xref: /openbmc/linux/net/tls/tls_device.c (revision 12a6e62bfdcad8be49644b6dcf70c15e0e6bab6b)
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40 
41 #include "tls.h"
42 #include "trace.h"
43 
44 /* device_offload_lock is used to synchronize tls_dev_add
45  * against NETDEV_DOWN notifications.
46  */
47 static DECLARE_RWSEM(device_offload_lock);
48 
49 static struct workqueue_struct *destruct_wq __read_mostly;
50 
51 static LIST_HEAD(tls_device_list);
52 static LIST_HEAD(tls_device_down_list);
53 static DEFINE_SPINLOCK(tls_device_lock);
54 
55 static void tls_device_free_ctx(struct tls_context *ctx)
56 {
57 	if (ctx->tx_conf == TLS_HW) {
58 		kfree(tls_offload_ctx_tx(ctx));
59 		kfree(ctx->tx.rec_seq);
60 		kfree(ctx->tx.iv);
61 	}
62 
63 	if (ctx->rx_conf == TLS_HW)
64 		kfree(tls_offload_ctx_rx(ctx));
65 
66 	tls_ctx_free(NULL, ctx);
67 }
68 
69 static void tls_device_tx_del_task(struct work_struct *work)
70 {
71 	struct tls_offload_context_tx *offload_ctx =
72 		container_of(work, struct tls_offload_context_tx, destruct_work);
73 	struct tls_context *ctx = offload_ctx->ctx;
74 	struct net_device *netdev;
75 
76 	/* Safe, because this is the destroy flow, refcount is 0, so
77 	 * tls_device_down can't store this field in parallel.
78 	 */
79 	netdev = rcu_dereference_protected(ctx->netdev,
80 					   !refcount_read(&ctx->refcount));
81 
82 	netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
83 	dev_put(netdev);
84 	ctx->netdev = NULL;
85 	tls_device_free_ctx(ctx);
86 }
87 
88 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
89 {
90 	struct net_device *netdev;
91 	unsigned long flags;
92 	bool async_cleanup;
93 
94 	spin_lock_irqsave(&tls_device_lock, flags);
95 	if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
96 		spin_unlock_irqrestore(&tls_device_lock, flags);
97 		return;
98 	}
99 
100 	list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
101 
102 	/* Safe, because this is the destroy flow, refcount is 0, so
103 	 * tls_device_down can't store this field in parallel.
104 	 */
105 	netdev = rcu_dereference_protected(ctx->netdev,
106 					   !refcount_read(&ctx->refcount));
107 
108 	async_cleanup = netdev && ctx->tx_conf == TLS_HW;
109 	if (async_cleanup) {
110 		struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
111 
112 		/* queue_work inside the spinlock
113 		 * to make sure tls_device_down waits for that work.
114 		 */
115 		queue_work(destruct_wq, &offload_ctx->destruct_work);
116 	}
117 	spin_unlock_irqrestore(&tls_device_lock, flags);
118 
119 	if (!async_cleanup)
120 		tls_device_free_ctx(ctx);
121 }
122 
123 /* We assume that the socket is already connected */
124 static struct net_device *get_netdev_for_sock(struct sock *sk)
125 {
126 	struct dst_entry *dst = sk_dst_get(sk);
127 	struct net_device *netdev = NULL;
128 
129 	if (likely(dst)) {
130 		netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
131 		dev_hold(netdev);
132 	}
133 
134 	dst_release(dst);
135 
136 	return netdev;
137 }
138 
139 static void destroy_record(struct tls_record_info *record)
140 {
141 	int i;
142 
143 	for (i = 0; i < record->num_frags; i++)
144 		__skb_frag_unref(&record->frags[i], false);
145 	kfree(record);
146 }
147 
148 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
149 {
150 	struct tls_record_info *info, *temp;
151 
152 	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
153 		list_del(&info->list);
154 		destroy_record(info);
155 	}
156 
157 	offload_ctx->retransmit_hint = NULL;
158 }
159 
160 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
161 {
162 	struct tls_context *tls_ctx = tls_get_ctx(sk);
163 	struct tls_record_info *info, *temp;
164 	struct tls_offload_context_tx *ctx;
165 	u64 deleted_records = 0;
166 	unsigned long flags;
167 
168 	if (!tls_ctx)
169 		return;
170 
171 	ctx = tls_offload_ctx_tx(tls_ctx);
172 
173 	spin_lock_irqsave(&ctx->lock, flags);
174 	info = ctx->retransmit_hint;
175 	if (info && !before(acked_seq, info->end_seq))
176 		ctx->retransmit_hint = NULL;
177 
178 	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
179 		if (before(acked_seq, info->end_seq))
180 			break;
181 		list_del(&info->list);
182 
183 		destroy_record(info);
184 		deleted_records++;
185 	}
186 
187 	ctx->unacked_record_sn += deleted_records;
188 	spin_unlock_irqrestore(&ctx->lock, flags);
189 }
190 
191 /* At this point, there should be no references on this
192  * socket and no in-flight SKBs associated with this
193  * socket, so it is safe to free all the resources.
