1 /* 2 * Copyright (c) 2016 Tom Herbert <tom@herbertland.com> 3 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 4 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #ifndef _TLS_INT_H 36 #define _TLS_INT_H 37 38 #include <asm/byteorder.h> 39 #include <linux/types.h> 40 #include <linux/skmsg.h> 41 #include <net/tls.h> 42 43 #define TLS_PAGE_ORDER (min_t(unsigned int, PAGE_ALLOC_COSTLY_ORDER, \ 44 TLS_MAX_PAYLOAD_SIZE >> PAGE_SHIFT)) 45 46 #define __TLS_INC_STATS(net, field) \ 47 __SNMP_INC_STATS((net)->mib.tls_statistics, field) 48 #define TLS_INC_STATS(net, field) \ 49 SNMP_INC_STATS((net)->mib.tls_statistics, field) 50 #define TLS_DEC_STATS(net, field) \ 51 SNMP_DEC_STATS((net)->mib.tls_statistics, field) 52 53 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 54 * allocated or mapped for each TLS record. After encryption, the records are 55 * stores in a linked list. 56 */ 57 struct tls_rec { 58 struct list_head list; 59 int tx_ready; 60 int tx_flags; 61 62 struct sk_msg msg_plaintext; 63 struct sk_msg msg_encrypted; 64 65 /* AAD | msg_plaintext.sg.data | sg_tag */ 66 struct scatterlist sg_aead_in[2]; 67 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 68 struct scatterlist sg_aead_out[2]; 69 70 char content_type; 71 struct scatterlist sg_content_type; 72 73 struct sock *sk; 74 75 char aad_space[TLS_AAD_SPACE_SIZE]; 76 u8 iv_data[MAX_IV_SIZE]; 77 struct aead_request aead_req; 78 u8 aead_req_ctx[]; 79 }; 80 81 int __net_init tls_proc_init(struct net *net); 82 void __net_exit tls_proc_fini(struct net *net); 83 84 struct tls_context *tls_ctx_create(struct sock *sk); 85 void tls_ctx_free(struct sock *sk, struct tls_context *ctx); 86 void update_sk_prot(struct sock *sk, struct tls_context *ctx); 87 88 int wait_on_pending_writer(struct sock *sk, long *timeo); 89 int tls_sk_query(struct sock *sk, int optname, char __user *optval, 90 int __user *optlen); 91 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 92 unsigned int optlen); 93 void tls_err_abort(struct sock *sk, int err); 94 95 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 96 void tls_update_rx_zc_capable(struct tls_context *tls_ctx); 97 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 98 void tls_sw_strparser_done(struct tls_context *tls_ctx); 99 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 100 void tls_sw_splice_eof(struct socket *sock); 101 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 102 int offset, size_t size, int flags); 103 int tls_sw_sendpage(struct sock *sk, struct page *page, 104 int offset, size_t size, int flags); 105 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 106 void tls_sw_release_resources_tx(struct sock *sk); 107 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 108 void tls_sw_free_resources_rx(struct sock *sk); 109 void tls_sw_release_resources_rx(struct sock *sk); 110 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 111 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 112 int flags, int *addr_len); 113 bool tls_sw_sock_is_readable(struct sock *sk); 114 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 115 struct pipe_inode_info *pipe, 116 size_t len, unsigned int flags); 117 118 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 119 void tls_device_splice_eof(struct socket *sock); 120 int tls_device_sendpage(struct sock *sk, struct page *page, 121 int offset, size_t size, int flags); 122 int tls_tx_records(struct sock *sk, int flags); 123 124 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 125 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 126 127 int tls_process_cmsg(struct sock *sk, struct msghdr *msg, 128 unsigned char *record_type); 129 int decrypt_skb(struct sock *sk, struct scatterlist *sgout); 130 131 int tls_sw_fallback_init(struct sock *sk, 132 struct tls_offload_context_tx *offload_ctx, 133 struct tls_crypto_info *crypto_info); 134 135 int tls_strp_dev_init(void); 136 void tls_strp_dev_exit(void); 137 138 void tls_strp_done(struct tls_strparser *strp); 139 void tls_strp_stop(struct tls_strparser *strp); 140 int tls_strp_init(struct tls_strparser *strp, struct sock *sk); 141 void tls_strp_data_ready(struct tls_strparser *strp); 142 143 void tls_strp_check_rcv(struct tls_strparser *strp); 144 void tls_strp_msg_done(struct tls_strparser *strp); 145 146 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb); 147 void tls_rx_msg_ready(struct tls_strparser *strp); 148 149 void tls_strp_msg_load(struct tls_strparser *strp, bool force_refresh); 150 int tls_strp_msg_cow(struct tls_sw_context_rx *ctx); 151 struct sk_buff *tls_strp_msg_detach(struct tls_sw_context_rx *ctx); 152 int tls_strp_msg_hold(struct tls_strparser *strp, struct sk_buff_head *dst); 153 154 static inline struct tls_msg *tls_msg(struct sk_buff *skb) 155 { 156 struct sk_skb_cb *scb = (struct sk_skb_cb *)skb->cb; 157 