1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved. 2 * 3 * This software is available to you under a choice of one of two 4 * licenses. You may choose to be licensed under the terms of the GNU 5 * General Public License (GPL) Version 2, available from the file 6 * COPYING in the main directory of this source tree, or the 7 * OpenIB.org BSD license below: 8 * 9 * Redistribution and use in source and binary forms, with or 10 * without modification, are permitted provided that the following 11 * conditions are met: 12 * 13 * - Redistributions of source code must retain the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer. 16 * 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 */ 31 32 #include <crypto/aead.h> 33 #include <linux/highmem.h> 34 #include <linux/module.h> 35 #include <linux/netdevice.h> 36 #include <net/dst.h> 37 #include <net/inet_connection_sock.h> 38 #include <net/tcp.h> 39 #include <net/tls.h> 40 41 /* device_offload_lock is used to synchronize tls_dev_add 42 * against NETDEV_DOWN notifications. 43 */ 44 static DECLARE_RWSEM(device_offload_lock); 45 46 static void tls_device_gc_task(struct work_struct *work); 47 48 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task); 49 static LIST_HEAD(tls_device_gc_list); 50 static LIST_HEAD(tls_device_list); 51 static DEFINE_SPINLOCK(tls_device_lock); 52 53 static void tls_device_free_ctx(struct tls_context *ctx) 54 { 55 if (ctx->tx_conf == TLS_HW) { 56 kfree(tls_offload_ctx_tx(ctx)); 57 kfree(ctx->tx.rec_seq); 58 kfree(ctx->tx.iv); 59 } 60 61 if (ctx->rx_conf == TLS_HW) 62 kfree(tls_offload_ctx_rx(ctx)); 63 64 kfree(ctx); 65 } 66 67 static void tls_device_gc_task(struct work_struct *work) 68 { 69 struct tls_context *ctx, *tmp; 70 unsigned long flags; 71 LIST_HEAD(gc_list); 72 73 spin_lock_irqsave(&tls_device_lock, flags); 74 list_splice_init(&tls_device_gc_list, &gc_list); 75 spin_unlock_irqrestore(&tls_device_lock, flags); 76 77 list_for_each_entry_safe(ctx, tmp, &gc_list, list) { 78 struct net_device *netdev = ctx->netdev; 79 80 if (netdev && ctx->tx_conf == TLS_HW) { 81 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 82 TLS_OFFLOAD_CTX_DIR_TX); 83 dev_put(netdev); 84 ctx->netdev = NULL; 85 } 86 87 list_del(&ctx->list); 88 tls_device_free_ctx(ctx); 89 } 90 } 91 92 static void tls_device_attach(struct tls_context *ctx, struct sock *sk, 93 struct net_device *netdev) 94 { 95 if (sk->sk_destruct != tls_device_sk_destruct) { 96 refcount_set(&ctx->refcount, 1); 97 dev_hold(netdev); 98 ctx->netdev = netdev; 99 spin_lock_irq(&tls_device_lock); 100 list_add_tail(&ctx->list, &tls_device_list); 101 spin_unlock_irq(&tls_device_lock); 102 103 ctx->sk_destruct = sk->sk_destruct; 104 sk->sk_destruct = tls_device_sk_destruct; 105 } 106 } 107 108 static void tls_device_queue_ctx_destruction(struct tls_context *ctx) 109 { 110 unsigned long flags; 111 112 spin_lock_irqsave(&tls_device_lock, flags); 113 list_move_tail(&ctx->list, &tls_device_gc_list); 114 115 /* schedule_work inside the spinlock 116 * to make sure tls_device_down waits for that work. 117 */ 118 schedule_work(&tls_device_gc_work); 119 120 spin_unlock_irqrestore(&tls_device_lock, flags); 121 } 122 123 /* We assume that the socket is already connected */ 124 static struct net_device *get_netdev_for_sock(struct sock *sk) 125 { 126 struct dst_entry *dst = sk_dst_get(sk); 127 struct net_device *netdev = NULL; 128 129 if (likely(dst)) { 130 