194  */
195 void tls_device_sk_destruct(struct sock *sk)
196 {
197 	struct tls_context *tls_ctx = tls_get_ctx(sk);
198 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
199 
200 	tls_ctx->sk_destruct(sk);
201 
202 	if (tls_ctx->tx_conf == TLS_HW) {
203 		if (ctx->open_record)
204 			destroy_record(ctx->open_record);
205 		delete_all_records(ctx);
206 		crypto_free_aead(ctx->aead_send);
207 		clean_acked_data_disable(inet_csk(sk));
208 	}
209 
210 	tls_device_queue_ctx_destruction(tls_ctx);
211 }
212 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
213 
214 void tls_device_free_resources_tx(struct sock *sk)
215 {
216 	struct tls_context *tls_ctx = tls_get_ctx(sk);
217 
218 	tls_free_partial_record(sk, tls_ctx);
219 }
220 
221 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
222 {
223 	struct tls_context *tls_ctx = tls_get_ctx(sk);
224 
225 	trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
226 	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
227 }
228 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
229 
230 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
231 				 u32 seq)
232 {
233 	struct net_device *netdev;
234 	struct sk_buff *skb;
235 	int err = 0;
236 	u8 *rcd_sn;
237 
238 	skb = tcp_write_queue_tail(sk);
239 	if (skb)
240 		TCP_SKB_CB(skb)->eor = 1;
241 
242 	rcd_sn = tls_ctx->tx.rec_seq;
243 
244 	trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
245 	down_read(&device_offload_lock);
246 	netdev = rcu_dereference_protected(tls_ctx->netdev,
247 					   lockdep_is_held(&device_offload_lock));
248 	if (netdev)
249 		err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
250 							 rcd_sn,
251 							 TLS_OFFLOAD_CTX_DIR_TX);
252 	up_read(&device_offload_lock);
253 	if (err)
254 		return;
255 
256 	clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
257 }
258 
259 static void tls_append_frag(struct tls_record_info *record,
260 			    struct page_frag *pfrag,
261 			    int size)
262 {
263 	skb_frag_t *frag;
264 
265 	frag = &record->frags[record->num_frags - 1];
266 	if (skb_frag_page(frag) == pfrag->page &&
267 	    skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
268 		skb_frag_size_add(frag, size);
269 	} else {
270 		++frag;
271 		__skb_frag_set_page(frag, pfrag->page);
272 		skb_frag_off_set(frag, pfrag->offset);
273 		skb_frag_size_set(frag, size);
274 		++record->num_frags;
275 		get_page(pfrag->page);
276 	}
277 
278 	pfrag->offset += size;
279 	record->len += size;
280 }
281 
282 static int tls_push_record(struct sock *sk,
283 			   struct tls_context *ctx,
284 			   struct tls_offload_context_tx *offload_ctx,
285 			   struct tls_record_info *record,
286 			   int flags)
287 {
288 	struct tls_prot_info *prot = &ctx->prot_info;
289 	struct tcp_sock *tp = tcp_sk(sk);
290 	skb_frag_t *frag;
291 	int i;
292 
293 	record->end_seq = tp->write_seq + record->len;
294 	list_add_tail_rcu(&record->list, &offload_ctx->records_list);
295 	offload_ctx->open_record = NULL;
296 
297 	if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
298 		tls_device_resync_tx(sk, ctx, tp->write_seq);
299 
300 	tls_advance_record_sn(sk, prot, &ctx->tx);
301 
302 	for (i = 0; i < record->num_frags; i++) {
303 		frag = &record->frags[i];
304 		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
305 		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
306 			    skb_frag_size(frag), skb_frag_off(frag));
307 		sk_mem_charge(sk, skb_frag_size(frag));
308 		get_page(skb_frag_page(frag));
309 	}
310 	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
311 
312 	/* all ready, send */
313 	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
314 }
315 
316 static int tls_device_record_close(struct sock *sk,
317 				   struct tls_context *ctx,
318 				   struct tls_record_info *record,
319 				   struct page_frag *pfrag,
320 				   unsigned char record_type)
321 {
322 	struct tls_prot_info *prot = &ctx->prot_info;
323 	int ret;
324 
325 	/* append tag
326 	 * device will fill in the tag, we just need to append a placeholder
327 	 * use socket memory to improve coalescing (re-using a single buffer
328 	 * increases frag count)
329 	 * if we can't allocate memory now, steal some back from data
330 	 */
331 	if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
332 					sk->sk_allocation))) {
333 		ret = 0;
334 		tls_append_frag(record, pfrag, prot->tag_size);
335 	} else {
336 		ret = prot->tag_size;
337 		if (record->len <= prot->overhead_size)
338 			return -ENOMEM;
339 	}
340 
341 	/* fill prepend */
342 	tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
343 			 record->len - prot->overhead_size,
344 			 record_type);
345 	return ret;
346 }
347 
348 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
349 				 struct page_frag *pfrag,
350 				 size_t prepend_size)
351 {
352 	struct tls_record_info *record;
353 	skb_frag_t *frag;
354 
355 	record = kmalloc(sizeof(*record), GFP_KERNEL);
356 	if (!record)
357 		return -ENOMEM;
358 
359 	frag = &record->frags[0];
360 	__skb_frag_set_page(frag, pfrag->page);
361 	skb_frag_off_set(frag, pfrag->offset);
362 	skb_frag_size_set(frag, prepend_size);
363 
364 	get_page(pfrag->page);
365 	pfrag->offset += prepend_size;
366 
367 	record->num_frags = 1;
368 	record->len = prepend_size;
369 	offload_ctx->open_record = record;
370 	return 0;
371 }
372 
373 static int tls_do_allocation(struct sock *sk,
374 			     struct tls_offload_context_tx *offload_ctx,
375 			     struct page_frag *pfrag,
376 			     size_t prepend_size)
377 {
378 	int ret;
379 
380 	if (!offload_ctx->open_record) {
381 		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
382 						   sk->sk_allocation))) {
383 			READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
384 			sk_stream_moderate_sndbuf(sk);
385 			return -ENOMEM;
386 		}
387 
388 		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
389 		if (ret)
390 			return ret;
391 
392 		if (pfrag->size > pfrag->offset)
393 			return 0;
394 	}
395 
396 	if (!sk_page_frag_refill(sk, pfrag))
397 		return -ENOMEM;
398 
399 	return 0;
400 }
401 
402 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
403 {
404 	size_t pre_copy, nocache;
405 
406 	pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
407 	if (pre_copy) {
408 		pre_copy = min(pre_copy, bytes);
409 		if (copy_from_iter(addr, pre_copy, i) != pre_copy)
410 			return -EFAULT;
411 		bytes -= pre_copy;
412 		addr += pre_copy;
413 	}
414 
415 	nocache = round_down(bytes, SMP_CACHE_BYTES);
