xref: /openbmc/linux/net/tls/tls_device.c (revision 5fb859f7)
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40 
41 #include "tls.h"
42 #include "trace.h"
43 
44 /* device_offload_lock is used to synchronize tls_dev_add
45  * against NETDEV_DOWN notifications.
46  */
47 static DECLARE_RWSEM(device_offload_lock);
48 
49 static void tls_device_gc_task(struct work_struct *work);
50 
51 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
52 static LIST_HEAD(tls_device_gc_list);
53 static LIST_HEAD(tls_device_list);
54 static LIST_HEAD(tls_device_down_list);
55 static DEFINE_SPINLOCK(tls_device_lock);
56 
57 static void tls_device_free_ctx(struct tls_context *ctx)
58 {
59 	if (ctx->tx_conf == TLS_HW) {
60 		kfree(tls_offload_ctx_tx(ctx));
61 		kfree(ctx->tx.rec_seq);
62 		kfree(ctx->tx.iv);
63 	}
64 
65 	if (ctx->rx_conf == TLS_HW)
66 		kfree(tls_offload_ctx_rx(ctx));
67 
68 	tls_ctx_free(NULL, ctx);
69 }
70 
71 static void tls_device_gc_task(struct work_struct *work)
72 {
73 	struct tls_context *ctx, *tmp;
74 	unsigned long flags;
75 	LIST_HEAD(gc_list);
76 
77 	spin_lock_irqsave(&tls_device_lock, flags);
78 	list_splice_init(&tls_device_gc_list, &gc_list);
79 	spin_unlock_irqrestore(&tls_device_lock, flags);
80 
81 	list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
82 		struct net_device *netdev = ctx->netdev;
83 
84 		if (netdev && ctx->tx_conf == TLS_HW) {
85 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
86 							TLS_OFFLOAD_CTX_DIR_TX);
87 			dev_put(netdev);
88 			ctx->netdev = NULL;
89 		}
90 
91 		list_del(&ctx->list);
92 		tls_device_free_ctx(ctx);
93 	}
94 }
95 
96 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
97 {
98 	unsigned long flags;
99 
100 	spin_lock_irqsave(&tls_device_lock, flags);
101 	list_move_tail(&ctx->list, &tls_device_gc_list);
102 
103 	/* schedule_work inside the spinlock
104 	 * to make sure tls_device_down waits for that work.
105 	 */
106 	schedule_work(&tls_device_gc_work);
107 
108 	spin_unlock_irqrestore(&tls_device_lock, flags);
109 }
110 
111 /* We assume that the socket is already connected */
112 static struct net_device *get_netdev_for_sock(struct sock *sk)
113 {
114 	struct dst_entry *dst = sk_dst_get(sk);
115 	struct net_device *netdev = NULL;
116 
117 	if (likely(dst)) {
118 		netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
119 		dev_hold(netdev);
120 	}
121 
122 	dst_release(dst);
123 
124 	return netdev;
125 }
126 
127 static void destroy_record(struct tls_record_info *record)
128 {
129 	int i;
130 
131 	for (i = 0; i < record->num_frags; i++)
132 		__skb_frag_unref(&record->frags[i], false);
133 	kfree(record);
134 }
135 
136 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
137 {
138 	struct tls_record_info *info, *temp;
139 
140 	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
141 		list_del(&info->list);
142 		destroy_record(info);
143 	}
144 
145 	offload_ctx->retransmit_hint = NULL;
146 }
147 
148 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
149 {
150 	struct tls_context *tls_ctx = tls_get_ctx(sk);
151 	struct tls_record_info *info, *temp;
152 	struct tls_offload_context_tx *ctx;
153 	u64 deleted_records = 0;
154 	unsigned long flags;
155 
156 	if (!tls_ctx)
157 		return;
158 
159 	ctx = tls_offload_ctx_tx(tls_ctx);
160 
161 	spin_lock_irqsave(&ctx->lock, flags);
162 	info = ctx->retransmit_hint;
163 	if (info && !before(acked_seq, info->end_seq))
164 		ctx->retransmit_hint = NULL;
165 
166 	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
167 		if (before(acked_seq, info->end_seq))
168 			break;
169 		list_del(&info->list);
170 
171 		destroy_record(info);
172 		deleted_records++;
173 	}
174 
175 	ctx->unacked_record_sn += deleted_records;
176 	spin_unlock_irqrestore(&ctx->lock, flags);
177 }
178 
179 /* At this point, there should be no references on this
180  * socket and no in-flight SKBs associated with this
181  * socket, so it is safe to free all the resources.