netdev = dst->dev; 131 dev_hold(netdev); 132 } 133 134 dst_release(dst); 135 136 return netdev; 137 } 138 139 static void destroy_record(struct tls_record_info *record) 140 { 141 int nr_frags = record->num_frags; 142 skb_frag_t *frag; 143 144 while (nr_frags-- > 0) { 145 frag = &record->frags[nr_frags]; 146 __skb_frag_unref(frag); 147 } 148 kfree(record); 149 } 150 151 static void delete_all_records(struct tls_offload_context_tx *offload_ctx) 152 { 153 struct tls_record_info *info, *temp; 154 155 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { 156 list_del(&info->list); 157 destroy_record(info); 158 } 159 160 offload_ctx->retransmit_hint = NULL; 161 } 162 163 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) 164 { 165 struct tls_context *tls_ctx = tls_get_ctx(sk); 166 struct tls_record_info *info, *temp; 167 struct tls_offload_context_tx *ctx; 168 u64 deleted_records = 0; 169 unsigned long flags; 170 171 if (!tls_ctx) 172 return; 173 174 ctx = tls_offload_ctx_tx(tls_ctx); 175 176 spin_lock_irqsave(&ctx->lock, flags); 177 info = ctx->retransmit_hint; 178 if (info && !before(acked_seq, info->end_seq)) { 179 ctx->retransmit_hint = NULL; 180 list_del(&info->list); 181 destroy_record(info); 182 deleted_records++; 183 } 184 185 list_for_each_entry_safe(info, temp, &ctx->records_list, list) { 186 if (before(acked_seq, info->end_seq)) 187 break; 188 list_del(&info->list); 189 190 destroy_record(info); 191 deleted_records++; 192 } 193 194 ctx->unacked_record_sn += deleted_records; 195 spin_unlock_irqrestore(&ctx->lock, flags); 196 } 197 198 /* At this point, there should be no references on this 199 * socket and no in-flight SKBs associated with this 200 * socket, so it is safe to free all the resources. 201 */ 202 void tls_device_sk_destruct(struct sock *sk) 203 { 204 struct tls_context *tls_ctx = tls_get_ctx(sk); 205 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 206 207 tls_ctx->sk_destruct(sk); 208 209 if (tls_ctx->tx_conf == TLS_HW) { 210 if (ctx->open_record) 211 destroy_record(ctx->open_record); 212 delete_all_records(ctx); 213 crypto_free_aead(ctx->aead_send); 214 clean_acked_data_disable(inet_csk(sk)); 215 } 216 217 if (refcount_dec_and_test(&tls_ctx->refcount)) 218 tls_device_queue_ctx_destruction(tls_ctx); 219 } 220 EXPORT_SYMBOL(tls_device_sk_destruct); 221 222 void tls_device_free_resources_tx(struct sock *sk) 223 { 224 struct tls_context *tls_ctx = tls_get_ctx(sk); 225 226 tls_free_partial_record(sk, tls_ctx); 227 } 228 229 static void tls_append_frag(struct tls_record_info *record, 230 struct page_frag *pfrag, 231 int size) 232 { 233 skb_frag_t *frag; 234 235 frag = &record->frags[record->num_frags - 1]; 236 if (frag->page.p == pfrag->page && 237 frag->page_offset + frag->size == pfrag->offset) { 238 frag->size += size; 239 } else { 240 ++frag; 241 frag->page.p = pfrag->page; 242 frag->page_offset = pfrag->offset; 243 frag->size = size; 244 ++record->num_frags; 245 get_page(pfrag->page); 246 } 247 248 pfrag->offset += size; 249 record->len += size; 250 } 251 252 static int tls_push_record(struct sock *sk, 253 struct tls_context *ctx, 254 struct tls_offload_context_tx *offload_ctx, 255 struct tls_record_info *record, 256 struct page_frag *pfrag, 257 int flags, 258 unsigned char record_type) 259 { 260 struct tls_prot_info *prot = &ctx->prot_info; 261 struct tcp_sock *tp = tcp_sk(sk); 262 struct page_frag dummy_tag_frag; 263 skb_frag_t *frag; 