416 	if (copy_from_iter_nocache(addr, nocache, i) != nocache)
417 		return -EFAULT;
418 	bytes -= nocache;
419 	addr += nocache;
420 
421 	if (bytes && copy_from_iter(addr, bytes, i) != bytes)
422 		return -EFAULT;
423 
424 	return 0;
425 }
426 
427 union tls_iter_offset {
428 	struct iov_iter *msg_iter;
429 	int offset;
430 };
431 
432 static int tls_push_data(struct sock *sk,
433 			 union tls_iter_offset iter_offset,
434 			 size_t size, int flags,
435 			 unsigned char record_type,
436 			 struct page *zc_page)
437 {
438 	struct tls_context *tls_ctx = tls_get_ctx(sk);
439 	struct tls_prot_info *prot = &tls_ctx->prot_info;
440 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
441 	struct tls_record_info *record;
442 	int tls_push_record_flags;
443 	struct page_frag *pfrag;
444 	size_t orig_size = size;
445 	u32 max_open_record_len;
446 	bool more = false;
447 	bool done = false;
448 	int copy, rc = 0;
449 	long timeo;
450 
451 	if (flags &
452 	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
453 		return -EOPNOTSUPP;
454 
455 	if (unlikely(sk->sk_err))
456 		return -sk->sk_err;
457 
458 	flags |= MSG_SENDPAGE_DECRYPTED;
459 	tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
460 
461 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
462 	if (tls_is_partially_sent_record(tls_ctx)) {
463 		rc = tls_push_partial_record(sk, tls_ctx, flags);
464 		if (rc < 0)
465 			return rc;
466 	}
467 
468 	pfrag = sk_page_frag(sk);
469 
470 	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
471 	 * we need to leave room for an authentication tag.
472 	 */
473 	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
474 			      prot->prepend_size;
475 	do {
476 		rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
477 		if (unlikely(rc)) {
478 			rc = sk_stream_wait_memory(sk, &timeo);
479 			if (!rc)
480 				continue;
481 
482 			record = ctx->open_record;
483 			if (!record)
484 				break;
485 handle_error:
486 			if (record_type != TLS_RECORD_TYPE_DATA) {
487 				/* avoid sending partial
488 				 * record with type !=
489 				 * application_data
490 				 */
491 				size = orig_size;
492 				destroy_record(record);
493 				ctx->open_record = NULL;
494 			} else if (record->len > prot->prepend_size) {
495 				goto last_record;
496 			}
497 
498 			break;
499 		}
500 
501 		record = ctx->open_record;
502 
503 		copy = min_t(size_t, size, max_open_record_len - record->len);
504 		if (copy && zc_page) {
505 			struct page_frag zc_pfrag;
506 
507 			zc_pfrag.page = zc_page;
508 			zc_pfrag.offset = iter_offset.offset;
509 			zc_pfrag.size = copy;
510 			tls_append_frag(record, &zc_pfrag, copy);
511 
512 			iter_offset.offset += copy;
513 		} else if (copy) {
514 			copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
515 
516 			rc = tls_device_copy_data(page_address(pfrag->page) +
517 						  pfrag->offset, copy,
518 						  iter_offset.msg_iter);
519 			if (rc)
520 				goto handle_error;
521 			tls_append_frag(record, pfrag, copy);
522 		}
523 
524 		size -= copy;
525 		if (!size) {
526 last_record:
527 			tls_push_record_flags = flags;
528 			if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
529 				more = true;
530 				break;
531 			}
532 
533 			done = true;
534 		}
535 
536 		if (done || record->len >= max_open_record_len ||
537 		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
538 			rc = tls_device_record_close(sk, tls_ctx, record,
539 						     pfrag, record_type);
540 			if (rc) {
541 				if (rc > 0) {
542 					size += rc;
543 				} else {
544 					size = orig_size;
545 					destroy_record(record);
546 					ctx->open_record = NULL;
547 					break;
548 				}
549 			}
550 
551 			rc = tls_push_record(sk,
552 					     tls_ctx,
553 					     ctx,
554 					     record,
555 					     tls_push_record_flags);
556 			if (rc < 0)
557 				break;
558 		}
559 	} while (!done);
560 
561 	tls_ctx->pending_open_record_frags = more;
562 
563 	if (orig_size - size > 0)
564 		rc = orig_size - size;
565 
566 	return rc;
567 }
568 
569 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
570 {
571 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
572 	struct tls_context *tls_ctx = tls_get_ctx(sk);
573 	union tls_iter_offset iter;
574 	int rc;
575 
576 	mutex_lock(&tls_ctx->tx_lock);
577 	lock_sock(sk);
578 
579 	if (unlikely(msg->msg_controllen)) {
580 		rc = tls_process_cmsg(sk, msg, &record_type);
581 		if (rc)
582 			goto out;
583 	}
584 
585 	iter.msg_iter = &msg->msg_iter;
586 	rc = tls_push_data(sk, iter, size, msg->msg_flags, record_type, NULL);
587 
588 out:
589 	release_sock(sk);
590 	mutex_unlock(&tls_ctx->tx_lock);
591 	return rc;
592 }
593 
594 int tls_device_sendpage(struct sock *sk, struct page *page,
595 			int offset, size_t size, int flags)
596 {
597 	struct tls_context *tls_ctx = tls_get_ctx(sk);
598 	union tls_iter_offset iter_offset;
599 	struct iov_iter msg_iter;
600 	char *kaddr;
601 	struct kvec iov;
602 	int rc;
603 
604 	if (flags & MSG_SENDPAGE_NOTLAST)
605 		flags |= MSG_MORE;
606 
607 	mutex_lock(&tls_ctx->tx_lock);
608 	lock_sock(sk);
609 
610 	if (flags & MSG_OOB) {
611 		rc = -EOPNOTSUPP;
612 		goto out;
613 	}
614 
615 	if (tls_ctx->zerocopy_sendfile) {
616 		iter_offset.offset = offset;
617 		rc = tls_push_data(sk, iter_offset, size,
618 				   flags, TLS_RECORD_TYPE_DATA, page);
619 		goto out;
620 	}
621 
622 	kaddr = kmap(page);
623 	iov.iov_base = kaddr + offset;
624 	iov.iov_len = size;
625 	iov_iter_kvec(&msg_iter, ITER_SOURCE, &iov, 1, size);
626 	iter_offset.msg_iter = &msg_iter;
627 	rc = tls_push_data(sk, iter_offset, size, flags, TLS_RECORD_TYPE_DATA,
628 			   NULL);
629 	kunmap(page);
630 
631 out:
632 	release_sock(sk);
633 	mutex_unlock(&tls_ctx->tx_lock);
634 	return rc;
635 }
636 
637 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
638 				       u32 seq, u64 *p_record_sn)
639 {
640 	u64 record_sn = context->hint_record_sn;
641 	struct tls_record_info *info, *last;
642 
643 	info = context->retransmit_hint;
644 	if (!info ||
645 	    before(seq, info->end_seq - info->len)) {
646 		/* if retransmit_hint is irrelevant start
647 		 * from the beginning of the list
648 		 */
649 		info = list_first_entry_or_null(&context->records_list,
650 						struct tls_record_info, list);
651 		if (!info)
652 			return NULL;
653 		/* send the start_marker record if seq number is before the
654 		 * tls offload start marker sequence number. This record is
655 		 * required to handle TCP packets which are before TLS offload
656 		 * started.