182  */
183 void tls_device_sk_destruct(struct sock *sk)
184 {
185 	struct tls_context *tls_ctx = tls_get_ctx(sk);
186 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
187 
188 	tls_ctx->sk_destruct(sk);
189 
190 	if (tls_ctx->tx_conf == TLS_HW) {
191 		if (ctx->open_record)
192 			destroy_record(ctx->open_record);
193 		delete_all_records(ctx);
194 		crypto_free_aead(ctx->aead_send);
195 		clean_acked_data_disable(inet_csk(sk));
196 	}
197 
198 	if (refcount_dec_and_test(&tls_ctx->refcount))
199 		tls_device_queue_ctx_destruction(tls_ctx);
200 }
201 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
202 
203 void tls_device_free_resources_tx(struct sock *sk)
204 {
205 	struct tls_context *tls_ctx = tls_get_ctx(sk);
206 
207 	tls_free_partial_record(sk, tls_ctx);
208 }
209 
210 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
211 {
212 	struct tls_context *tls_ctx = tls_get_ctx(sk);
213 
214 	trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
215 	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
216 }
217 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
218 
219 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
220 				 u32 seq)
221 {
222 	struct net_device *netdev;
223 	struct sk_buff *skb;
224 	int err = 0;
225 	u8 *rcd_sn;
226 
227 	skb = tcp_write_queue_tail(sk);
228 	if (skb)
229 		TCP_SKB_CB(skb)->eor = 1;
230 
231 	rcd_sn = tls_ctx->tx.rec_seq;
232 
233 	trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
234 	down_read(&device_offload_lock);
235 	netdev = tls_ctx->netdev;
236 	if (netdev)
237 		err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
238 							 rcd_sn,
239 							 TLS_OFFLOAD_CTX_DIR_TX);
240 	up_read(&device_offload_lock);
241 	if (err)
242 		return;
243 
244 	clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
245 }
246 
247 static void tls_append_frag(struct tls_record_info *record,
248 			    struct page_frag *pfrag,
249 			    int size)
250 {
251 	skb_frag_t *frag;
252 
253 	frag = &record->frags[record->num_frags - 1];
254 	if (skb_frag_page(frag) == pfrag->page &&
255 	    skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
256 		skb_frag_size_add(frag, size);
257 	} else {
258 		++frag;
259 		__skb_frag_set_page(frag, pfrag->page);
260 		skb_frag_off_set(frag, pfrag->offset);
261 		skb_frag_size_set(frag, size);
262 		++record->num_frags;
263 		get_page(pfrag->page);
264 	}
265 
266 	pfrag->offset += size;
267 	record->len += size;
268 }
269 
270 static int tls_push_record(struct sock *sk,
271 			   struct tls_context *ctx,
272 			   struct tls_offload_context_tx *offload_ctx,
273 			   struct tls_record_info *record,
274 			   int flags)
275 {
276 	struct tls_prot_info *prot = &ctx->prot_info;
277 	struct tcp_sock *tp = tcp_sk(sk);
278 	skb_frag_t *frag;
279 	int i;
280 
281 	record->end_seq = tp->write_seq + record->len;
282 	list_add_tail_rcu(&record->list, &offload_ctx->records_list);
283 	offload_ctx->open_record = NULL;
284 
285 	if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
286 		tls_device_resync_tx(sk, ctx, tp->write_seq);
287 
288 	tls_advance_record_sn(sk, prot, &ctx->tx);
289 
290 	for (i = 0; i < record->num_frags; i++) {
291 		frag = &record->frags[i];
292 		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
293 		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
294 			    skb_frag_size(frag), skb_frag_off(frag));
295 		sk_mem_charge(sk, skb_frag_size(frag));
296 		get_page(skb_frag_page(frag));
297 	}
298 	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
299 
300 	/* all ready, send */
301 	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
302 }
303 
304 static int tls_device_record_close(struct sock *sk,
305 				   struct tls_context *ctx,
306 				   struct tls_record_info *record,
307 				   struct page_frag *pfrag,
308 				   unsigned char record_type)
309 {
310 	struct tls_prot_info *prot = &ctx->prot_info;
311 	int ret;
312 
313 	/* append tag
314 	 * device will fill in the tag, we just need to append a placeholder
315 	 * use socket memory to improve coalescing (re-using a single buffer
316 	 * increases frag count)
317 	 * if we can't allocate memory now, steal some back from data
318 	 */
319 	if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
320 					sk->sk_allocation))) {
321 		ret = 0;
322 		tls_append_frag(record, pfrag, prot->tag_size);
323 	} else {
324 		ret = prot->tag_size;
325 		if (record->len <= prot->overhead_size)
326 			return -ENOMEM;
327 	}
328 
329 	/* fill prepend */
330 	tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
331 			 record->len - prot->overhead_size,
332 			 record_type);
333 	return ret;
334 }
335 
336 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
337 				 struct page_frag *pfrag,
338 				 size_t prepend_size)
339 {
340 	struct tls_record_info *record;
341 	skb_frag_t *frag;
342 
343 	record = kmalloc(sizeof(*record), GFP_KERNEL);
344 	if (!record)
345 		return -ENOMEM;
346 
347 	frag = &record->frags[0];
348 	__skb_frag_set_page(frag, pfrag->page);
349 	skb_frag_off_set(frag, pfrag->offset);
350 	skb_frag_size_set(frag, prepend_size);
351 
352 	get_page(pfrag->page);
353 	pfrag->offset += prepend_size;
354 
355 	record->num_frags = 1;
356 	record->len = prepend_size;
357 	offload_ctx->open_record = record;
358 	return 0;
359 }
360 
361 static int tls_do_allocation(struct sock *sk,
362 			     struct tls_offload_context_tx *offload_ctx,
363 			     struct page_frag *pfrag,
364 			     size_t prepend_size)
365 {
366 	int ret;
367 
368 	if (!offload_ctx->open_record) {
369 		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