264 int i; 265 266 /* fill prepend */ 267 frag = &record->frags[0]; 268 tls_fill_prepend(ctx, 269 skb_frag_address(frag), 270 record->len - prot->prepend_size, 271 record_type, 272 ctx->crypto_send.info.version); 273 274 /* HW doesn't care about the data in the tag, because it fills it. */ 275 dummy_tag_frag.page = skb_frag_page(frag); 276 dummy_tag_frag.offset = 0; 277 278 tls_append_frag(record, &dummy_tag_frag, prot->tag_size); 279 record->end_seq = tp->write_seq + record->len; 280 spin_lock_irq(&offload_ctx->lock); 281 list_add_tail(&record->list, &offload_ctx->records_list); 282 spin_unlock_irq(&offload_ctx->lock); 283 offload_ctx->open_record = NULL; 284 tls_advance_record_sn(sk, &ctx->tx, ctx->crypto_send.info.version); 285 286 for (i = 0; i < record->num_frags; i++) { 287 frag = &record->frags[i]; 288 sg_unmark_end(&offload_ctx->sg_tx_data[i]); 289 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), 290 frag->size, frag->page_offset); 291 sk_mem_charge(sk, frag->size); 292 get_page(skb_frag_page(frag)); 293 } 294 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); 295 296 /* all ready, send */ 297 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); 298 } 299 300 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, 301 struct page_frag *pfrag, 302 size_t prepend_size) 303 { 304 struct tls_record_info *record; 305 skb_frag_t *frag; 306 307 record = kmalloc(sizeof(*record), GFP_KERNEL); 308 if (!record) 309 return -ENOMEM; 310 311 frag = &record->frags[0]; 312 __skb_frag_set_page(frag, pfrag->page); 313 frag->page_offset = pfrag->offset; 314 skb_frag_size_set(frag, prepend_size); 315 316 get_page(pfrag->page); 317 pfrag->offset += prepend_size; 318 319 record->num_frags = 1; 320 record->len = prepend_size; 321 offload_ctx->open_record = record; 322 return 0; 323 } 324 325 static int tls_do_allocation(struct sock *sk, 326 struct tls_offload_context_tx *offload_ctx, 327 struct page_frag *pfrag, 328 size_t prepend_size) 329 { 330 int ret; 331 332 if (!offload_ctx->open_record) { 333 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, 334 sk->sk_allocation))) { 335 sk->sk_prot->enter_memory_pressure(sk); 336 sk_stream_moderate_sndbuf(sk); 337 return -ENOMEM; 338 } 339 340 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); 341 if (ret) 342 return ret; 343 344 if (pfrag->size > pfrag->offset) 345 return 0; 346 } 347 348 if (!sk_page_frag_refill(sk, pfrag)) 349 return -ENOMEM; 350 351 return 0; 352 } 353 354 static int tls_push_data(struct sock *sk, 355 struct iov_iter *msg_iter, 356 size_t size, int flags, 357 unsigned char record_type) 358 { 359 struct tls_context *tls_ctx = tls_get_ctx(sk); 360 struct tls_prot_info *prot = &tls_ctx->prot_info; 361 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 362 int tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST; 363 int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE); 364 struct tls_record_info *record = ctx->open_record; 365 struct page_frag *pfrag; 366 size_t orig_size = size; 367 u32 max_open_record_len; 368 int copy, rc = 0; 369 bool done = false; 370 long timeo; 371 372 if (flags & 373 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) 374 return -ENOTSUPP; 375 376 if (sk->sk_err) 377 return -sk->sk_err; 378 379 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 380 if (tls_is_partially_sent_record(tls_ctx)) { 381 rc = tls_push_partial_record(sk, tls_ctx, flags); 382 