657 		 *  And if it's not start marker, look if this seq number
658 		 * belongs to the list.
659 		 */
660 		if (likely(!tls_record_is_start_marker(info))) {
661 			/* we have the first record, get the last record to see
662 			 * if this seq number belongs to the list.
663 			 */
664 			last = list_last_entry(&context->records_list,
665 					       struct tls_record_info, list);
666 
667 			if (!between(seq, tls_record_start_seq(info),
668 				     last->end_seq))
669 				return NULL;
670 		}
671 		record_sn = context->unacked_record_sn;
672 	}
673 
674 	/* We just need the _rcu for the READ_ONCE() */
675 	rcu_read_lock();
676 	list_for_each_entry_from_rcu(info, &context->records_list, list) {
677 		if (before(seq, info->end_seq)) {
678 			if (!context->retransmit_hint ||
679 			    after(info->end_seq,
680 				  context->retransmit_hint->end_seq)) {
681 				context->hint_record_sn = record_sn;
682 				context->retransmit_hint = info;
683 			}
684 			*p_record_sn = record_sn;
685 			goto exit_rcu_unlock;
686 		}
687 		record_sn++;
688 	}
689 	info = NULL;
690 
691 exit_rcu_unlock:
692 	rcu_read_unlock();
693 	return info;
694 }
695 EXPORT_SYMBOL(tls_get_record);
696 
697 static int tls_device_push_pending_record(struct sock *sk, int flags)
698 {
699 	union tls_iter_offset iter;
700 	struct iov_iter msg_iter;
701 
702 	iov_iter_kvec(&msg_iter, ITER_SOURCE, NULL, 0, 0);
703 	iter.msg_iter = &msg_iter;
704 	return tls_push_data(sk, iter, 0, flags, TLS_RECORD_TYPE_DATA, NULL);
705 }
706 
707 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
708 {
709 	if (tls_is_partially_sent_record(ctx)) {
710 		gfp_t sk_allocation = sk->sk_allocation;
711 
712 		WARN_ON_ONCE(sk->sk_write_pending);
713 
714 		sk->sk_allocation = GFP_ATOMIC;
715 		tls_push_partial_record(sk, ctx,
716 					MSG_DONTWAIT | MSG_NOSIGNAL |
717 					MSG_SENDPAGE_DECRYPTED);
718 		sk->sk_allocation = sk_allocation;
719 	}
720 }
721 
722 static void tls_device_resync_rx(struct tls_context *tls_ctx,
723 				 struct sock *sk, u32 seq, u8 *rcd_sn)
724 {
725 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
726 	struct net_device *netdev;
727 
728 	trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
729 	rcu_read_lock();
730 	netdev = rcu_dereference(tls_ctx->netdev);
731 	if (netdev)
732 		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
733 						   TLS_OFFLOAD_CTX_DIR_RX);
734 	rcu_read_unlock();
735 	TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
736 }
737 
738 static bool
739 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
740 			   s64 resync_req, u32 *seq, u16 *rcd_delta)
741 {
742 	u32 is_async = resync_req & RESYNC_REQ_ASYNC;
743 	u32 req_seq = resync_req >> 32;
744 	u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
745 	u16 i;
746 
747 	*rcd_delta = 0;
748 
749 	if (is_async) {
750 		/* shouldn't get to wraparound:
751 		 * too long in async stage, something bad happened
752 		 */
753 		if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
754 			return false;
755 
756 		/* asynchronous stage: log all headers seq such that
757 		 * req_seq <= seq <= end_seq, and wait for real resync request
758 		 */
759 		if (before(*seq, req_seq))
760 			return false;
761 		if (!after(*seq, req_end) &&
762 		    resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
763 			resync_async->log[resync_async->loglen++] = *seq;
764 
765 		resync_async->rcd_delta++;
766 
767 		return false;
768 	}
769 
770 	/* synchronous stage: check against the logged entries and
771 	 * proceed to check the next entries if no match was found
772 	 */
773 	for (i = 0; i < resync_async->loglen; i++)
774 		if (req_seq == resync_async->log[i] &&
775 		    atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
776 			*rcd_delta = resync_async->rcd_delta - i;
777 			*seq = req_seq;
778 			resync_async->loglen = 0;
779 			resync_async->rcd_delta = 0;
780 			return true;
781 		}
782 
783 	resync_async->loglen = 0;
784 	resync_async->rcd_delta = 0;
785 
786 	if (req_seq == *seq &&
787 	    atomic64_try_cmpxchg(&resync_async->req,
788 				 &resync_req, 0))
789 		return true;
790 
791 	return false;
792 }
793 
794 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
795 {
796 	struct tls_context *tls_ctx = tls_get_ctx(sk);
797 	struct tls_offload_context_rx *rx_ctx;
798 	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
799 	u32 sock_data, is_req_pending;
800 	struct tls_prot_info *prot;
801 	s64 resync_req;
802 	u16 rcd_delta;
803 	u32 req_seq;
804 
805 	if (tls_ctx->rx_conf != TLS_HW)
806 		return;
807 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
808 		return;
809 
810 	prot = &tls_ctx->prot_info;
811 	rx_ctx = tls_offload_ctx_rx(tls_ctx);
812 	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
813 
814 	switch (rx_ctx->resync_type) {
815 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
816 		resync_req = atomic64_read(&rx_ctx->resync_req);
