xref: /openbmc/linux/net/tls/tls_device.c (revision 18afb028)
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40 
41 #include "tls.h"
42 #include "trace.h"
43 
44 /* device_offload_lock is used to synchronize tls_dev_add
45  * against NETDEV_DOWN notifications.
46  */
47 static DECLARE_RWSEM(device_offload_lock);
48 
49 static struct workqueue_struct *destruct_wq __read_mostly;
50 
51 static LIST_HEAD(tls_device_list);
52 static LIST_HEAD(tls_device_down_list);
53 static DEFINE_SPINLOCK(tls_device_lock);
54 
55 static struct page *dummy_page;
56 
57 static void tls_device_free_ctx(struct tls_context *ctx)
58 {
59 	if (ctx->tx_conf == TLS_HW) {
60 		kfree(tls_offload_ctx_tx(ctx));
61 		kfree(ctx->tx.rec_seq);
62 		kfree(ctx->tx.iv);
63 	}
64 
65 	if (ctx->rx_conf == TLS_HW)
66 		kfree(tls_offload_ctx_rx(ctx));
67 
68 	tls_ctx_free(NULL, ctx);
69 }
70 
71 static void tls_device_tx_del_task(struct work_struct *work)
72 {
73 	struct tls_offload_context_tx *offload_ctx =
74 		container_of(work, struct tls_offload_context_tx, destruct_work);
75 	struct tls_context *ctx = offload_ctx->ctx;
76 	struct net_device *netdev;
77 
78 	/* Safe, because this is the destroy flow, refcount is 0, so
79 	 * tls_device_down can't store this field in parallel.
80 	 */
81 	netdev = rcu_dereference_protected(ctx->netdev,
82 					   !refcount_read(&ctx->refcount));
83 
84 	netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
85 	dev_put(netdev);
86 	ctx->netdev = NULL;
87 	tls_device_free_ctx(ctx);
88 }
89 
90 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
91 {
92 	struct net_device *netdev;
93 	unsigned long flags;
94 	bool async_cleanup;
95 
96 	spin_lock_irqsave(&tls_device_lock, flags);
97 	if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
98 		spin_unlock_irqrestore(&tls_device_lock, flags);
99 		return;
100 	}
101 
102 	list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
103 
104 	/* Safe, because this is the destroy flow, refcount is 0, so
105 	 * tls_device_down can't store this field in parallel.
106 	 */
107 	netdev = rcu_dereference_protected(ctx->netdev,
108 					   !refcount_read(&ctx->refcount));
109 
110 	async_cleanup = netdev && ctx->tx_conf == TLS_HW;
111 	if (async_cleanup) {
112 		struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
113 
114 		/* queue_work inside the spinlock
115 		 * to make sure tls_device_down waits for that work.
116 		 */
117 		queue_work(destruct_wq, &offload_ctx->destruct_work);
118 	}
119 	spin_unlock_irqrestore(&tls_device_lock, flags);
120 
121 	if (!async_cleanup)
122 		tls_device_free_ctx(ctx);
123 }
124 
125 /* We assume that the socket is already connected */
126 static struct net_device *get_netdev_for_sock(struct sock *sk)
127 {
128 	struct dst_entry *dst = sk_dst_get(sk);
129 	struct net_device *netdev = NULL;
130 
131 	if (likely(dst)) {
132 		netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
133 		dev_hold(netdev);
134 	}
135 
136 	dst_release(dst);
137 
138 	return netdev;
139 }
140 
141 static void destroy_record(struct tls_record_info *record)
142 {
143 	int i;
144 
145 	for (i = 0; i < record->num_frags; i++)
146 		__skb_frag_unref(&record->frags[i], false);
147 	kfree(record);
148 }
149 
150 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
151 {
152 	struct tls_record_info *info, *temp;
153 
154 	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
155 		list_del(&info->list);
156 		destroy_record(info);
157 	}
158 
159 	offload_ctx->retransmit_hint = NULL;
160 }
161 
162 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
163 {
164 	struct tls_context *tls_ctx = tls_get_ctx(sk);
165 	struct tls_record_info *info, *temp;
166 	struct tls_offload_context_tx *ctx;
167 	u64 deleted_records = 0;
168 	unsigned long flags;
169 
170 	if (!tls_ctx)
171 		return;
172 
173 	ctx = tls_offload_ctx_tx(tls_ctx);
174 
175 	spin_lock_irqsave(&ctx->lock, flags);
176 	info = ctx->retransmit_hint;
177 	if (info && !before(acked_seq, info->end_seq))
178 		ctx->retransmit_hint = NULL;
179 
180 	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
181 		if (before(acked_seq, info->end_seq))
182 			break;
183 		list_del(&info->list);
184 
185 		destroy_record(info);
186 		deleted_records++;
187 	}
188 
189 	ctx->unacked_record_sn += deleted_records;
190 	spin_unlock_irqrestore(&ctx->lock, flags);
191 }
192 
193 /* At this point, there should be no references on this
194  * socket and no in-flight SKBs associated with this
195  * socket, so it is safe to free all the resources.