370 						   sk->sk_allocation))) {
371 			READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
372 			sk_stream_moderate_sndbuf(sk);
373 			return -ENOMEM;
374 		}
375 
376 		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
377 		if (ret)
378 			return ret;
379 
380 		if (pfrag->size > pfrag->offset)
381 			return 0;
382 	}
383 
384 	if (!sk_page_frag_refill(sk, pfrag))
385 		return -ENOMEM;
386 
387 	return 0;
388 }
389 
390 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
391 {
392 	size_t pre_copy, nocache;
393 
394 	pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
395 	if (pre_copy) {
396 		pre_copy = min(pre_copy, bytes);
397 		if (copy_from_iter(addr, pre_copy, i) != pre_copy)
398 			return -EFAULT;
399 		bytes -= pre_copy;
400 		addr += pre_copy;
401 	}
402 
403 	nocache = round_down(bytes, SMP_CACHE_BYTES);
404 	if (copy_from_iter_nocache(addr, nocache, i) != nocache)
405 		return -EFAULT;
406 	bytes -= nocache;
407 	addr += nocache;
408 
409 	if (bytes && copy_from_iter(addr, bytes, i) != bytes)
410 		return -EFAULT;
411 
412 	return 0;
413 }
414 
415 union tls_iter_offset {
416 	struct iov_iter *msg_iter;
417 	int offset;
418 };
419 
420 static int tls_push_data(struct sock *sk,
421 			 union tls_iter_offset iter_offset,
422 			 size_t size, int flags,
423 			 unsigned char record_type,
424 			 struct page *zc_page)
425 {
426 	struct tls_context *tls_ctx = tls_get_ctx(sk);
427 	struct tls_prot_info *prot = &tls_ctx->prot_info;
428 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
429 	struct tls_record_info *record;
430 	int tls_push_record_flags;
431 	struct page_frag *pfrag;
432 	size_t orig_size = size;
433 	u32 max_open_record_len;
434 	bool more = false;
435 	bool done = false;
436 	int copy, rc = 0;
437 	long timeo;
438 
439 	if (flags &
440 	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
441 		return -EOPNOTSUPP;
442 
443 	if (unlikely(sk->sk_err))
444 		return -sk->sk_err;
445 
446 	flags |= MSG_SENDPAGE_DECRYPTED;
447 	tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
448 
449 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
450 	if (tls_is_partially_sent_record(tls_ctx)) {
451 		rc = tls_push_partial_record(sk, tls_ctx, flags);
452 		if (rc < 0)
453 			return rc;
454 	}
455 
456 	pfrag = sk_page_frag(sk);
457 
458 	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
459 	 * we need to leave room for an authentication tag.
460 	 */
461 	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
462 			      prot->prepend_size;
463 	do {
464 		rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
465 		if (unlikely(rc)) {
466 			rc = sk_stream_wait_memory(sk, &timeo);
467 			if (!rc)
468 				continue;
469 
470 			record = ctx->open_record;
471 			if (!record)
472 				break;
473 handle_error:
474 			if (record_type != TLS_RECORD_TYPE_DATA) {
475 				/* avoid sending partial
476 				 * record with type !=
477 				 * application_data
478 				 */
479 				size = orig_size;
480 				destroy_record(record);
481 				ctx->open_record = NULL;
482 			} else if (record->len > prot->prepend_size) {
483 				goto last_record;
484 			}
485 
486 			break;
487 		}
488 
489 		record = ctx->open_record;
490 
491 		copy = min_t(size_t, size, max_open_record_len - record->len);
492 		if (copy && zc_page) {
493 			struct page_frag zc_pfrag;
494 
495 			zc_pfrag.page = zc_page;
496 			zc_pfrag.offset = iter_offset.offset;
497 			zc_pfrag.size = copy;
498 			tls_append_frag(record, &zc_pfrag, copy);
499 		} else if (copy) {
500 			copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
501 
502 			rc = tls_device_copy_data(page_address(pfrag->page) +
503 						  pfrag->offset, copy,
504 						  iter_offset.msg_iter);
505 			if (rc)
506 				goto handle_error;
507 			tls_append_frag(record, pfrag, copy);
508 		}
509 
510 		size -= copy;
511 		if (!size) {
512 last_record:
513 			tls_push_record_flags = flags;
514 			if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
515 				more = true;
516 				break;
517 			}
518 
519 			done = true;
520 		}
521 
522 		if (done || record->len >= max_open_record_len ||
523 		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
524 			rc = tls_device_record_close(sk, tls_ctx, record,
525 						     pfrag, record_type);
526 			if (rc) {
527 				if (rc > 0) {
528 					size += rc;
529 				} else {
530 					size = orig_size;
531 					destroy_record(record);
532 					ctx->open_record = NULL;
533 					break;
534 				}
535 			}
536 
537 			rc = tls_push_record(sk,
538 					     tls_ctx,
539 					     ctx,
540 					     record,
541 					     tls_push_record_flags);
542 			if (rc < 0)
543 				break;
544 		}
545 	} while (!done);
546 
547 	tls_ctx->pending_open_record_frags = more;
548 
549 	if (orig_size - size > 0)
550 		rc = orig_size - size;
551 
552 	return rc;
553 }
554 
555 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
556 {
557 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
558 	struct tls_context *tls_ctx = tls_get_ctx(sk);
559 	union tls_iter_offset iter;
560 	int rc;
561 
562 	mutex_lock(&tls_ctx->tx_lock);
563 	lock_sock(sk);
564 
565 	if (unlikely(msg->msg_controllen)) {
566 		rc = tls_process_cmsg(sk, msg, &record_type);
567 		if (rc)
568 			goto out;
569 	}
570 
571 	iter.msg_iter = &msg->msg_iter;
572 	rc = tls_push_data(sk, iter, size, msg->msg_flags, record_type, NULL);
573 
574 out:
575 	release_sock(sk);
576 	mutex_unlock(&tls_ctx->tx_lock);
577 	return rc;
578 }
579 
580 int tls_device_sendpage(struct sock *sk, struct page *page,
581 			int offset, size_t size, int flags)
582 {
583 	struct tls_context *tls_ctx = tls_get_ctx(sk);