817 		req_seq = resync_req >> 32;
818 		seq += TLS_HEADER_SIZE - 1;
819 		is_req_pending = resync_req;
820 
821 		if (likely(!is_req_pending) || req_seq != seq ||
822 		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
823 			return;
824 		break;
825 	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
826 		if (likely(!rx_ctx->resync_nh_do_now))
827 			return;
828 
829 		/* head of next rec is already in, note that the sock_inq will
830 		 * include the currently parsed message when called from parser
831 		 */
832 		sock_data = tcp_inq(sk);
833 		if (sock_data > rcd_len) {
834 			trace_tls_device_rx_resync_nh_delay(sk, sock_data,
835 							    rcd_len);
836 			return;
837 		}
838 
839 		rx_ctx->resync_nh_do_now = 0;
840 		seq += rcd_len;
841 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
842 		break;
843 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
844 		resync_req = atomic64_read(&rx_ctx->resync_async->req);
845 		is_req_pending = resync_req;
846 		if (likely(!is_req_pending))
847 			return;
848 
849 		if (!tls_device_rx_resync_async(rx_ctx->resync_async,
850 						resync_req, &seq, &rcd_delta))
851 			return;
852 		tls_bigint_subtract(rcd_sn, rcd_delta);
853 		break;
854 	}
855 
856 	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
857 }
858 
859 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
860 					   struct tls_offload_context_rx *ctx,
861 					   struct sock *sk, struct sk_buff *skb)
862 {
863 	struct strp_msg *rxm;
864 
865 	/* device will request resyncs by itself based on stream scan */
866 	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
867 		return;
868 	/* already scheduled */
869 	if (ctx->resync_nh_do_now)
870 		return;
871 	/* seen decrypted fragments since last fully-failed record */
872 	if (ctx->resync_nh_reset) {
873 		ctx->resync_nh_reset = 0;
874 		ctx->resync_nh.decrypted_failed = 1;
875 		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
876 		return;
877 	}
878 
879 	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
880 		return;
881 
882 	/* doing resync, bump the next target in case it fails */
883 	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
884 		ctx->resync_nh.decrypted_tgt *= 2;
885 	else
886 		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
887 
888 	rxm = strp_msg(skb);
889 
890 	/* head of next rec is already in, parser will sync for us */
891 	if (tcp_inq(sk) > rxm->full_len) {
892 		trace_tls_device_rx_resync_nh_schedule(sk);
893 		ctx->resync_nh_do_now = 1;
894 	} else {
895 		struct tls_prot_info *prot = &tls_ctx->prot_info;
896 		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
897 
898 		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
899 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
900 
901 		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
902 				     rcd_sn);
903 	}
904 }
905 
906 static int
907 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
908 {
909 	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
910 	const struct tls_cipher_size_desc *cipher_sz;
911 	int err, offset, copy, data_len, pos;
912 	struct sk_buff *skb, *skb_iter;
913 	struct scatterlist sg[1];
914 	struct strp_msg *rxm;
915 	char *orig_buf, *buf;
916 
917 	switch (tls_ctx->crypto_recv.info.cipher_type) {
918 	case TLS_CIPHER_AES_GCM_128:
919 	case TLS_CIPHER_AES_GCM_256:
920 		break;
921 	default:
922 		return -EINVAL;
923 	}
924 	cipher_sz = &tls_cipher_size_desc[tls_ctx->crypto_recv.info.cipher_type];
925 
926 	rxm = strp_msg(tls_strp_msg(sw_ctx));
927 	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv,
928 			   sk->sk_allocation);
929 	if (!orig_buf)
930 		return -ENOMEM;
931 	buf = orig_buf;
932 
933 	err = tls_strp_msg_cow(sw_ctx);
934 	if (unlikely(err))
935 		goto free_buf;
936 
937 	skb = tls_strp_msg(sw_ctx);
938 	rxm = strp_msg(skb);
939 	offset = rxm->offset;
940 
941 	sg_init_table(sg, 1);
942 	sg_set_buf(&sg[0], buf,
943 		   rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv);
944 	err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_sz->iv);
945 	if (err)
946 		goto free_buf;
947 
948 	/* We are interested only in the decrypted data not the auth */
949 	err = decrypt_skb(sk, sg);
950 	if (err != -EBADMSG)
951 		goto free_buf;
952 	else
953 		err = 0;
954 
955 	data_len = rxm->full_len - cipher_sz->tag;
956 
957 	if (skb_pagelen(skb) > offset) {
958 		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
959 
960 		if (skb->decrypted) {
961 			err = skb_store_bits(skb, offset, buf, copy);
962 			if (err)
963 				goto free_buf;
964 		}
965 
966 		offset += copy;
967 		buf += copy;
968 	}
969 
970 	pos = skb_pagelen(skb);
971 	skb_walk_frags(skb, skb_iter) {
972 		int frag_pos;
973 
974 		/* Practically all frags must belong to msg if reencrypt
975 		 * is needed with current strparser and coalescing logic,
976 		 * but strparser may "get optimized", so let's be safe.