196  */
197 void tls_device_sk_destruct(struct sock *sk)
198 {
199 	struct tls_context *tls_ctx = tls_get_ctx(sk);
200 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
201 
202 	tls_ctx->sk_destruct(sk);
203 
204 	if (tls_ctx->tx_conf == TLS_HW) {
205 		if (ctx->open_record)
206 			destroy_record(ctx->open_record);
207 		delete_all_records(ctx);
208 		crypto_free_aead(ctx->aead_send);
209 		clean_acked_data_disable(inet_csk(sk));
210 	}
211 
212 	tls_device_queue_ctx_destruction(tls_ctx);
213 }
214 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
215 
216 void tls_device_free_resources_tx(struct sock *sk)
217 {
218 	struct tls_context *tls_ctx = tls_get_ctx(sk);
219 
220 	tls_free_partial_record(sk, tls_ctx);
221 }
222 
223 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
224 {
225 	struct tls_context *tls_ctx = tls_get_ctx(sk);
226 
227 	trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
228 	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
229 }
230 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
231 
232 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
233 				 u32 seq)
234 {
235 	struct net_device *netdev;
236 	struct sk_buff *skb;
237 	int err = 0;
238 	u8 *rcd_sn;
239 
240 	skb = tcp_write_queue_tail(sk);
241 	if (skb)
242 		TCP_SKB_CB(skb)->eor = 1;
243 
244 	rcd_sn = tls_ctx->tx.rec_seq;
245 
246 	trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
247 	down_read(&device_offload_lock);
248 	netdev = rcu_dereference_protected(tls_ctx->netdev,
249 					   lockdep_is_held(&device_offload_lock));
250 	if (netdev)
251 		err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
252 							 rcd_sn,
253 							 TLS_OFFLOAD_CTX_DIR_TX);
254 	up_read(&device_offload_lock);
255 	if (err)
256 		return;
257 
258 	clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
259 }
260 
261 static void tls_append_frag(struct tls_record_info *record,
262 			    struct page_frag *pfrag,
263 			    int size)
264 {
265 	skb_frag_t *frag;
266 
267 	frag = &record->frags[record->num_frags - 1];
268 	if (skb_frag_page(frag) == pfrag->page &&
269 	    skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
270 		skb_frag_size_add(frag, size);
271 	} else {
272 		++frag;
273 		skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
274 					size);
275 		++record->num_frags;
276 		get_page(pfrag->page);
277 	}
278 
279 	pfrag->offset += size;
280 	record->len += size;
281 }
282 
283 static int tls_push_record(struct sock *sk,
284 			   struct tls_context *ctx,
285 			   struct tls_offload_context_tx *offload_ctx,
286 			   struct tls_record_info *record,
287 			   int flags)
288 {
289 	struct tls_prot_info *prot = &ctx->prot_info;
290 	struct tcp_sock *tp = tcp_sk(sk);
291 	skb_frag_t *frag;
292 	int i;
293 
294 	record->end_seq = tp->write_seq + record->len;
295 	list_add_tail_rcu(&record->list, &offload_ctx->records_list);
296 	offload_ctx->open_record = NULL;
297 
298 	if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
299 		tls_device_resync_tx(sk, ctx, tp->write_seq);
300 
301 	tls_advance_record_sn(sk, prot, &ctx->tx);
302 
303 	for (i = 0; i < record->num_frags; i++) {
304 		frag = &record->frags[i];
305 		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
306 		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
307 			    skb_frag_size(frag), skb_frag_off(frag));
308 		sk_mem_charge(sk, skb_frag_size(frag));
309 		get_page(skb_frag_page(frag));
310 	}
311 	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
312 
313 	/* all ready, send */
314 	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
315 }
316 
317 static void tls_device_record_close(struct sock *sk,
318 				    struct tls_context *ctx,
319 				    struct tls_record_info *record,
320 				    struct page_frag *pfrag,
321 				    unsigned char record_type)
322 {
323 	struct tls_prot_info *prot = &ctx->prot_info;
324 	struct page_frag dummy_tag_frag;
325 
326 	/* append tag
327 	 * device will fill in the tag, we just need to append a placeholder
328 	 * use socket memory to improve coalescing (re-using a single buffer
329 	 * increases frag count)
330 	 * if we can't allocate memory now use the dummy page
331 	 */
332 	if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) &&
333 	    !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) {
334 		dummy_tag_frag.page = dummy_page;
335 		dummy_tag_frag.offset = 0;
336 		pfrag = &dummy_tag_frag;
337 	}
338 	tls_append_frag(record, pfrag, prot->tag_size);
339 
340 	/* fill prepend */
341 	tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
342 			 record->len - prot->overhead_size,
343 			 record_type);
344 }
345 
346 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
347 				 struct page_frag *pfrag,
348 				 size_t prepend_size)
349 {
350 	struct tls_record_info *record;
351 	skb_frag_t *frag;
352 
353 	record = kmalloc(sizeof(*record), GFP_KERNEL);
354 	if (!record)
355 		return -ENOMEM;
356 
357 	frag = &record->frags[0];
358 	skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
359 				prepend_size);
360 
361 	get_page(pfrag->page);
362 	pfrag->offset += prepend_size;
363 
364 	record->num_frags = 1;
365 	record->len = prepend_size;
366 	offload_ctx->open_record = record;
367 	return 0;
368 }
369 
370 static int tls_do_allocation(struct sock *sk,
371 			     struct tls_offload_context_tx *offload_ctx,
372 			     struct page_frag *pfrag,
373 			     size_t prepend_size)
374 {
375 	int ret;
376 
377 	if (!offload_ctx->open_record) {
378 		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
379 						   sk->sk_allocation))) {
380 			READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
381 			sk_stream_moderate_sndbuf(sk);
382 			return -ENOMEM;
383 		}
384 
385 		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
386 		if (ret)
387 			return ret;
388 
389 		if (pfrag->size > pfrag->offset)
390 			return 0;
391 	}
392 
393 	if (!sk_page_frag_refill(sk, pfrag))
394 		return -ENOMEM;
395 
396 	return 0;
397 }
398 
399 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
400 {
401 	size_t pre_copy, nocache;
402 
403 	pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
404 	if (pre_copy) {
405 		pre_copy = min(pre_copy, bytes);
406 		if (copy_from_iter(addr, pre_copy, i) != pre_copy)