584 	union tls_iter_offset iter_offset;
585 	struct iov_iter msg_iter;
586 	char *kaddr;
587 	struct kvec iov;
588 	int rc;
589 
590 	if (flags & MSG_SENDPAGE_NOTLAST)
591 		flags |= MSG_MORE;
592 
593 	mutex_lock(&tls_ctx->tx_lock);
594 	lock_sock(sk);
595 
596 	if (flags & MSG_OOB) {
597 		rc = -EOPNOTSUPP;
598 		goto out;
599 	}
600 
601 	if (tls_ctx->zerocopy_sendfile) {
602 		iter_offset.offset = offset;
603 		rc = tls_push_data(sk, iter_offset, size,
604 				   flags, TLS_RECORD_TYPE_DATA, page);
605 		goto out;
606 	}
607 
608 	kaddr = kmap(page);
609 	iov.iov_base = kaddr + offset;
610 	iov.iov_len = size;
611 	iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
612 	iter_offset.msg_iter = &msg_iter;
613 	rc = tls_push_data(sk, iter_offset, size, flags, TLS_RECORD_TYPE_DATA,
614 			   NULL);
615 	kunmap(page);
616 
617 out:
618 	release_sock(sk);
619 	mutex_unlock(&tls_ctx->tx_lock);
620 	return rc;
621 }
622 
623 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
624 				       u32 seq, u64 *p_record_sn)
625 {
626 	u64 record_sn = context->hint_record_sn;
627 	struct tls_record_info *info, *last;
628 
629 	info = context->retransmit_hint;
630 	if (!info ||
631 	    before(seq, info->end_seq - info->len)) {
632 		/* if retransmit_hint is irrelevant start
633 		 * from the beginning of the list
634 		 */
635 		info = list_first_entry_or_null(&context->records_list,
636 						struct tls_record_info, list);
637 		if (!info)
638 			return NULL;
639 		/* send the start_marker record if seq number is before the
640 		 * tls offload start marker sequence number. This record is
641 		 * required to handle TCP packets which are before TLS offload
642 		 * started.
643 		 *  And if it's not start marker, look if this seq number
644 		 * belongs to the list.
645 		 */
646 		if (likely(!tls_record_is_start_marker(info))) {
647 			/* we have the first record, get the last record to see
648 			 * if this seq number belongs to the list.
649 			 */
650 			last = list_last_entry(&context->records_list,
651 					       struct tls_record_info, list);
652 
653 			if (!between(seq, tls_record_start_seq(info),
654 				     last->end_seq))
655 				return NULL;
656 		}
657 		record_sn = context->unacked_record_sn;
658 	}
659 
660 	/* We just need the _rcu for the READ_ONCE() */
661 	rcu_read_lock();
662 	list_for_each_entry_from_rcu(info, &context->records_list, list) {
663 		if (before(seq, info->end_seq)) {
664 			if (!context->retransmit_hint ||
665 			    after(info->end_seq,
666 				  context->retransmit_hint->end_seq)) {
667 				context->hint_record_sn = record_sn;
668 				context->retransmit_hint = info;
669 			}
670 			*p_record_sn = record_sn;
671 			goto exit_rcu_unlock;
672 		}
673 		record_sn++;
674 	}
675 	info = NULL;
676 
677 exit_rcu_unlock:
678 	rcu_read_unlock();
679 	return info;
680 }
681 EXPORT_SYMBOL(tls_get_record);
682 
683 static int tls_device_push_pending_record(struct sock *sk, int flags)
684 {
685 	union tls_iter_offset iter;
686 	struct iov_iter msg_iter;
687 
688 	iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
689 	iter.msg_iter = &msg_iter;
690 	return tls_push_data(sk, iter, 0, flags, TLS_RECORD_TYPE_DATA, NULL);
691 }
692 
693 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
694 {
695 	if (tls_is_partially_sent_record(ctx)) {
696 		gfp_t sk_allocation = sk->sk_allocation;
697 
698 		WARN_ON_ONCE(sk->sk_write_pending);
699 
700 		sk->sk_allocation = GFP_ATOMIC;
701 		tls_push_partial_record(sk, ctx,
702 					MSG_DONTWAIT | MSG_NOSIGNAL |
703 					MSG_SENDPAGE_DECRYPTED);
704 		sk->sk_allocation = sk_allocation;
705 	}
706 }
707 
708 static void tls_device_resync_rx(struct tls_context *tls_ctx,
709 				 struct sock *sk, u32 seq, u8 *rcd_sn)
710 {
711 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
712 	struct net_device *netdev;
713 
714 	trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
715 	rcu_read_lock();
716 	netdev = READ_ONCE(tls_ctx->netdev);
717 	if (netdev)
718 		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
719 						   TLS_OFFLOAD_CTX_DIR_RX);
720 	rcu_read_unlock();
721 	TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
722 }
723 
724 static bool
725 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
726 			   s64 resync_req, u32 *seq, u16 *rcd_delta)
727 {
728 	u32 is_async = resync_req & RESYNC_REQ_ASYNC;
729 	u32 req_seq = resync_req >> 32;
730 	u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
731 	u16 i;
732 
733 	*rcd_delta = 0;
734 
735 	if (is_async) {
736 		/* shouldn't get to wraparound:
737 		 * too long in async stage, something bad happened
738 		 */
739 		if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
740 			return false;
741 
742 		/* asynchronous stage: log all headers seq such that
743 		 * req_seq <= seq <= end_seq, and wait for real resync request
744 		 */
745 		if (before(*seq, req_seq))
746 			return false;
747 		if (!after(*seq, req_end) &&
748 		    resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
749 			resync_async->log[resync_async->loglen++] = *seq;
750 
751 		resync_async->rcd_delta++;
752 
753 		return false;
754 	}
755 
756 	/* synchronous stage: check against the logged entries and
757 	 * proceed to check the next entries if no match was found
758 	 */
759 	for (i = 0; i < resync_async->loglen; i++)
760 		if (req_seq == resync_async->log[i] &&
761 		    atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
762 			*rcd_delta = resync_async->rcd_delta - i;
763 			*seq = req_seq;
764 			resync_async->loglen = 0;
765 			resync_async->rcd_delta = 0;
766 			return true;
767 		}
768 
769 	resync_async->loglen = 0;