158 return &scb->tls; 159 } 160 161 static inline struct sk_buff *tls_strp_msg(struct tls_sw_context_rx *ctx) 162 { 163 DEBUG_NET_WARN_ON_ONCE(!ctx->strp.msg_ready || !ctx->strp.anchor->len); 164 return ctx->strp.anchor; 165 } 166 167 static inline bool tls_strp_msg_ready(struct tls_sw_context_rx *ctx) 168 { 169 return ctx->strp.msg_ready; 170 } 171 172 static inline bool tls_strp_msg_mixed_decrypted(struct tls_sw_context_rx *ctx) 173 { 174 return ctx->strp.mixed_decrypted; 175 } 176 177 #ifdef CONFIG_TLS_DEVICE 178 int tls_device_init(void); 179 void tls_device_cleanup(void); 180 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 181 void tls_device_free_resources_tx(struct sock *sk); 182 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 183 void tls_device_offload_cleanup_rx(struct sock *sk); 184 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 185 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx); 186 #else 187 static inline int tls_device_init(void) { return 0; } 188 static inline void tls_device_cleanup(void) {} 189 190 static inline int 191 tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 192 { 193 return -EOPNOTSUPP; 194 } 195 196 static inline void tls_device_free_resources_tx(struct sock *sk) {} 197 198 static inline int 199 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 200 { 201 return -EOPNOTSUPP; 202 } 203 204 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} 205 static inline void 206 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} 207 208 static inline int 209 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) 210 { 211 return 0; 212 } 213 #endif 214 215 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 216 struct scatterlist *sg, u16 first_offset, 217 int flags); 218 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 219 int flags); 220 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 221 222 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 223 { 224 return !!ctx->partially_sent_record; 225 } 226 227 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 228 { 229 return tls_ctx->pending_open_record_frags; 230 } 231 232 static inline bool tls_bigint_increment(unsigned char *seq, int len) 233 { 234 int i; 235 236 for (i = len - 1; i >= 0; i--) { 237 ++seq[i]; 238 if (seq[i] != 0) 239 break; 240 } 241 242 return (i == -1); 243 } 244 245 static inline void tls_bigint_subtract(unsigned char *seq, int n) 246 { 247 u64 rcd_sn; 248 __be64 *p; 249 250 BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8); 251 252 p = (__be64 *)seq; 253 rcd_sn = be64_to_cpu(*p); 254 *p = cpu_to_be64(rcd_sn - n); 255 } 256 257 static inline void 258 tls_advance_record_sn(struct sock *sk, struct tls_prot_info *prot, 259 struct cipher_context *ctx) 260 { 261 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 262 tls_err_abort(sk, -EBADMSG); 263 264 if (prot->version != TLS_1_3_VERSION && 265 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 266 tls_bigint_increment(ctx->iv + prot->salt_size, 267 prot->iv_size); 268 } 269 270 static inline void 271 tls_xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq) 272 { 273 int i; 274 275 if (prot->version == TLS_1_3_VERSION || 276 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 277 for (i = 0; i < 8; i++) 278 iv[i + 4] ^= seq[i]; 279 } 280 } 281 282 static inline void 283 tls_fill_prepend(struct tls_context *ctx, char *buf, size_t plaintext_len, 284 unsigned char record_type) 285 { 286 struct tls_prot_info *prot = &ctx->prot_info; 287 size_t pkt_len, iv_size = prot->iv_size; 288 289 pkt_len = plaintext_len + prot->tag_size; 290 if (prot->version != TLS_1_3_VERSION && 291 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) { 292 pkt_len += iv_size; 293 294 memcpy(buf + TLS_NONCE_OFFSET, 295 ctx->tx.iv + prot->salt_size, iv_size); 296 } 297 298 /* we cover nonce explicit here as well, so buf should be of 299 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 300 */ 301 buf[0] = prot->version == TLS_1_3_VERSION ? 302 TLS_RECORD_TYPE_DATA : record_type; 303 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 304 buf[1] = TLS_1_2_VERSION_MINOR; 305 buf[2] = TLS_1_2_VERSION_MAJOR; 306 /* we can use IV for nonce explicit according to spec */ 307 buf[3] = pkt_len >> 8; 308 buf[4] = pkt_len & 0xFF; 309 } 310 311 static inline 312 void tls_make_aad(char *buf, size_t size, char *record_sequence, 313 unsigned char record_type, struct tls_prot_info *prot) 314 { 315 if (prot->version != TLS_1_3_VERSION) { 316 memcpy(buf, record_sequence, prot->rec_seq_size); 317 buf += 8; 318 } else { 319 size += prot->tag_size; 320 } 321 322 buf[0] = prot->version == TLS_1_3_VERSION ? 323 TLS_RECORD_TYPE_DATA : record_type; 324 buf[1] = TLS_1_2_VERSION_MAJOR; 325 buf[2] = TLS_1_2_VERSION_MINOR; 326 buf[3] = size >> 8; 327 buf[4] = size & 0xFF; 328 } 329 330 #endif 331