407 			return -EFAULT;
408 		bytes -= pre_copy;
409 		addr += pre_copy;
410 	}
411 
412 	nocache = round_down(bytes, SMP_CACHE_BYTES);
413 	if (copy_from_iter_nocache(addr, nocache, i) != nocache)
414 		return -EFAULT;
415 	bytes -= nocache;
416 	addr += nocache;
417 
418 	if (bytes && copy_from_iter(addr, bytes, i) != bytes)
419 		return -EFAULT;
420 
421 	return 0;
422 }
423 
424 static int tls_push_data(struct sock *sk,
425 			 struct iov_iter *iter,
426 			 size_t size, int flags,
427 			 unsigned char record_type)
428 {
429 	struct tls_context *tls_ctx = tls_get_ctx(sk);
430 	struct tls_prot_info *prot = &tls_ctx->prot_info;
431 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
432 	struct tls_record_info *record;
433 	int tls_push_record_flags;
434 	struct page_frag *pfrag;
435 	size_t orig_size = size;
436 	u32 max_open_record_len;
437 	bool more = false;
438 	bool done = false;
439 	int copy, rc = 0;
440 	long timeo;
441 
442 	if (flags &
443 	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
444 	      MSG_SPLICE_PAGES | MSG_EOR))
445 		return -EOPNOTSUPP;
446 
447 	if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR))
448 		return -EINVAL;
449 
450 	if (unlikely(sk->sk_err))
451 		return -sk->sk_err;
452 
453 	flags |= MSG_SENDPAGE_DECRYPTED;
454 	tls_push_record_flags = flags | MSG_MORE;
455 
456 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
457 	if (tls_is_partially_sent_record(tls_ctx)) {
458 		rc = tls_push_partial_record(sk, tls_ctx, flags);
459 		if (rc < 0)
460 			return rc;
461 	}
462 
463 	pfrag = sk_page_frag(sk);
464 
465 	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
466 	 * we need to leave room for an authentication tag.
467 	 */
468 	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
469 			      prot->prepend_size;
470 	do {
471 		rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
472 		if (unlikely(rc)) {
473 			rc = sk_stream_wait_memory(sk, &timeo);
474 			if (!rc)
475 				continue;
476 
477 			record = ctx->open_record;
478 			if (!record)
479 				break;
480 handle_error:
481 			if (record_type != TLS_RECORD_TYPE_DATA) {
482 				/* avoid sending partial
483 				 * record with type !=
484 				 * application_data
485 				 */
486 				size = orig_size;
487 				destroy_record(record);
488 				ctx->open_record = NULL;
489 			} else if (record->len > prot->prepend_size) {
490 				goto last_record;
491 			}
492 
493 			break;
494 		}
495 
496 		record = ctx->open_record;
497 
498 		copy = min_t(size_t, size, max_open_record_len - record->len);
499 		if (copy && (flags & MSG_SPLICE_PAGES)) {
500 			struct page_frag zc_pfrag;
501 			struct page **pages = &zc_pfrag.page;
502 			size_t off;
503 
504 			rc = iov_iter_extract_pages(iter, &pages,
505 						    copy, 1, 0, &off);
506 			if (rc <= 0) {
507 				if (rc == 0)
508 					rc = -EIO;
509 				goto handle_error;
510 			}
511 			copy = rc;
512 
513 			if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) {
514 				iov_iter_revert(iter, copy);
515 				rc = -EIO;
516 				goto handle_error;
517 			}
518 
519 			zc_pfrag.offset = off;
520 			zc_pfrag.size = copy;
521 			tls_append_frag(record, &zc_pfrag, copy);
522 		} else if (copy) {
523 			copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
524 
525 			rc = tls_device_copy_data(page_address(pfrag->page) +
526 						  pfrag->offset, copy,
527 						  iter);
528 			if (rc)
529 				goto handle_error;
530 			tls_append_frag(record, pfrag, copy);
531 		}
532 
533 		size -= copy;
534 		if (!size) {
535 last_record:
536 			tls_push_record_flags = flags;
537 			if (flags & MSG_MORE) {
538 				more = true;
539 				break;
540 			}
541 
542 			done = true;
543 		}
544 
545 		if (done || record->len >= max_open_record_len ||
546 		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
547 			tls_device_record_close(sk, tls_ctx, record,
548 						pfrag, record_type);
549 
550 			rc = tls_push_record(sk,
551 					     tls_ctx,
552 					     ctx,
553 					     record,
554 					     tls_push_record_flags);
555 			if (rc < 0)
556 				break;
557 		}
558 	} while (!done);
559 
560 	tls_ctx->pending_open_record_frags = more;
561 
562 	if (orig_size - size > 0)
563 		rc = orig_size - size;
564 
565 	return rc;
566 }
567 
568 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
569 {
570 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
571 	struct tls_context *tls_ctx = tls_get_ctx(sk);
572 	int rc;
573 
574 	if (!tls_ctx->zerocopy_sendfile)
575 		msg->msg_flags &= ~MSG_SPLICE_PAGES;
576 
577 	mutex_lock(&tls_ctx->tx_lock);
578 	lock_sock(sk);
579 
580 	if (unlikely(msg->msg_controllen)) {
581 		rc = tls_process_cmsg(sk, msg, &record_type);
582 		if (rc)
583 			goto out;
584 	}
585 
586 	rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags,
587 			   record_type);
588 
589 out:
590 	release_sock(sk);
591 	mutex_unlock(&tls_ctx->tx_lock);
592 	return rc;
593 }
594 
595 void tls_device_splice_eof(struct socket *sock)
596 {
597 	struct sock *sk = sock->sk;
598 	struct tls_context *tls_ctx = tls_get_ctx(sk);
599 	struct iov_iter iter = {};
600 
601 	if (!tls_is_partially_sent_record(tls_ctx))
602 		return;
603 
604 	mutex_lock(&tls_ctx->tx_lock);
605 	lock_sock(sk);
606 
607 	if (tls_is_partially_sent_record(tls_ctx)) {
608 		iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0);
609 		tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA);
610 	}
611 
612 	release_sock(sk);
613 	mutex_unlock(&tls_ctx->tx_lock);
614 }
615 
616 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
617 				       u32 seq, u64 *p_record_sn)
618 {
619 	u64 record_sn = context->hint_record_sn;
620 	struct tls_record_info *info, *last;
621 
622 	info = context->retransmit_hint;
623 	if (!info ||
624 	    before(seq, info->end_seq - info->len)) {
625 		/* if retransmit_hint is irrelevant start
626 		 * from the beginning of the list
627 		 */
628 		info = list_first_entry_or_null(&context->records_list,
629 						struct tls_record_info, list);
630 		if (!info)
631 			return NULL;
632 		/* send the start_marker record if seq number is before the
633 		 * tls offload start marker sequence number. This record is
634 		 * required to handle TCP packets which are before TLS offload
635 		 * started.