770 	resync_async->rcd_delta = 0;
771 
772 	if (req_seq == *seq &&
773 	    atomic64_try_cmpxchg(&resync_async->req,
774 				 &resync_req, 0))
775 		return true;
776 
777 	return false;
778 }
779 
780 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
781 {
782 	struct tls_context *tls_ctx = tls_get_ctx(sk);
783 	struct tls_offload_context_rx *rx_ctx;
784 	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
785 	u32 sock_data, is_req_pending;
786 	struct tls_prot_info *prot;
787 	s64 resync_req;
788 	u16 rcd_delta;
789 	u32 req_seq;
790 
791 	if (tls_ctx->rx_conf != TLS_HW)
792 		return;
793 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
794 		return;
795 
796 	prot = &tls_ctx->prot_info;
797 	rx_ctx = tls_offload_ctx_rx(tls_ctx);
798 	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
799 
800 	switch (rx_ctx->resync_type) {
801 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
802 		resync_req = atomic64_read(&rx_ctx->resync_req);
803 		req_seq = resync_req >> 32;
804 		seq += TLS_HEADER_SIZE - 1;
805 		is_req_pending = resync_req;
806 
807 		if (likely(!is_req_pending) || req_seq != seq ||
808 		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
809 			return;
810 		break;
811 	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
812 		if (likely(!rx_ctx->resync_nh_do_now))
813 			return;
814 
815 		/* head of next rec is already in, note that the sock_inq will
816 		 * include the currently parsed message when called from parser
817 		 */
818 		sock_data = tcp_inq(sk);
819 		if (sock_data > rcd_len) {
820 			trace_tls_device_rx_resync_nh_delay(sk, sock_data,
821 							    rcd_len);
822 			return;
823 		}
824 
825 		rx_ctx->resync_nh_do_now = 0;
826 		seq += rcd_len;
827 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
828 		break;
829 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
830 		resync_req = atomic64_read(&rx_ctx->resync_async->req);
831 		is_req_pending = resync_req;
832 		if (likely(!is_req_pending))
833 			return;
834 
835 		if (!tls_device_rx_resync_async(rx_ctx->resync_async,
836 						resync_req, &seq, &rcd_delta))
837 			return;
838 		tls_bigint_subtract(rcd_sn, rcd_delta);
839 		break;
840 	}
841 
842 	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
843 }
844 
845 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
846 					   struct tls_offload_context_rx *ctx,
847 					   struct sock *sk, struct sk_buff *skb)
848 {
849 	struct strp_msg *rxm;
850 
851 	/* device will request resyncs by itself based on stream scan */
852 	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
853 		return;
854 	/* already scheduled */
855 	if (ctx->resync_nh_do_now)
856 		return;
857 	/* seen decrypted fragments since last fully-failed record */
858 	if (ctx->resync_nh_reset) {
859 		ctx->resync_nh_reset = 0;
860 		ctx->resync_nh.decrypted_failed = 1;
861 		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
862 		return;
863 	}
864 
865 	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
866 		return;
867 
868 	/* doing resync, bump the next target in case it fails */
869 	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
870 		ctx->resync_nh.decrypted_tgt *= 2;
871 	else
872 		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
873 
874 	rxm = strp_msg(skb);
875 
876 	/* head of next rec is already in, parser will sync for us */
877 	if (tcp_inq(sk) > rxm->full_len) {
878 		trace_tls_device_rx_resync_nh_schedule(sk);
879 		ctx->resync_nh_do_now = 1;
880 	} else {
881 		struct tls_prot_info *prot = &tls_ctx->prot_info;
882 		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
883 
884 		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
885 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
886 
887 		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
888 				     rcd_sn);
889 	}
890 }
891 
892 static int
893 tls_device_reencrypt(struct sock *sk, struct tls_sw_context_rx *sw_ctx)
894 {
895 	int err = 0, offset, copy, nsg, data_len, pos;
896 	struct sk_buff *skb, *skb_iter, *unused;
897 	struct scatterlist sg[1];
898 	struct strp_msg *rxm;
899 	char *orig_buf, *buf;
900 
901 	skb = tls_strp_msg(sw_ctx);
902 	rxm = strp_msg(skb);
903 	offset = rxm->offset;
904 
905 	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
906 			   TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
907 	if (!orig_buf)
908 		return -ENOMEM;
909 	buf = orig_buf;
910 
911 	nsg = skb_cow_data(skb, 0, &unused);
912 	if (unlikely(nsg < 0)) {
913 		err = nsg;
914 		goto free_buf;
915 	}
916 
917 	sg_init_table(sg, 1);
918 	sg_set_buf(&sg[0], buf,
919 		   rxm->full_len + TLS_HEADER_SIZE +
920 		   TLS_CIPHER_AES_GCM_128_IV_SIZE);
921 	err = skb_copy_bits(skb, offset, buf,
922 			    TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
923 	if (err)
924 		goto free_buf;
925 
926 	/* We are interested only in the decrypted data not the auth */
927 	err = decrypt_skb(sk, sg);
928 	if (err != -EBADMSG)
929 		goto free_buf;
930 	else
931 		err = 0;
932 
933 	data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
934 
935 	if (skb_pagelen(skb) > offset) {
936 		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
937 
938 		if (skb->decrypted) {
939 			err = skb_store_bits(skb, offset, buf, copy);
940 			if (err)
941 				goto free_buf;
942 		}
943 
944 		offset += copy;
945 		buf += copy;
946 	}
947 
948 	pos = skb_pagelen(skb);
949 	skb_walk_frags(skb, skb_iter) {
950 		int frag_pos;
951 
952 		/* Practically all frags must belong to msg if reencrypt
953 		 * is needed with current strparser and coalescing logic,
954 		 * but strparser may "get optimized", so let's be safe.