if (rc < 0) 383 return rc; 384 } 385 386 pfrag = sk_page_frag(sk); 387 388 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and 389 * we need to leave room for an authentication tag. 390 */ 391 max_open_record_len = TLS_MAX_PAYLOAD_SIZE + 392 prot->prepend_size; 393 do { 394 rc = tls_do_allocation(sk, ctx, pfrag, 395 prot->prepend_size); 396 if (rc) { 397 rc = sk_stream_wait_memory(sk, &timeo); 398 if (!rc) 399 continue; 400 401 record = ctx->open_record; 402 if (!record) 403 break; 404 handle_error: 405 if (record_type != TLS_RECORD_TYPE_DATA) { 406 /* avoid sending partial 407 * record with type != 408 * application_data 409 */ 410 size = orig_size; 411 destroy_record(record); 412 ctx->open_record = NULL; 413 } else if (record->len > prot->prepend_size) { 414 goto last_record; 415 } 416 417 break; 418 } 419 420 record = ctx->open_record; 421 copy = min_t(size_t, size, (pfrag->size - pfrag->offset)); 422 copy = min_t(size_t, copy, (max_open_record_len - record->len)); 423 424 if (copy_from_iter_nocache(page_address(pfrag->page) + 425 pfrag->offset, 426 copy, msg_iter) != copy) { 427 rc = -EFAULT; 428 goto handle_error; 429 } 430 tls_append_frag(record, pfrag, copy); 431 432 size -= copy; 433 if (!size) { 434 last_record: 435 tls_push_record_flags = flags; 436 if (more) { 437 tls_ctx->pending_open_record_frags = 438 !!record->num_frags; 439 break; 440 } 441 442 done = true; 443 } 444 445 if (done || record->len >= max_open_record_len || 446 (record->num_frags >= MAX_SKB_FRAGS - 1)) { 447 rc = tls_push_record(sk, 448 tls_ctx, 449 ctx, 450 record, 451 pfrag, 452 tls_push_record_flags, 453 record_type); 454 if (rc < 0) 455 break; 456 } 457 } while (!done); 458 459 if (orig_size - size > 0) 460 rc = orig_size - size; 461 462 return rc; 463 } 464 465 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 466 { 467 unsigned char record_type = TLS_RECORD_TYPE_DATA; 468 int rc; 469 470 lock_sock(sk); 471 472 if (unlikely(msg->msg_controllen)) { 473 rc = tls_proccess_cmsg(sk, msg, &record_type); 474 if (rc) 475 goto out; 476 } 477 478 rc = tls_push_data(sk, &msg->msg_iter, size, 479 msg->msg_flags, record_type); 480 481 out: 482 release_sock(sk); 483 return rc; 484 } 485 486 int tls_device_sendpage(struct sock *sk, struct page *page, 487 int offset, size_t size, int flags) 488 { 489 struct iov_iter msg_iter; 490 char *kaddr = kmap(page); 491 struct kvec iov; 492 int rc; 493 494 if (flags & MSG_SENDPAGE_NOTLAST) 495 flags |= MSG_MORE; 496 497 lock_sock(sk); 498 499 if (flags & MSG_OOB) { 500 rc = -ENOTSUPP; 501 goto out; 502 } 503 504 iov.iov_base = kaddr + offset; 505 iov.iov_len = size; 506 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size); 507 rc = tls_push_data(sk, &msg_iter, size, 508 flags, TLS_RECORD_TYPE_DATA); 509 kunmap(page); 510 511 out: 512 release_sock(sk); 513 return rc; 514 } 515 516 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 517 u32 seq, u64 *p_record_sn) 518 { 519 u64 record_sn = context->hint_record_sn; 520 struct tls_record_info *info; 521 522 info = context->retransmit_hint; 523 if (!info || 524 before(seq, info->end_seq - info->len)) { 525 /* if retransmit_hint is irrelevant start 526 * from the beggining of the list 527 */ 528 info = list_first_entry(&context->records_list, 529 struct tls_record_info, list); 530 record_sn = context->unacked_record_sn; 531 } 532 533 list_for_each_entry_from(info, &context->records_list, list) { 