wq); 1464 err_free_dummy: 1465 put_page(dummy_page); 1466 return err; 1467 } 1468 1469 void __exit tls_device_cleanup(void) 1470 { 1471 unregister_netdevice_notifier(&tls_dev_notifier); 1472 destroy_workqueue(destruct_wq); 1473 clean_acked_data_flush(); 1474 put_page(dummy_page); 1475 } 1476