955 		 */
956 		if (pos + skb_iter->len <= offset)
957 			goto done_with_frag;
958 		if (pos >= data_len + rxm->offset)
959 			break;
960 
961 		frag_pos = offset - pos;
962 		copy = min_t(int, skb_iter->len - frag_pos,
963 			     data_len + rxm->offset - offset);
964 
965 		if (skb_iter->decrypted) {
966 			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
967 			if (err)
968 				goto free_buf;
969 		}
970 
971 		offset += copy;
972 		buf += copy;
973 done_with_frag:
974 		pos += skb_iter->len;
975 	}
976 
977 free_buf:
978 	kfree(orig_buf);
979 	return err;
980 }
981 
982 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
983 {
984 	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
985 	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
986 	struct sk_buff *skb = tls_strp_msg(sw_ctx);
987 	struct strp_msg *rxm = strp_msg(skb);
988 	int is_decrypted = skb->decrypted;
989 	int is_encrypted = !is_decrypted;
990 	struct sk_buff *skb_iter;
991 
992 	/* Check if all the data is decrypted already */
993 	skb_walk_frags(skb, skb_iter) {
994 		is_decrypted &= skb_iter->decrypted;
995 		is_encrypted &= !skb_iter->decrypted;
996 	}
997 
998 	trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
999 				   tls_ctx->rx.rec_seq, rxm->full_len,
1000 				   is_encrypted, is_decrypted);
1001 
1002 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
1003 		if (likely(is_encrypted || is_decrypted))
1004 			return is_decrypted;
1005 
1006 		/* After tls_device_down disables the offload, the next SKB will
1007 		 * likely have initial fragments decrypted, and final ones not
1008 		 * decrypted. We need to reencrypt that single SKB.
1009 		 */
1010 		return tls_device_reencrypt(sk, sw_ctx);
1011 	}
1012 
1013 	/* Return immediately if the record is either entirely plaintext or
1014 	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1015 	 * record.
1016 	 */
1017 	if (is_decrypted) {
1018 		ctx->resync_nh_reset = 1;
1019 		return is_decrypted;
1020 	}
1021 	if (is_encrypted) {
1022 		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1023 		return 0;
1024 	}
1025 
1026 	ctx->resync_nh_reset = 1;
1027 	return tls_device_reencrypt(sk, sw_ctx);
1028 }
1029 
1030 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1031 			      struct net_device *netdev)
1032 {
1033 	if (sk->sk_destruct != tls_device_sk_destruct) {
1034 		refcount_set(&ctx->refcount, 1);
1035 		dev_hold(netdev);
1036 		ctx->netdev = netdev;
1037 		spin_lock_irq(&tls_device_lock);
1038 		list_add_tail(&ctx->list, &tls_device_list);
1039 		spin_unlock_irq(&tls_device_lock);
1040 
1041 		ctx->sk_destruct = sk->sk_destruct;
1042 		smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1043 	}
1044 }
1045 
1046 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1047 {
1048 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
1049 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1050 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1051 	struct tls_record_info *start_marker_record;
1052 	struct tls_offload_context_tx *offload_ctx;
1053 	struct tls_crypto_info *crypto_info;
1054 	struct net_device *netdev;
1055 	char *iv, *rec_seq;
1056 	struct sk_buff *skb;
1057 	__be64 rcd_sn;
1058 	int rc;
1059 
1060 	if (!ctx)
1061 		return -EINVAL;
1062 
1063 	if (ctx->priv_ctx_tx)
1064 		return -EEXIST;
1065 
1066 	netdev = get_netdev_for_sock(sk);
1067 	if (!netdev) {
1068 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1069 		return -EINVAL;
1070 	}
1071 
1072 	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1073 		rc = -EOPNOTSUPP;
1074 		goto release_netdev;
1075 	}
1076 
1077 	crypto_info = &ctx->crypto_send.info;
1078 	if (crypto_info->version != TLS_1_2_VERSION) {
1079 		rc = -EOPNOTSUPP;
1080 		goto release_netdev;
1081 	}
1082 
1083 	switch (crypto_info->cipher_type) {
1084 	case TLS_CIPHER_AES_GCM_128:
1085 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1086 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1087 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1088 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1089 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1090 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
1091 		rec_seq =
1092 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1093 		break;
1094 	default:
1095 		rc = -EINVAL;
1096 		goto release_netdev;
1097 	}
1098 
1099 	/* Sanity-check the rec_seq_size for stack allocations */
1100 	if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
1101 		rc = -EINVAL;
1102 		goto release_netdev;
1103 	}
1104 
1105 	prot->version = crypto_info->version;
1106 	prot->cipher_type = crypto_info->cipher_type;
1107 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
1108 	prot->tag_size = tag_size;
1109 	prot->overhead_size = prot->prepend_size + prot->tag_size;
1110 	prot->iv_size = iv_size;
1111 	prot->salt_size = salt_size;
1112 	ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1113 			     GFP_KERNEL);
1114 	if (!ctx->tx.iv) {
1115 		rc = -ENOMEM;
1116 		goto release_netdev;
1117 	}
1118 
1119 	memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1120 
1121 	prot->rec_seq_size = rec_seq_size;
1122 	ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1123 	if (!ctx->tx.rec_seq) {
1124 		rc = -ENOMEM;
1125 		goto free_iv;
1126 	}
1127 
1128 	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1129 	if (!start_marker_record) {
1130 		rc = -ENOMEM;
1131 		goto free_rec_seq;
1132 	}
1133 
1134 	offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1135 	if (!offload_ctx) {
1136 		rc = -ENOMEM;
1137 		goto free_marker_record;
1138 	}
1139 
1140 	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1141 	if (rc)
1142 		goto free_offload_ctx;
1143 
1144 	/* start at rec_seq - 1 to account for the start marker record */
1145 	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1146 	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1147 
1148 	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1149 	start_marker_record->len = 0;
1150 	start_marker_record->num_frags = 0;
1151 
1152 	INIT_LIST_HEAD(&offload_ctx->records_list);
1153 	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1154 	spin_lock_init(&offload_ctx->lock);
1155 	sg_init_table(offload_ctx->sg_tx_data,
1156 		      ARRAY_SIZE(offload_ctx->sg_tx_data));
1157 
1158 	clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1159 	ctx->push_pending_record = tls_device_push_pending_record;
1160 
1161 	/* TLS offload is greatly simplified if we don't send
1162 	 * SKBs where only part of the payload needs to be encrypted.