534 if (before(seq, info->end_seq)) { 535 if (!context->retransmit_hint || 536 after(info->end_seq, 537 context->retransmit_hint->end_seq)) { 538 context->hint_record_sn = record_sn; 539 context->retransmit_hint = info; 540 } 541 *p_record_sn = record_sn; 542 return info; 543 } 544 record_sn++; 545 } 546 547 return NULL; 548 } 549 EXPORT_SYMBOL(tls_get_record); 550 551 static int tls_device_push_pending_record(struct sock *sk, int flags) 552 { 553 struct iov_iter msg_iter; 554 555 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0); 556 return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA); 557 } 558 559 void tls_device_write_space(struct sock *sk, struct tls_context *ctx) 560 { 561 int rc = 0; 562 563 if (!sk->sk_write_pending && tls_is_partially_sent_record(ctx)) { 564 gfp_t sk_allocation = sk->sk_allocation; 565 566 sk->sk_allocation = GFP_ATOMIC; 567 rc = tls_push_partial_record(sk, ctx, 568 MSG_DONTWAIT | MSG_NOSIGNAL); 569 sk->sk_allocation = sk_allocation; 570 } 571 } 572 573 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn) 574 { 575 struct tls_context *tls_ctx = tls_get_ctx(sk); 576 struct net_device *netdev = tls_ctx->netdev; 577 struct tls_offload_context_rx *rx_ctx; 578 u32 is_req_pending; 579 s64 resync_req; 580 u32 req_seq; 581 582 if (tls_ctx->rx_conf != TLS_HW) 583 return; 584 585 rx_ctx = tls_offload_ctx_rx(tls_ctx); 586 resync_req = atomic64_read(&rx_ctx->resync_req); 587 req_seq = ntohl(resync_req >> 32) - ((u32)TLS_HEADER_SIZE - 1); 588 is_req_pending = resync_req; 589 590 if (unlikely(is_req_pending) && req_seq == seq && 591 atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) 592 netdev->tlsdev_ops->tls_dev_resync_rx(netdev, sk, 593 seq + TLS_HEADER_SIZE - 1, 594 rcd_sn); 595 } 596 597 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb) 598 { 599 struct strp_msg *rxm = strp_msg(skb); 600 int err = 0, offset = rxm->offset, copy, nsg; 601 struct sk_buff *skb_iter, *unused; 602 struct scatterlist sg[1]; 603 char *orig_buf, *buf; 604 605 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + 606 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation); 607 if (!orig_buf) 608 return -ENOMEM; 609 buf = orig_buf; 610 611 nsg = skb_cow_data(skb, 0, &unused); 612 if (unlikely(nsg < 0)) { 613 err = nsg; 614 goto free_buf; 615 } 616 617 sg_init_table(sg, 1); 618 sg_set_buf(&sg[0], buf, 619 rxm->full_len + TLS_HEADER_SIZE + 620 TLS_CIPHER_AES_GCM_128_IV_SIZE); 621 skb_copy_bits(skb, offset, buf, 622 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE); 623 624 /* We are interested only in the decrypted data not the auth */ 625 err = decrypt_skb(sk, skb, sg); 626 if (err != -EBADMSG) 627 goto free_buf; 628 else 629 err = 0; 630 631 copy = min_t(int, skb_pagelen(skb) - offset, 632 rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE); 633 634 if (skb->decrypted) 635 skb_store_bits(skb, offset, buf, copy); 636 637 offset += copy; 638 buf += copy; 639 640 skb_walk_frags(skb, skb_iter) { 641 copy = min_t(int, skb_iter->len, 642 rxm->full_len - offset + rxm->offset - 643 TLS_CIPHER_AES_GCM_128_TAG_SIZE); 644 645 if (skb_iter->decrypted) 646 skb_store_bits(skb_iter, offset, buf, copy); 647 648 offset += copy; 649 buf += copy; 650 } 651 652 free_buf: 653 kfree(orig_buf); 654 return err; 655 } 656 657 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb) 658 { 659 struct tls_context *tls_ctx = tls_get_ctx(sk); 660 