636 		 *  And if it's not start marker, look if this seq number
637 		 * belongs to the list.
638 		 */
639 		if (likely(!tls_record_is_start_marker(info))) {
640 			/* we have the first record, get the last record to see
641 			 * if this seq number belongs to the list.
642 			 */
643 			last = list_last_entry(&context->records_list,
644 					       struct tls_record_info, list);
645 
646 			if (!between(seq, tls_record_start_seq(info),
647 				     last->end_seq))
648 				return NULL;
649 		}
650 		record_sn = context->unacked_record_sn;
651 	}
652 
653 	/* We just need the _rcu for the READ_ONCE() */
654 	rcu_read_lock();
655 	list_for_each_entry_from_rcu(info, &context->records_list, list) {
656 		if (before(seq, info->end_seq)) {
657 			if (!context->retransmit_hint ||
658 			    after(info->end_seq,
659 				  context->retransmit_hint->end_seq)) {
660 				context->hint_record_sn = record_sn;
661 				context->retransmit_hint = info;
662 			}
663 			*p_record_sn = record_sn;
664 			goto exit_rcu_unlock;
665 		}
666 		record_sn++;
667 	}
668 	info = NULL;
669 
670 exit_rcu_unlock:
671 	rcu_read_unlock();
672 	return info;
673 }
674 EXPORT_SYMBOL(tls_get_record);
675 
676 static int tls_device_push_pending_record(struct sock *sk, int flags)
677 {
678 	struct iov_iter iter;
679 
680 	iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0);
681 	return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA);
682 }
683 
684 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
685 {
686 	if (tls_is_partially_sent_record(ctx)) {
687 		gfp_t sk_allocation = sk->sk_allocation;
688 
689 		WARN_ON_ONCE(sk->sk_write_pending);
690 
691 		sk->sk_allocation = GFP_ATOMIC;
692 		tls_push_partial_record(sk, ctx,
693 					MSG_DONTWAIT | MSG_NOSIGNAL |
694 					MSG_SENDPAGE_DECRYPTED);
695 		sk->sk_allocation = sk_allocation;
696 	}
697 }
698 
699 static void tls_device_resync_rx(struct tls_context *tls_ctx,
700 				 struct sock *sk, u32 seq, u8 *rcd_sn)
701 {
702 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
703 	struct net_device *netdev;
704 
705 	trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
706 	rcu_read_lock();
707 	netdev = rcu_dereference(tls_ctx->netdev);
708 	if (netdev)
709 		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
710 						   TLS_OFFLOAD_CTX_DIR_RX);
711 	rcu_read_unlock();
712 	TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
713 }
714 
715 static bool
716 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
717 			   s64 resync_req, u32 *seq, u16 *rcd_delta)
718 {
719 	u32 is_async = resync_req & RESYNC_REQ_ASYNC;
720 	u32 req_seq = resync_req >> 32;
721 	u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
722 	u16 i;
723 
724 	*rcd_delta = 0;
725 
726 	if (is_async) {
727 		/* shouldn't get to wraparound:
728 		 * too long in async stage, something bad happened
729 		 */
730 		if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
731 			return false;
732 
733 		/* asynchronous stage: log all headers seq such that
734 		 * req_seq <= seq <= end_seq, and wait for real resync request
735 		 */
736 		if (before(*seq, req_seq))
737 			return false;
738 		if (!after(*seq, req_end) &&
739 		    resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
740 			resync_async->log[resync_async->loglen++] = *seq;
741 
742 		resync_async->rcd_delta++;
743 
744 		return false;
745 	}
746 
747 	/* synchronous stage: check against the logged entries and
748 	 * proceed to check the next entries if no match was found
749 	 */
750 	for (i = 0; i < resync_async->loglen; i++)
751 		if (req_seq == resync_async->log[i] &&
752 		    atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
753 			*rcd_delta = resync_async->rcd_delta - i;
754 			*seq = req_seq;
755 			resync_async->loglen = 0;
756 			resync_async->rcd_delta = 0;
757 			return true;
758 		}
759 
760 	resync_async->loglen = 0;
761 	resync_async->rcd_delta = 0;
762 
763 	if (req_seq == *seq &&
764 	    atomic64_try_cmpxchg(&resync_async->req,
765 				 &resync_req, 0))
766 		return true;
767 
768 	return false;
769 }
770 
771 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
772 {
773 	struct tls_context *tls_ctx = tls_get_ctx(sk);
774 	struct tls_offload_context_rx *rx_ctx;
775 	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
776 	u32 sock_data, is_req_pending;
777 	struct tls_prot_info *prot;
778 	s64 resync_req;
779 	u16 rcd_delta;
780 	u32 req_seq;
781 
782 	if (tls_ctx->rx_conf != TLS_HW)
783 		return;
784 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
785 		return;
786 
787 	prot = &tls_ctx->prot_info;
788 	rx_ctx = tls_offload_ctx_rx(tls_ctx);
789 	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
790 
791 	switch (rx_ctx->resync_type) {
792 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
793 		resync_req = atomic64_read(&rx_ctx->resync_req);
794 		req_seq = resync_req >> 32;