1163 	 * So mark the last skb in the write queue as end of record.
1164 	 */
1165 	skb = tcp_write_queue_tail(sk);
1166 	if (skb)
1167 		TCP_SKB_CB(skb)->eor = 1;
1168 
1169 	/* Avoid offloading if the device is down
1170 	 * We don't want to offload new flows after
1171 	 * the NETDEV_DOWN event
1172 	 *
1173 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1174 	 * handler thus protecting from the device going down before
1175 	 * ctx was added to tls_device_list.
1176 	 */
1177 	down_read(&device_offload_lock);
1178 	if (!(netdev->flags & IFF_UP)) {
1179 		rc = -EINVAL;
1180 		goto release_lock;
1181 	}
1182 
1183 	ctx->priv_ctx_tx = offload_ctx;
1184 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1185 					     &ctx->crypto_send.info,
1186 					     tcp_sk(sk)->write_seq);
1187 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1188 				     tcp_sk(sk)->write_seq, rec_seq, rc);
1189 	if (rc)
1190 		goto release_lock;
1191 
1192 	tls_device_attach(ctx, sk, netdev);
1193 	up_read(&device_offload_lock);
1194 
1195 	/* following this assignment tls_is_sk_tx_device_offloaded
1196 	 * will return true and the context might be accessed
1197 	 * by the netdev's xmit function.
1198 	 */
1199 	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1200 	dev_put(netdev);
1201 
1202 	return 0;
1203 
1204 release_lock:
1205 	up_read(&device_offload_lock);
1206 	clean_acked_data_disable(inet_csk(sk));
1207 	crypto_free_aead(offload_ctx->aead_send);
1208 free_offload_ctx:
1209 	kfree(offload_ctx);
1210 	ctx->priv_ctx_tx = NULL;
1211 free_marker_record:
1212 	kfree(start_marker_record);
1213 free_rec_seq:
1214 	kfree(ctx->tx.rec_seq);
1215 free_iv:
1216 	kfree(ctx->tx.iv);
1217 release_netdev:
1218 	dev_put(netdev);
1219 	return rc;
1220 }
1221 
1222 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1223 {
1224 	struct tls12_crypto_info_aes_gcm_128 *info;
1225 	struct tls_offload_context_rx *context;
1226 	struct net_device *netdev;
1227 	int rc = 0;
1228 
1229 	if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1230 		return -EOPNOTSUPP;
1231 
1232 	netdev = get_netdev_for_sock(sk);
1233 	if (!netdev) {
1234 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1235 		return -EINVAL;
1236 	}
1237 
1238 	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1239 		rc = -EOPNOTSUPP;
1240 		goto release_netdev;
1241 	}
1242 
1243 	/* Avoid offloading if the device is down
1244 	 * We don't want to offload new flows after
1245 	 * the NETDEV_DOWN event
1246 	 *
1247 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1248 	 * handler thus protecting from the device going down before
1249 	 * ctx was added to tls_device_list.