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); 661 int is_decrypted = skb->decrypted; 662 int is_encrypted = !is_decrypted; 663 struct sk_buff *skb_iter; 664 665 /* Skip if it is already decrypted */ 666 if (ctx->sw.decrypted) 667 return 0; 668 669 /* Check if all the data is decrypted already */ 670 skb_walk_frags(skb, skb_iter) { 671 is_decrypted &= skb_iter->decrypted; 672 is_encrypted &= !skb_iter->decrypted; 673 } 674 675 ctx->sw.decrypted |= is_decrypted; 676 677 /* Return immedeatly if the record is either entirely plaintext or 678 * entirely ciphertext. Otherwise handle reencrypt partially decrypted 679 * record. 680 */ 681 return (is_encrypted || is_decrypted) ? 0 : 682 tls_device_reencrypt(sk, skb); 683 } 684 685 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 686 { 687 u16 nonce_size, tag_size, iv_size, rec_seq_size; 688 struct tls_context *tls_ctx = tls_get_ctx(sk); 689 struct tls_prot_info *prot = &tls_ctx->prot_info; 690 struct tls_record_info *start_marker_record; 691 struct tls_offload_context_tx *offload_ctx; 692 struct tls_crypto_info *crypto_info; 693 struct net_device *netdev; 694 char *iv, *rec_seq; 695 struct sk_buff *skb; 696 int rc = -EINVAL; 697 __be64 rcd_sn; 698 699 if (!ctx) 700 goto out; 701 702 if (ctx->priv_ctx_tx) { 703 rc = -EEXIST; 704 goto out; 705 } 706 707 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); 708 if (!start_marker_record) { 709 rc = -ENOMEM; 710 goto out; 711 } 712 713 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); 714 if (!offload_ctx) { 715 rc = -ENOMEM; 716 goto free_marker_record; 717 } 718 719 crypto_info = &ctx->crypto_send.info; 720 switch (crypto_info->cipher_type) { 721 case TLS_CIPHER_AES_GCM_128: 722 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 723 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 724 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 725 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 726 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 727 rec_seq = 728 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 729 break; 730 default: 731 rc = -EINVAL; 732 goto free_offload_ctx; 733 } 734 735 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 736 prot->tag_size = tag_size; 737 prot->overhead_size = prot->prepend_size + prot->tag_size; 738 prot->iv_size = iv_size; 739 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 740 GFP_KERNEL); 741 if (!ctx->tx.iv) { 742 rc = -ENOMEM; 743 goto free_offload_ctx; 744 } 745 746 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 747 748 prot->rec_seq_size = rec_seq_size; 749 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 750 if (!ctx->tx.rec_seq) { 751 rc = -ENOMEM; 752 goto free_iv; 753 } 754 755 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); 756 if (rc) 757 goto free_rec_seq; 758 759 /* start at rec_seq - 1 to account for the start marker record */ 760 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); 761 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; 762 763 start_marker_record->end_seq = tcp_sk(sk)->write_seq; 764 start_marker_record->len = 0; 765 start_marker_record->num_frags = 0; 766 767 INIT_LIST_HEAD(&offload_ctx->records_list); 768 list_add_tail(&start_marker_record->list, &offload_ctx->records_list); 769 spin_lock_init(&offload_ctx->lock); 770 sg_init_table(offload_ctx->sg_tx_data, 771 ARRAY_SIZE(offload_ctx->sg_tx_data)); 772 773 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); 774 ctx->push_pending_record = tls_device_push_pending_record; 775 776 /* TLS offload is greatly simplified if we don't send 777 * SKBs where only part of the payload needs to be encrypted. 