795 		seq += TLS_HEADER_SIZE - 1;
796 		is_req_pending = resync_req;
797 
798 		if (likely(!is_req_pending) || req_seq != seq ||
799 		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
800 			return;
801 		break;
802 	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
803 		if (likely(!rx_ctx->resync_nh_do_now))
804 			return;
805 
806 		/* head of next rec is already in, note that the sock_inq will
807 		 * include the currently parsed message when called from parser
808 		 */
809 		sock_data = tcp_inq(sk);
810 		if (sock_data > rcd_len) {
811 			trace_tls_device_rx_resync_nh_delay(sk, sock_data,
812 							    rcd_len);
813 			return;
814 		}
815 
816 		rx_ctx->resync_nh_do_now = 0;
817 		seq += rcd_len;
818 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
819 		break;
820 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
821 		resync_req = atomic64_read(&rx_ctx->resync_async->req);
822 		is_req_pending = resync_req;
823 		if (likely(!is_req_pending))
824 			return;
825 
826 		if (!tls_device_rx_resync_async(rx_ctx->resync_async,
827 						resync_req, &seq, &rcd_delta))
828 			return;
829 		tls_bigint_subtract(rcd_sn, rcd_delta);
830 		break;
831 	}
832 
833 	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
834 }
835 
836 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
837 					   struct tls_offload_context_rx *ctx,
838 					   struct sock *sk, struct sk_buff *skb)
839 {
840 	struct strp_msg *rxm;
841 
842 	/* device will request resyncs by itself based on stream scan */
843 	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
844 		return;
845 	/* already scheduled */
846 	if (ctx->resync_nh_do_now)
847 		return;
848 	/* seen decrypted fragments since last fully-failed record */
849 	if (ctx->resync_nh_reset) {
850 		ctx->resync_nh_reset = 0;
851 		ctx->resync_nh.decrypted_failed = 1;
852 		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
853 		return;
854 	}
855 
856 	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
857 		return;
858 
859 	/* doing resync, bump the next target in case it fails */
860 	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
861 		ctx->resync_nh.decrypted_tgt *= 2;
862 	else
863 		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
864 
865 	rxm = strp_msg(skb);
866 
867 	/* head of next rec is already in, parser will sync for us */
868 	if (tcp_inq(sk) > rxm->full_len) {
869 		trace_tls_device_rx_resync_nh_schedule(sk);
870 		ctx->resync_nh_do_now = 1;
871 	} else {
872 		struct tls_prot_info *prot = &tls_ctx->prot_info;
873 		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
874 
875 		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
876 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
877 
878 		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
879 				     rcd_sn);
880 	}
881 }
882 
883 static int
884 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
885 {
886 	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
887 	const struct tls_cipher_desc *cipher_desc;
888 	int err, offset, copy, data_len, pos;
889 	struct sk_buff *skb, *skb_iter;
890 	struct scatterlist sg[1];
891 	struct strp_msg *rxm;
892 	char *orig_buf, *buf;
893 
894 	switch (tls_ctx->crypto_recv.info.cipher_type) {
895 	case TLS_CIPHER_AES_GCM_128:
896 	case TLS_CIPHER_AES_GCM_256:
897 		break;
898 	default:
899 		return -EINVAL;
900 	}
901 	cipher_desc = get_cipher_desc(tls_ctx->crypto_recv.info.cipher_type);
902 
903 	rxm = strp_msg(tls_strp_msg(sw_ctx));
904 	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv,
905 			   sk->sk_allocation);
906 	if (!orig_buf)
907 		return -ENOMEM;
908 	buf = orig_buf;
909 
910 	err = tls_strp_msg_cow(sw_ctx);
911 	if (unlikely(err))
912 		goto free_buf;
913 
914 	skb = tls_strp_msg(sw_ctx);
915 	rxm = strp_msg(skb);
916 	offset = rxm->offset;
917 
918 	sg_init_table(sg, 1);
919 	sg_set_buf(&sg[0], buf,
920 		   rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv);
921 	err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_desc->iv);
922 	if (err)
923 		goto free_buf;
924 
925 	/* We are interested only in the decrypted data not the auth */
926 	err = decrypt_skb(sk, sg);
927 	if (err != -EBADMSG)
928 		goto free_buf;
929 	else
930 		err = 0;
931 
932 	data_len = rxm->full_len - cipher_desc->tag;
933 
934 	if (skb_pagelen(skb) > offset) {
935 		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
936 
937 		if (skb->decrypted) {
938 			err = skb_store_bits(skb, offset, buf, copy);
939 			if (err)
940 				goto free_buf;
941 		}
942 
943 		offset += copy;
944 		buf += copy;
945 	}
946 
947 	pos = skb_pagelen(skb);
948 	skb_walk_frags(skb, skb_iter) {
949 		int frag_pos;
950 
951 		/* Practically all frags must belong to msg if reencrypt
952 		 * is needed with current strparser and coalescing logic,
953 		 * but strparser may "get optimized", so let's be safe.