1250 	 */
1251 	down_read(&device_offload_lock);
1252 	if (!(netdev->flags & IFF_UP)) {
1253 		rc = -EINVAL;
1254 		goto release_lock;
1255 	}
1256 
1257 	context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1258 	if (!context) {
1259 		rc = -ENOMEM;
1260 		goto release_lock;
1261 	}
1262 	context->resync_nh_reset = 1;
1263 
1264 	ctx->priv_ctx_rx = context;
1265 	rc = tls_set_sw_offload(sk, ctx, 0);
1266 	if (rc)
1267 		goto release_ctx;
1268 
1269 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1270 					     &ctx->crypto_recv.info,
1271 					     tcp_sk(sk)->copied_seq);
1272 	info = (void *)&ctx->crypto_recv.info;
1273 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1274 				     tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1275 	if (rc)
1276 		goto free_sw_resources;
1277 
1278 	tls_device_attach(ctx, sk, netdev);
1279 	up_read(&device_offload_lock);
1280 
1281 	dev_put(netdev);
1282 
1283 	return 0;
1284 
1285 free_sw_resources:
1286 	up_read(&device_offload_lock);
1287 	tls_sw_free_resources_rx(sk);
1288 	down_read(&device_offload_lock);
1289 release_ctx:
1290 	ctx->priv_ctx_rx = NULL;
1291 release_lock:
1292 	up_read(&device_offload_lock);
1293 release_netdev:
1294 	dev_put(netdev);
1295 	return rc;
1296 }
1297 
1298 void tls_device_offload_cleanup_rx(struct sock *sk)
1299 {
1300 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1301 	struct net_device *netdev;
1302 
1303 	down_read(&device_offload_lock);
1304 	netdev = tls_ctx->netdev;
1305 	if (!netdev)
1306 		goto out;
1307 
1308 	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1309 					TLS_OFFLOAD_CTX_DIR_RX);
1310 
1311 	if (tls_ctx->tx_conf != TLS_HW) {
1312 		dev_put(netdev);
1313 		tls_ctx->netdev = NULL;
1314 	} else {
1315 		set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1316 	}
1317 out:
1318 	up_read(&device_offload_lock);
1319 	tls_sw_release_resources_rx(sk);
1320 }
1321 
1322 static int tls_device_down(struct net_device *netdev)
1323 {
1324 	struct tls_context *ctx, *tmp;
1325 	unsigned long flags;
1326 	LIST_HEAD(list);
1327 
1328 	/* Request a write lock to block new offload attempts */
1329 	down_write(&device_offload_lock);
1330 
1331 	spin_lock_irqsave(&tls_device_lock, flags);
1332 	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1333 		if (ctx->netdev != netdev ||
1334 		    !refcount_inc_not_zero(&ctx->refcount))
1335 			continue;
1336 
1337 		list_move(&ctx->list, &list);
1338 	}
1339 	spin_unlock_irqrestore(&tls_device_lock, flags);
1340 
1341 	list_for_each_entry_safe(ctx, tmp, &list, list)	{
1342 		/* Stop offloaded TX and switch to the fallback.
1343 		 * tls_is_sk_tx_device_offloaded will return false.
1344 		 */
1345 		WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1346 
1347 		/* Stop the RX and TX resync.
1348 		 * tls_dev_resync must not be called after tls_dev_del.
1349 		 */
1350 		WRITE_ONCE(ctx->netdev, NULL);
1351 
1352 		/* Start skipping the RX resync logic completely. */
1353 		set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1354 
1355 		/* Sync with inflight packets. After this point:
1356 		 * TX: no non-encrypted packets will be passed to the driver.
1357 		 * RX: resync requests from the driver will be ignored.
1358 		 */
1359 		synchronize_net();
1360 
1361 		/* Release the offload context on the driver side. */
1362 		if (ctx->tx_conf == TLS_HW)
1363 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1364 							TLS_OFFLOAD_CTX_DIR_TX);
1365 		if (ctx->rx_conf == TLS_HW &&
1366 		    !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1367 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1368 							TLS_OFFLOAD_CTX_DIR_RX);
1369 
1370 		dev_put(netdev);
1371 
1372 		/* Move the context to a separate list for two reasons:
1373 		 * 1. When the context is deallocated, list_del is called.
1374 		 * 2. It's no longer an offloaded context, so we don't want to
1375 		 *    run offload-specific code on this context.
1376 		 */
1377 		spin_lock_irqsave(&tls_device_lock, flags);
1378 		list_move_tail(&ctx->list, &tls_device_down_list);
1379 		spin_unlock_irqrestore(&tls_device_lock, flags);
1380 
1381 		/* Device contexts for RX and TX will be freed in on sk_destruct
1382 		 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1383 		 * Now release the ref taken above.
1384 		 */
1385 		if (refcount_dec_and_test(&ctx->refcount))
1386 			tls_device_free_ctx(ctx);
1387 	}
1388 
1389 	up_write(&device_offload_lock);
1390 
1391 	flush_work(&tls_device_gc_work);
1392 
1393 	return NOTIFY_DONE;
1394 }
1395 
1396 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1397 			 void *ptr)
1398 {
1399 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1400 
1401 	if (!dev->tlsdev_ops &&
1402 	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1403 		return NOTIFY_DONE;
1404 
1405 	switch (event) {
1406 	case NETDEV_REGISTER:
1407 	case NETDEV_FEAT_CHANGE:
1408 		if (netif_is_bond_master(dev))
1409 			return NOTIFY_DONE;
1410 		if ((dev->features & NETIF_F_HW_TLS_RX) &&
1411 		    !dev->tlsdev_ops->tls_dev_resync)
1412 			return NOTIFY_BAD;
1413 
1414 		if  (dev->tlsdev_ops &&
1415 		     dev->tlsdev_ops->tls_dev_add &&
1416 		     dev->tlsdev_ops->tls_dev_del)
1417 			return NOTIFY_DONE;
1418 		else
1419 			return NOTIFY_BAD;
1420 	case NETDEV_DOWN:
1421 		return tls_device_down(dev);
1422 	}
1423 	return NOTIFY_DONE;
1424 }
1425 
1426 static struct notifier_block tls_dev_notifier = {
1427 	.notifier_call	= tls_dev_event,
1428 };
1429 
1430 int __init tls_device_init(void)
1431 {
1432 	return register_netdevice_notifier(&tls_dev_notifier);
1433 }
1434 
1435 void __exit tls_device_cleanup(void)
1436 {
1437 	unregister_netdevice_notifier(&tls_dev_notifier);
1438 	flush_work(&tls_device_gc_work);
1439 	clean_acked_data_flush();
1440 }
1441