778 * So mark the last skb in the write queue as end of record. 779 */ 780 skb = tcp_write_queue_tail(sk); 781 if (skb) 782 TCP_SKB_CB(skb)->eor = 1; 783 784 /* We support starting offload on multiple sockets 785 * concurrently, so we only need a read lock here. 786 * This lock must precede get_netdev_for_sock to prevent races between 787 * NETDEV_DOWN and setsockopt. 788 */ 789 down_read(&device_offload_lock); 790 netdev = get_netdev_for_sock(sk); 791 if (!netdev) { 792 pr_err_ratelimited("%s: netdev not found\n", __func__); 793 rc = -EINVAL; 794 goto release_lock; 795 } 796 797 if (!(netdev->features & NETIF_F_HW_TLS_TX)) { 798 rc = -ENOTSUPP; 799 goto release_netdev; 800 } 801 802 /* Avoid offloading if the device is down 803 * We don't want to offload new flows after 804 * the NETDEV_DOWN event 805 */ 806 if (!(netdev->flags & IFF_UP)) { 807 rc = -EINVAL; 808 goto release_netdev; 809 } 810 811 ctx->priv_ctx_tx = offload_ctx; 812 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, 813 &ctx->crypto_send.info, 814 tcp_sk(sk)->write_seq); 815 if (rc) 816 goto release_netdev; 817 818 tls_device_attach(ctx, sk, netdev); 819 820 /* following this assignment tls_is_sk_tx_device_offloaded 821 * will return true and the context might be accessed 822 * by the netdev's xmit function. 823 */ 824 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); 825 dev_put(netdev); 826 up_read(&device_offload_lock); 827 goto out; 828 829 release_netdev: 830 dev_put(netdev); 831 release_lock: 832 up_read(&device_offload_lock); 833 clean_acked_data_disable(inet_csk(sk)); 834 crypto_free_aead(offload_ctx->aead_send); 835 free_rec_seq: 836 kfree(ctx->tx.rec_seq); 837 free_iv: 838 kfree(ctx->tx.iv); 839 free_offload_ctx: 840 kfree(offload_ctx); 841 ctx->priv_ctx_tx = NULL; 842 free_marker_record: 843 kfree(start_marker_record); 844 out: 845 return rc; 846 } 847 848 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 849 { 850 struct tls_offload_context_rx *context; 851 struct net_device *netdev; 852 int rc = 0; 853 854 /* We support starting offload on multiple sockets 855 * concurrently, so we only need a read lock here. 856 * This lock must precede get_netdev_for_sock to prevent races between 857 * NETDEV_DOWN and setsockopt. 858 */ 859 down_read(&device_offload_lock); 860 netdev = get_netdev_for_sock(sk); 861 if (!netdev) { 862 pr_err_ratelimited("%s: netdev not found\n", __func__); 863 rc = -EINVAL; 864 goto release_lock; 865 } 866 867 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 868 pr_err_ratelimited("%s: netdev %s with no TLS offload\n", 869 __func__, netdev->name); 870 rc = -ENOTSUPP; 871 goto release_netdev; 872 } 873 874 /* Avoid offloading if the device is down 875 * We don't want to offload new flows after 876 * the NETDEV_DOWN event 877 */ 878 if (!