954 		 */
955 		if (pos + skb_iter->len <= offset)
956 			goto done_with_frag;
957 		if (pos >= data_len + rxm->offset)
958 			break;
959 
960 		frag_pos = offset - pos;
961 		copy = min_t(int, skb_iter->len - frag_pos,
962 			     data_len + rxm->offset - offset);
963 
964 		if (skb_iter->decrypted) {
965 			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
966 			if (err)
967 				goto free_buf;
968 		}
969 
970 		offset += copy;
971 		buf += copy;
972 done_with_frag:
973 		pos += skb_iter->len;
974 	}
975 
976 free_buf:
977 	kfree(orig_buf);
978 	return err;
979 }
980 
981 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
982 {
983 	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
984 	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
985 	struct sk_buff *skb = tls_strp_msg(sw_ctx);
986 	struct strp_msg *rxm = strp_msg(skb);
987 	int is_decrypted, is_encrypted;
988 
989 	if (!tls_strp_msg_mixed_decrypted(sw_ctx)) {
990 		is_decrypted = skb->decrypted;
991 		is_encrypted = !is_decrypted;
992 	} else {
993 		is_decrypted = 0;
994 		is_encrypted = 0;
995 	}
996 
997 	trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
998 				   tls_ctx->rx.rec_seq, rxm->full_len,
999 				   is_encrypted, is_decrypted);
1000 
1001 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
1002 		if (likely(is_encrypted || is_decrypted))
1003 			return is_decrypted;
1004 
1005 		/* After tls_device_down disables the offload, the next SKB will
1006 		 * likely have initial fragments decrypted, and final ones not
1007 		 * decrypted. We need to reencrypt that single SKB.
1008 		 */
1009 		return tls_device_reencrypt(sk, tls_ctx);
1010 	}
1011 
1012 	/* Return immediately if the record is either entirely plaintext or
1013 	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1014 	 * record.
1015 	 */
1016 	if (is_decrypted) {
1017 		ctx->resync_nh_reset = 1;
1018 		return is_decrypted;
1019 	}
1020 	if (is_encrypted) {
1021 		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1022 		return 0;
1023 	}
1024 
1025 	ctx->resync_nh_reset = 1;
1026 	return tls_device_reencrypt(sk, tls_ctx);
1027 }
1028 
1029 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1030 			      struct net_device *netdev)
1031 {
1032 	if (sk->sk_destruct != tls_device_sk_destruct) {
1033 		refcount_set(&ctx->refcount, 1);
1034 		dev_hold(netdev);
1035 		RCU_INIT_POINTER(ctx->netdev, netdev);
1036 		spin_lock_irq(&tls_device_lock);
1037 		list_add_tail(&ctx->list, &tls_device_list);
1038 		spin_unlock_irq(&tls_device_lock);
1039 
1040 		ctx->sk_destruct = sk->sk_destruct;
1041 		smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1042 	}
1043 }
1044 
1045 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1046 {
1047 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1048 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1049 	const struct tls_cipher_desc *cipher_desc;
1050 	struct tls_record_info *start_marker_record;
1051 	struct tls_offload_context_tx *offload_ctx;
1052 	struct tls_crypto_info *crypto_info;
1053 	struct net_device *netdev;
1054 	char *iv, *rec_seq;
1055 	struct sk_buff *skb;
1056 	__be64 rcd_sn;
1057 	int rc;
1058 
1059 	if (!ctx)
1060 		return -EINVAL;
1061 
1062 	if (ctx->priv_ctx_tx)
1063 		return -EEXIST;
1064 
1065 	netdev = get_netdev_for_sock(sk);
1066 	if (!netdev) {
1067 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1068 		return -EINVAL;
1069 	}
1070 
1071 	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1072 		rc = -EOPNOTSUPP;
1073 		goto release_netdev;
1074 	}
1075 
1076 	crypto_info = &ctx->crypto_send.info;
1077 	if (crypto_info->version != TLS_1_2_VERSION) {
1078 		rc = -EOPNOTSUPP;
1079 		goto release_netdev;
1080 	}
1081 
1082 	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
1083 	if (!cipher_desc || !cipher_desc->offloadable) {
1084 		rc = -EINVAL;
1085 		goto release_netdev;
1086 	}
1087 
1088 	iv = crypto_info_iv(crypto_info, cipher_desc);
1089 	rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
1090 
1091 	prot->version = crypto_info->version;
1092 	prot->cipher_type = crypto_info->cipher_type;
1093 	prot->prepend_size = TLS_HEADER_SIZE + cipher_desc->iv;
1094 	prot->tag_size = cipher_desc->tag;
1095 	prot->overhead_size = prot->prepend_size + prot->tag_size;
1096 	prot->iv_size = cipher_desc->iv;
1097 	prot->salt_size = cipher_desc->salt;
1098 	ctx->tx.iv = kmalloc(cipher_desc->iv + cipher_desc->salt, GFP_KERNEL);
1099 	if (!ctx->tx.iv) {
1100 		rc = -ENOMEM;
1101 		goto release_netdev;
1102 	}
1103 
1104 	memcpy(ctx->tx.iv + cipher_desc->salt, iv, cipher_desc->iv);
1105 
1106 	prot->rec_seq_size = cipher_desc->rec_seq;
1107 	ctx->tx.rec_seq = kmemdup(rec_seq, cipher_desc->rec_seq, GFP_KERNEL);
1108 	if (!ctx->tx.rec_seq) {
1109 		rc = -ENOMEM;
1110 		goto free_iv;
1111 	}
1112 
1113 	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1114 	if (!start_marker_record) {
1115 		rc = -ENOMEM;
1116 		goto free_rec_seq;
1117 	}
1118 
1119 	offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1120 	if (!offload_ctx) {
1121 		rc = -ENOMEM;
1122 		goto free_marker_record;
1123 	}
1124 
1125 	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1126 	if (rc)
1127 		goto free_offload_ctx;
1128 
1129 	/* start at rec_seq - 1 to account for the start marker record */
1130 	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1131 	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1132 
1133 	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1134 	start_marker_record->len = 0;
1135 	start_marker_record->num_frags = 0;
1136 
1137 	INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1138 	offload_ctx->ctx = ctx;
1139 
1140 	INIT_LIST_HEAD(&offload_ctx->records_list);
1141 	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1142 	spin_lock_init(&offload_ctx->lock);
1143 	sg_init_table(offload_ctx->sg_tx_data,
1144 		      ARRAY_SIZE(offload_ctx->sg_tx_data));
1145 
1146 	clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1147 	ctx->push_pending_record = tls_device_push_pending_record;
1148 
1149 	/* TLS offload is greatly simplified if we don't send
1150 	 * SKBs where only part of the payload needs to be encrypted.