977 		 */
978 		if (pos + skb_iter->len <= offset)
979 			goto done_with_frag;
980 		if (pos >= data_len + rxm->offset)
981 			break;
982 
983 		frag_pos = offset - pos;
984 		copy = min_t(int, skb_iter->len - frag_pos,
985 			     data_len + rxm->offset - offset);
986 
987 		if (skb_iter->decrypted) {
988 			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
989 			if (err)
990 				goto free_buf;
991 		}
992 
993 		offset += copy;
994 		buf += copy;
995 done_with_frag:
996 		pos += skb_iter->len;
997 	}
998 
999 free_buf:
1000 	kfree(orig_buf);
1001 	return err;
1002 }
1003 
1004 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
1005 {
1006 	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
1007 	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
1008 	struct sk_buff *skb = tls_strp_msg(sw_ctx);
1009 	struct strp_msg *rxm = strp_msg(skb);
1010 	int is_decrypted, is_encrypted;
1011 
1012 	if (!tls_strp_msg_mixed_decrypted(sw_ctx)) {
1013 		is_decrypted = skb->decrypted;
1014 		is_encrypted = !is_decrypted;
1015 	} else {
1016 		is_decrypted = 0;
1017 		is_encrypted = 0;
1018 	}
1019 
1020 	trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
1021 				   tls_ctx->rx.rec_seq, rxm->full_len,
1022 				   is_encrypted, is_decrypted);
1023 
1024 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
1025 		if (likely(is_encrypted || is_decrypted))
1026 			return is_decrypted;
1027 
1028 		/* After tls_device_down disables the offload, the next SKB will
1029 		 * likely have initial fragments decrypted, and final ones not
1030 		 * decrypted. We need to reencrypt that single SKB.
1031 		 */
1032 		return tls_device_reencrypt(sk, tls_ctx);
1033 	}
1034 
1035 	/* Return immediately if the record is either entirely plaintext or
1036 	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1037 	 * record.
1038 	 */
1039 	if (is_decrypted) {
1040 		ctx->resync_nh_reset = 1;
1041 		return is_decrypted;
1042 	}
1043 	if (is_encrypted) {
1044 		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1045 		return 0;
1046 	}
1047 
1048 	ctx->resync_nh_reset = 1;
1049 	return tls_device_reencrypt(sk, tls_ctx);
1050 }
1051 
1052 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1053 			      struct net_device *netdev)
1054 {
1055 	if (sk->sk_destruct != tls_device_sk_destruct) {
1056 		refcount_set(&ctx->refcount, 1);
1057 		dev_hold(netdev);
1058 		RCU_INIT_POINTER(ctx->netdev, netdev);
1059 		spin_lock_irq(&tls_device_lock);
1060 		list_add_tail(&ctx->list, &tls_device_list);
1061 		spin_unlock_irq(&tls_device_lock);
1062 
1063 		ctx->sk_destruct = sk->sk_destruct;
1064 		smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1065 	}
1066 }
1067 
1068 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1069 {
1070 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1071 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1072 	const struct tls_cipher_size_desc *cipher_sz;
1073 	struct tls_record_info *start_marker_record;
1074 	struct tls_offload_context_tx *offload_ctx;
1075 	struct tls_crypto_info *crypto_info;
1076 	struct net_device *netdev;
1077 	char *iv, *rec_seq;
1078 	struct sk_buff *skb;
1079 	__be64 rcd_sn;
1080 	int rc;
1081 
1082 	if (!ctx)
1083 		return -EINVAL;
1084 
1085 	if (ctx->priv_ctx_tx)
1086 		return -EEXIST;
1087 
1088 	netdev = get_netdev_for_sock(sk);
1089 	if (!netdev) {
1090 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1091 		return -EINVAL;
1092 	}
1093 
1094 	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1095 		rc = -EOPNOTSUPP;
1096 		goto release_netdev;
1097 	}
1098 
1099 	crypto_info = &ctx->crypto_send.info;
1100 	if (crypto_info->version != TLS_1_2_VERSION) {
1101 		rc = -EOPNOTSUPP;
1102 		goto release_netdev;
1103 	}
1104 
1105 	switch (crypto_info->cipher_type) {
1106 	case TLS_CIPHER_AES_GCM_128:
1107 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1108 		rec_seq =
1109 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1110 		break;
1111 	case TLS_CIPHER_AES_GCM_256:
1112 		iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
1113 		rec_seq =
1114 		 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
1115 		break;
1116 	default:
1117 		rc = -EINVAL;
1118 		goto release_netdev;
1119 	}
1120 	cipher_sz = &tls_cipher_size_desc[crypto_info->cipher_type];
1121 
1122 	/* Sanity-check the rec_seq_size for stack allocations */
1123 	if (cipher_sz->rec_seq > TLS_MAX_REC_SEQ_SIZE) {
1124 		rc = -EINVAL;
1125 		goto release_netdev;
1126 	}
1127 
1128 	prot->version = crypto_info->version;
1129 	prot->cipher_type = crypto_info->cipher_type;
1130 	prot->prepend_size = TLS_HEADER_SIZE + cipher_sz->iv;
1131 	prot->tag_size = cipher_sz->tag;
1132 	prot->overhead_size = prot->prepend_size + prot->tag_size;
1133 	prot->iv_size = cipher_sz->iv;
1134 	prot->salt_size = cipher_sz->salt;
1135 	ctx->tx.iv = kmalloc(cipher_sz->iv + cipher_sz->salt, GFP_KERNEL);
1136 	if (!ctx->tx.iv) {
1137 		rc = -ENOMEM;
1138 		goto release_netdev;
1139 	}
1140 
1141 	memcpy(ctx->tx.iv + cipher_sz->salt, iv, cipher_sz->iv);
1142 
1143 	prot->rec_seq_size = cipher_sz->rec_seq;
1144 	ctx->tx.rec_seq = kmemdup(rec_seq, cipher_sz->rec_seq, GFP_KERNEL);
1145 	if (!ctx->tx.rec_seq) {
1146 		rc = -ENOMEM;
1147 		goto free_iv;
1148 	}
1149 
1150 	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1151 	if (!start_marker_record) {
1152 		rc = -ENOMEM;
1153 		goto free_rec_seq;
1154 	}
1155 
1156 	offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1157 	if (!offload_ctx) {
1158 		rc = -ENOMEM;
1159 		goto free_marker_record;
1160 	}
1161 
1162 	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1163 	if (rc)
1164 		goto free_offload_ctx;
1165 
1166 	/* start at rec_seq - 1 to account for the start marker record */
1167 	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1168 	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1169 
1170 	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1171 	start_marker_record->len = 0;
1172 	start_marker_record->num_frags = 0;
1173 
1174 	INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1175 	offload_ctx->ctx = ctx;
1176 
1177 	INIT_LIST_HEAD(&offload_ctx->records_list);
1178 	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1179 	spin_lock_init(&offload_ctx->lock);
1180 	sg_init_table(offload_ctx->sg_tx_data,
1181 		      ARRAY_SIZE(offload_ctx->sg_tx_data));
1182 
1183 	clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1184 	ctx->push_pending_record = tls_device_push_pending_record;
1185 
1186 	/* TLS offload is greatly simplified if we don't send
1187 	 * SKBs where only part of the payload needs to be encrypted.