(netdev->flags & IFF_UP)) { 879 rc = -EINVAL; 880 goto release_netdev; 881 } 882 883 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); 884 if (!context) { 885 rc = -ENOMEM; 886 goto release_netdev; 887 } 888 889 ctx->priv_ctx_rx = context; 890 rc = tls_set_sw_offload(sk, ctx, 0); 891 if (rc) 892 goto release_ctx; 893 894 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, 895 &ctx->crypto_recv.info, 896 tcp_sk(sk)->copied_seq); 897 if (rc) { 898 pr_err_ratelimited("%s: The netdev has refused to offload this socket\n", 899 __func__); 900 goto free_sw_resources; 901 } 902 903 tls_device_attach(ctx, sk, netdev); 904 goto release_netdev; 905 906 free_sw_resources: 907 tls_sw_free_resources_rx(sk); 908 release_ctx: 909 ctx->priv_ctx_rx = NULL; 910 release_netdev: 911 dev_put(netdev); 912 release_lock: 913 up_read(&device_offload_lock); 914 return rc; 915 } 916 917 void tls_device_offload_cleanup_rx(struct sock *sk) 918 { 919 struct tls_context *tls_ctx = tls_get_ctx(sk); 920 struct net_device *netdev; 921 922 down_read(&device_offload_lock); 923 netdev = tls_ctx->netdev; 924 if (!netdev) 925 goto out; 926 927 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 928 pr_err_ratelimited("%s: device is missing NETIF_F_HW_TLS_RX cap\n", 929 __func__); 930 goto out; 931 } 932 933 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, 934 TLS_OFFLOAD_CTX_DIR_RX); 935 936 if (tls_ctx->tx_conf != TLS_HW) { 937 dev_put(netdev); 938 tls_ctx->netdev = NULL; 939 } 940 out: 941 up_read(&device_offload_lock); 942 kfree(tls_ctx->rx.rec_seq); 943 kfree(tls_ctx->rx.iv); 944 tls_sw_release_resources_rx(sk); 945 } 946 947 static int tls_device_down(struct net_device *netdev) 948 { 949 struct tls_context *ctx, *tmp; 950 unsigned long flags; 951 LIST_HEAD(list); 952 953 /* Request a write lock to block new offload attempts */ 954 down_write(&device_offload_lock); 955 956 spin_lock_irqsave(&tls_device_lock, flags); 957 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { 958 if (ctx->netdev != netdev || 959 !refcount_inc_not_zero(&ctx->refcount)) 960 continue; 961 962 list_move(&ctx->list, &list); 963 } 964 spin_unlock_irqrestore(&tls_device_lock, flags); 965 966 list_for_each_entry_safe(ctx, tmp, &list, list) { 967 if (ctx->tx_conf == TLS_HW) 968 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 969 TLS_OFFLOAD_CTX_DIR_TX); 970 if (ctx->rx_conf == TLS_HW) 971 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 972 TLS_OFFLOAD_CTX_DIR_RX); 973 ctx->netdev = NULL; 974 dev_put(netdev); 975 list_del_init(&ctx->list); 976 977 if (refcount_dec_and_test(&ctx->refcount)) 978 tls_device_free_ctx(ctx); 979 } 980 981 up_write(&device_offload_lock); 982 983 flush_work(&tls_device_gc_work); 984 985 return NOTIFY_DONE; 986 } 987 988 static int tls_dev_event(struct notifier_block *this, unsigned long event, 989 void *ptr) 990 { 991 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 992 993 if (!(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) 994 return NOTIFY_DONE; 995 996 switch (event) { 997 case NETDEV_REGISTER: 998 case NETDEV_FEAT_CHANGE: 999 if ((dev->features & NETIF_F_HW_TLS_RX) && 1000 !dev->tlsdev_ops->tls_dev_resync_rx) 1001 return NOTIFY_BAD; 1002 1003 if (dev->tlsdev_ops && 1004 dev->tlsdev_ops->tls_dev_add && 1005 dev->tlsdev_ops->tls_dev_del) 1006 return NOTIFY_DONE; 1007 else 1008 return NOTIFY_BAD; 1009 case NETDEV_DOWN: 1010 return tls_device_down(dev); 1011 } 1012 return NOTIFY_DONE; 1013 } 1014 1015 static struct notifier_block tls_dev_notifier = { 1016 .notifier_call = tls_dev_event, 1017 }; 1018 1019 void __init tls_device_init(void) 1020 { 1021 register_netdevice_notifier(&tls_dev_notifier); 1022 } 1023 1024 void __exit tls_device_cleanup(void) 1025 { 1026 unregister_netdevice_notifier(&tls_dev_notifier); 1027 flush_work(&tls_device_gc_work); 1028 } 1029