1151 	 * So mark the last skb in the write queue as end of record.
1152 	 */
1153 	skb = tcp_write_queue_tail(sk);
1154 	if (skb)
1155 		TCP_SKB_CB(skb)->eor = 1;
1156 
1157 	/* Avoid offloading if the device is down
1158 	 * We don't want to offload new flows after
1159 	 * the NETDEV_DOWN event
1160 	 *
1161 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1162 	 * handler thus protecting from the device going down before
1163 	 * ctx was added to tls_device_list.
1164 	 */
1165 	down_read(&device_offload_lock);
1166 	if (!(netdev->flags & IFF_UP)) {
1167 		rc = -EINVAL;
1168 		goto release_lock;
1169 	}
1170 
1171 	ctx->priv_ctx_tx = offload_ctx;
1172 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1173 					     &ctx->crypto_send.info,
1174 					     tcp_sk(sk)->write_seq);
1175 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1176 				     tcp_sk(sk)->write_seq, rec_seq, rc);
1177 	if (rc)
1178 		goto release_lock;
1179 
1180 	tls_device_attach(ctx, sk, netdev);
1181 	up_read(&device_offload_lock);
1182 
1183 	/* following this assignment tls_is_skb_tx_device_offloaded
1184 	 * will return true and the context might be accessed
1185 	 * by the netdev's xmit function.
1186 	 */
1187 	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1188 	dev_put(netdev);
1189 
1190 	return 0;
1191 
1192 release_lock:
1193 	up_read(&device_offload_lock);
1194 	clean_acked_data_disable(inet_csk(sk));
1195 	crypto_free_aead(offload_ctx->aead_send);
1196 free_offload_ctx:
1197 	kfree(offload_ctx);
1198 	ctx->priv_ctx_tx = NULL;
1199 free_marker_record:
1200 	kfree(start_marker_record);
1201 free_rec_seq:
1202 	kfree(ctx->tx.rec_seq);
1203 free_iv:
1204 	kfree(ctx->tx.iv);
1205 release_netdev:
1206 	dev_put(netdev);
1207 	return rc;
1208 }
1209 
1210 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1211 {
1212 	struct tls12_crypto_info_aes_gcm_128 *info;
1213 	struct tls_offload_context_rx *context;
1214 	struct net_device *netdev;
1215 	int rc = 0;
1216 
1217 	if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1218 		return -EOPNOTSUPP;
1219 
1220 	netdev = get_netdev_for_sock(sk);
1221 	if (!netdev) {
1222 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1223 		return -EINVAL;
1224 	}
1225 
1226 	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1227 		rc = -EOPNOTSUPP;
1228 		goto release_netdev;
1229 	}
1230 
1231 	/* Avoid offloading if the device is down
1232 	 * We don't want to offload new flows after
1233 	 * the NETDEV_DOWN event
1234 	 *
1235 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1236 	 * handler thus protecting from the device going down before
1237 	 * ctx was added to tls_device_list.
1238 	 */
1239 	down_read(&device_offload_lock);
1240 	if (!(netdev->flags & IFF_UP)) {
1241 		rc = -EINVAL;
1242 		goto release_lock;
1243 	}
1244 
1245 	context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1246 	if (!context) {
1247 		rc = -ENOMEM;
1248 		goto release_lock;
1249 	}
1250 	context->resync_nh_reset = 1;
1251 
1252 	ctx->priv_ctx_rx = context;
1253 	rc = tls_set_sw_offload(sk, ctx, 0);
1254 	if (rc)
1255 		goto release_ctx;
1256 
1257 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1258 					     &ctx->crypto_recv.info,
1259 					     tcp_sk(sk)->copied_seq);
1260 	info = (void *)&ctx->crypto_recv.info;
1261 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1262 				     tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1263 	if (rc)
1264 		goto free_sw_resources;
1265 
1266 	tls_device_attach(ctx, sk, netdev);
1267 	up_read(&device_offload_lock);
1268 
1269 	dev_put(netdev);
1270 
1271 	return 0;
1272 
1273 free_sw_resources:
1274 	up_read(&device_offload_lock);
1275 	tls_sw_free_resources_rx(sk);
1276 	down_read(&device_offload_lock);
1277 release_ctx:
1278 	ctx->priv_ctx_rx = NULL;
1279 release_lock:
1280 	up_read(&device_offload_lock);
1281 release_netdev:
1282 	dev_put(netdev);
1283 	return rc;
1284 }
1285 
1286 void tls_device_offload_cleanup_rx(struct sock *sk)
1287 {
1288 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1289 	struct net_device *netdev;
1290 
1291 	down_read(&device_offload_lock);
1292 	netdev = rcu_dereference_protected(tls_ctx->netdev,
1293 					   lockdep_is_held(&device_offload_lock));
1294 	if (!netdev)
1295 		goto out;
1296 
1297 	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1298 					TLS_OFFLOAD_CTX_DIR_RX);
1299 
1300 	if (tls_ctx->tx_conf != TLS_HW) {
1301 		dev_put(netdev);
1302 		rcu_assign_pointer(tls_ctx->netdev, NULL);
1303 	} else {
1304 		set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1305 	}
1306 out:
1307 	up_read(&device_offload_lock);
1308 	tls_sw_release_resources_rx(sk);
1309 }
1310 
1311 static int tls_device_down(struct net_device *netdev)
1312 {
1313 	struct tls_context *ctx, *tmp;
1314 	unsigned long flags;
1315 	LIST_HEAD(list);
1316 
1317 	/* Request a write lock to block new offload attempts */
1318 	down_write(&device_offload_lock);
1319 
1320 	spin_lock_irqsave(&tls_device_lock, flags);
1321 	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1322 		struct net_device *ctx_netdev =
1323 			rcu_dereference_protected(ctx->netdev,
1324 						  lockdep_is_held(&device_offload_lock));
1325 
1326 		if (ctx_netdev != netdev ||
1327 		    !refcount_inc_not_zero(&ctx->refcount))
1328 			continue;
1329 
1330 		list_move(&ctx->list, &list);
1331 	}
1332 	spin_unlock_irqrestore(&tls_device_lock, flags);
1333 
1334 	list_for_each_entry_safe(ctx, tmp, &list, list)	{
1335 		/* Stop offloaded TX and switch to the fallback.