1188 	 * So mark the last skb in the write queue as end of record.
1189 	 */
1190 	skb = tcp_write_queue_tail(sk);
1191 	if (skb)
1192 		TCP_SKB_CB(skb)->eor = 1;
1193 
1194 	/* Avoid offloading if the device is down
1195 	 * We don't want to offload new flows after
1196 	 * the NETDEV_DOWN event
1197 	 *
1198 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1199 	 * handler thus protecting from the device going down before
1200 	 * ctx was added to tls_device_list.
1201 	 */
1202 	down_read(&device_offload_lock);
1203 	if (!(netdev->flags & IFF_UP)) {
1204 		rc = -EINVAL;
1205 		goto release_lock;
1206 	}
1207 
1208 	ctx->priv_ctx_tx = offload_ctx;
1209 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1210 					     &ctx->crypto_send.info,
1211 					     tcp_sk(sk)->write_seq);
1212 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1213 				     tcp_sk(sk)->write_seq, rec_seq, rc);
1214 	if (rc)
1215 		goto release_lock;
1216 
1217 	tls_device_attach(ctx, sk, netdev);
1218 	up_read(&device_offload_lock);
1219 
1220 	/* following this assignment tls_is_sk_tx_device_offloaded
1221 	 * will return true and the context might be accessed
1222 	 * by the netdev's xmit function.
1223 	 */
1224 	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1225 	dev_put(netdev);
1226 
1227 	return 0;
1228 
1229 release_lock:
1230 	up_read(&device_offload_lock);
1231 	clean_acked_data_disable(inet_csk(sk));
1232 	crypto_free_aead(offload_ctx->aead_send);
1233 free_offload_ctx:
1234 	kfree(offload_ctx);
1235 	ctx->priv_ctx_tx = NULL;
1236 free_marker_record:
1237 	kfree(start_marker_record);
1238 free_rec_seq:
1239 	kfree(ctx->tx.rec_seq);
1240 free_iv:
1241 	kfree(ctx->tx.iv);
1242 release_netdev:
1243 	dev_put(netdev);
1244 	return rc;
1245 }
1246 
1247 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1248 {
1249 	struct tls12_crypto_info_aes_gcm_128 *info;
1250 	struct tls_offload_context_rx *context;
1251 	struct net_device *netdev;
1252 	int rc = 0;
1253 
1254 	if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1255 		return -EOPNOTSUPP;
1256 
1257 	netdev = get_netdev_for_sock(sk);
1258 	if (!netdev) {
1259 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1260 		return -EINVAL;
1261 	}
1262 
1263 	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1264 		rc = -EOPNOTSUPP;
1265 		goto release_netdev;
1266 	}
1267 
1268 	/* Avoid offloading if the device is down
1269 	 * We don't want to offload new flows after
1270 	 * the NETDEV_DOWN event
1271 	 *
1272 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1273 	 * handler thus protecting from the device going down before
1274 	 * ctx was added to tls_device_list.