1336 		 * tls_is_skb_tx_device_offloaded will return false.
1337 		 */
1338 		WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1339 
1340 		/* Stop the RX and TX resync.
1341 		 * tls_dev_resync must not be called after tls_dev_del.
1342 		 */
1343 		rcu_assign_pointer(ctx->netdev, NULL);
1344 
1345 		/* Start skipping the RX resync logic completely. */
1346 		set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1347 
1348 		/* Sync with inflight packets. After this point:
1349 		 * TX: no non-encrypted packets will be passed to the driver.
1350 		 * RX: resync requests from the driver will be ignored.
1351 		 */
1352 		synchronize_net();
1353 
1354 		/* Release the offload context on the driver side. */
1355 		if (ctx->tx_conf == TLS_HW)
1356 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1357 							TLS_OFFLOAD_CTX_DIR_TX);
1358 		if (ctx->rx_conf == TLS_HW &&
1359 		    !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1360 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1361 							TLS_OFFLOAD_CTX_DIR_RX);
1362 
1363 		dev_put(netdev);
1364 
1365 		/* Move the context to a separate list for two reasons:
1366 		 * 1. When the context is deallocated, list_del is called.
1367 		 * 2. It's no longer an offloaded context, so we don't want to
1368 		 *    run offload-specific code on this context.
1369 		 */
1370 		spin_lock_irqsave(&tls_device_lock, flags);
1371 		list_move_tail(&ctx->list, &tls_device_down_list);
1372 		spin_unlock_irqrestore(&tls_device_lock, flags);
1373 
1374 		/* Device contexts for RX and TX will be freed in on sk_destruct
1375 		 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1376 		 * Now release the ref taken above.
1377 		 */
1378 		if (refcount_dec_and_test(&ctx->refcount)) {
1379 			/* sk_destruct ran after tls_device_down took a ref, and
1380 			 * it returned early. Complete the destruction here.
1381 			 */
1382 			list_del(&ctx->list);
1383 			tls_device_free_ctx(ctx);
1384 		}
1385 	}
1386 
1387 	up_write(&device_offload_lock);
1388 
1389 	flush_workqueue(destruct_wq);
1390 
1391 	return NOTIFY_DONE;
1392 }
1393 
1394 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1395 			 void *ptr)
1396 {
1397 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1398 
1399 	if (!dev->tlsdev_ops &&
1400 	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1401 		return NOTIFY_DONE;
1402 
1403 	switch (event) {
1404 	case NETDEV_REGISTER:
1405 	case NETDEV_FEAT_CHANGE:
1406 		if (netif_is_bond_master(dev))
1407 			return NOTIFY_DONE;
1408 		if ((dev->features & NETIF_F_HW_TLS_RX) &&
1409 		    !dev->tlsdev_ops->tls_dev_resync)
1410 			return NOTIFY_BAD;
1411 
1412 		if  (dev->tlsdev_ops &&
1413 		     dev->tlsdev_ops->tls_dev_add &&
1414 		     dev->tlsdev_ops->tls_dev_del)
1415 			return NOTIFY_DONE;
1416 		else
1417 			return NOTIFY_BAD;
1418 	case NETDEV_DOWN:
1419 		return tls_device_down(dev);
1420 	}
1421 	return NOTIFY_DONE;
1422 }
1423 
1424 static struct notifier_block tls_dev_notifier = {
1425 	.notifier_call	= tls_dev_event,
1426 };
1427 
1428 int __init tls_device_init(void)
1429 {
1430 	int err;
1431 
1432 	dummy_page = alloc_page(GFP_KERNEL);
1433 	if (!dummy_page)
1434 		return -ENOMEM;
1435 
1436 	destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0);
1437 	if (!destruct_wq) {
1438 		err = -ENOMEM;
1439 		goto err_free_dummy;
1440 	}
1441 
1442 	err = register_netdevice_notifier(&tls_dev_notifier);
1443 	if (err)
1444 		goto err_destroy_wq;
1445 
1446 	return 0;
1447 
1448 err_destroy_wq:
1449 	destroy_workqueue(destruct_wq);
1450 err_free_dummy:
1451 	put_page(dummy_page);
1452 	return err;
1453 }
1454 
1455 void __exit tls_device_cleanup(void)
1456 {
1457 	unregister_netdevice_notifier(&tls_dev_notifier);
1458 	destroy_workqueue(destruct_wq);
1459 	clean_acked_data_flush();
1460 	put_page(dummy_page);
1461 }
1462