1275 	 */
1276 	down_read(&device_offload_lock);
1277 	if (!(netdev->flags & IFF_UP)) {
1278 		rc = -EINVAL;
1279 		goto release_lock;
1280 	}
1281 
1282 	context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1283 	if (!context) {
1284 		rc = -ENOMEM;
1285 		goto release_lock;
1286 	}
1287 	context->resync_nh_reset = 1;
1288 
1289 	ctx->priv_ctx_rx = context;
1290 	rc = tls_set_sw_offload(sk, ctx, 0);
1291 	if (rc)
1292 		goto release_ctx;
1293 
1294 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1295 					     &ctx->crypto_recv.info,
1296 					     tcp_sk(sk)->copied_seq);
1297 	info = (void *)&ctx->crypto_recv.info;
1298 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1299 				     tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1300 	if (rc)
1301 		goto free_sw_resources;
1302 
1303 	tls_device_attach(ctx, sk, netdev);
1304 	up_read(&device_offload_lock);
1305 
1306 	dev_put(netdev);
1307 
1308 	return 0;
1309 
1310 free_sw_resources:
1311 	up_read(&device_offload_lock);
1312 	tls_sw_free_resources_rx(sk);
1313 	down_read(&device_offload_lock);
1314 release_ctx:
1315 	ctx->priv_ctx_rx = NULL;
1316 release_lock:
1317 	up_read(&device_offload_lock);
1318 release_netdev:
1319 	dev_put(netdev);
1320 	return rc;
1321 }
1322 
1323 void tls_device_offload_cleanup_rx(struct sock *sk)
1324 {
1325 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1326 	struct net_device *netdev;
1327 
1328 	down_read(&device_offload_lock);
1329 	netdev = rcu_dereference_protected(tls_ctx->netdev,
1330 					   lockdep_is_held(&device_offload_lock));
1331 	if (!netdev)
1332 		goto out;
1333 
1334 	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1335 					TLS_OFFLOAD_CTX_DIR_RX);
1336 
1337 	if (tls_ctx->tx_conf != TLS_HW) {
1338 		dev_put(netdev);
1339 		rcu_assign_pointer(tls_ctx->netdev, NULL);
1340 	} else {
1341 		set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1342 	}
1343 out:
1344 	up_read(&device_offload_lock);
1345 	tls_sw_release_resources_rx(sk);
1346 }
1347 
1348 static int tls_device_down(struct net_device *netdev)
1349 {
1350 	struct tls_context *ctx, *tmp;
1351 	unsigned long flags;
1352 	LIST_HEAD(list);
1353 
1354 	/* Request a write lock to block new offload attempts */
1355 	down_write(&device_offload_lock);
1356 
1357 	spin_lock_irqsave(&tls_device_lock, flags);
1358 	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1359 		struct net_device *ctx_netdev =
1360 			rcu_dereference_protected(ctx->netdev,
1361 						  lockdep_is_held(&device_offload_lock));
1362 
1363 		if (ctx_netdev != netdev ||
1364 		    !refcount_inc_not_zero(&ctx->refcount))
1365 			continue;
1366 
1367 		list_move(&ctx->list, &list);
1368 	}
1369 	spin_unlock_irqrestore(&tls_device_lock, flags);
1370 
1371 	list_for_each_entry_safe(ctx, tmp, &list, list)	{
1372 		/* Stop offloaded TX and switch to the fallback.
1373 		 * tls_is_sk_tx_device_offloaded will return false.
1374 		 */
1375 		WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1376 
1377 		/* Stop the RX and TX resync.
1378 		 * tls_dev_resync must not be called after tls_dev_del.
1379 		 */
1380 		rcu_assign_pointer(ctx->netdev, NULL);
1381 
1382 		/* Start skipping the RX resync logic completely. */
1383 		set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1384 
1385 		/* Sync with inflight packets. After this point:
1386 		 * TX: no non-encrypted packets will be passed to the driver.
1387 		 * RX: resync requests from the driver will be ignored.
1388 		 */
1389 		synchronize_net();
1390 
1391 		/* Release the offload context on the driver side. */
1392 		if (ctx->tx_conf == TLS_HW)
1393 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1394 							TLS_OFFLOAD_CTX_DIR_TX);
1395 		if (ctx->rx_conf == TLS_HW &&
1396 		    !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1397 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1398 							TLS_OFFLOAD_CTX_DIR_RX);
1399 
1400 		dev_put(netdev);
1401 
1402 		/* Move the context to a separate list for two reasons:
1403 		 * 1. When the context is deallocated, list_del is called.
1404 		 * 2. It's no longer an offloaded context, so we don't want to
1405 		 *    run offload-specific code on this context.
1406 		 */
1407 		spin_lock_irqsave(&tls_device_lock, flags);
1408 		list_move_tail(&ctx->list, &tls_device_down_list);
1409 		spin_unlock_irqrestore(&tls_device_lock, flags);
1410 
1411 		/* Device contexts for RX and TX will be freed in on sk_destruct
1412 		 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1413 		 * Now release the ref taken above.
1414 		 */
1415 		if (refcount_dec_and_test(&ctx->refcount)) {
1416 			/* sk_destruct ran after tls_device_down took a ref, and
1417 			 * it returned early. Complete the destruction here.
1418 			 */
1419 			list_del(&ctx->list);
1420 			tls_device_free_ctx(ctx);
1421 		}
1422 	}
1423 
1424 	up_write(&device_offload_lock);
1425 
1426 	flush_workqueue(destruct_wq);
1427 
1428 	return NOTIFY_DONE;
1429 }
1430 
1431 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1432 			 void *ptr)
1433 {
1434 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1435 
1436 	if (!dev->tlsdev_ops &&
1437 	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1438 		return NOTIFY_DONE;
1439 
1440 	switch (event) {
1441 	case NETDEV_REGISTER:
1442 	case NETDEV_FEAT_CHANGE:
1443 		if (netif_is_bond_master(dev))
1444 			return NOTIFY_DONE;
1445 		if ((dev->features & NETIF_F_HW_TLS_RX) &&
1446 		    !dev->tlsdev_ops->tls_dev_resync)
1447 			return NOTIFY_BAD;
1448 
1449 		if  (dev->tlsdev_ops &&
1450 		     dev->tlsdev_ops->tls_dev_add &&
1451 		     dev->tlsdev_ops->tls_dev_del)
1452 			return NOTIFY_DONE;
1453 		else
1454 			return NOTIFY_BAD;
1455 	case NETDEV_DOWN:
1456 		return tls_device_down(dev);
1457 	}
1458 	return NOTIFY_DONE;
1459 }
1460 
1461 static struct notifier_block tls_dev_notifier = {
1462 	.notifier_call	= tls_dev_event,
1463 };
1464 
1465 int __init tls_device_init(void)
1466 {
1467 	int err;
1468 
1469 	destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0);
1470 	if (!destruct_wq)
1471 		return -ENOMEM;
1472 
1473 	err = register_netdevice_notifier(&tls_dev_notifier);
1474 	if (err)
1475 		destroy_workqueue(destruct_wq);
1476 
1477 	return err;
1478 }
1479 
1480 void __exit tls_device_cleanup(void)
1481 {
1482 	unregister_netdevice_notifier(&tls_dev_notifier);
1483 	destroy_workqueue(destruct_wq);
1484 	clean_acked_data_flush();
1485 }
1486